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Abstract This study presents a new bivariate distribution, referred to as the bivariate alpha log power transformation
(BVALPT) model, developed by integrating the alpha log power transformation technique with the Marshall-Olkin extreme
shock framework. Closed-form expressions for both the joint probability density function (pdf) and cumulative distribution
function (cdf) are derived. The manuscript explores several key statistical properties of the proposed model, including
marginal and conditional distributions, as well as survival and hazard rate functions. Parameter estimation is carried out
using the maximum likelihood estimation (MLE) method. A notable special case, the bivariate alpha log power transformed
exponential (BVALPTE) distribution, is examined in detail. The practical utility of the BVALPT family is demonstrated by
fitting the BVALPTE distribution to a real-world dataset. Comparative results reveal that the BVALPTE offers an improved
fit and enhanced analytical performance over the benchmark bivariate model considered in the analysis.
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1. Introduction

To better represent complex and varied data structures, there has been an increasing interest in creating new families
of univariate probability distributions in recent years. These families of probability distributions are derived using
many different techniques such as the exponentiated-G which includes the Lehmann alternative of type 1 and
Lehmann alternative of type 2 [1], exponentiated generalised-G [2], the compounding method [3], transmuted-G
[4], T-X technique [5], cubic rank transmuted-G [6], Marshall-Olkin-G [7], alpha power transformed-G [8], the
generalized flexible-G [9] and the new flexible generalized-G [10]. These techniques have gained interest and have
been widely used in literature [11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Recently, [21] introduced a new technique of creating families of continuous distributions called the alpha log
power transformation (ALPT), which generates flexible continuous univariate distributions by modifying the shape
of a given baseline distribution without requiring a specific parent form. For any arbitrary baseline cdf distribution
G(t; n), the cumulative distribution function (cdf) and probability distribution function (pdf) of the ALPT are given
by

Fappr(t;a,n) = o~ ee@Em) (1

and

log(1/a)g(t;m)
G(t’ n)alOE(G(tW)) ’

farpr(t;a,n) = )
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1464 A NEW FAMILY OF BIVARIATE ALPHA LOG POWER TRANSFORMATION MODEL

respectively, where « is a shape parameter also altering the thickness of the tails of the model, G(¢;7) is the
baseline model, n being a vector of parameters and ¢ € R. The baseline model G(x;~y) is a special case of the
ALPT if o = e~!. For small values of o (i.e.,a < e~!) the resulting distribution has a much heavier tail than
G(t;n) indicating that extreme values become more probable, for higher values of « (i.e.,oc > e~ 1) the tail of the
distribution is effectively suppressed, concentrating more mass towards lower values of ¢.

Extending flexible univariate distributions to the multivariate domain, particularly bivariate cases, remains an
essential task in applied probability and statistics. Bivariate distributions are vital in modeling dependencies
between random variables in areas such as survival analysis, reliability theory, and risk management. Several
techniques have been developed for constructing bivariate distributions, including the use of copula functions
[22], conditional specification [23], common latent variables [24], convolution approaches [25], transformation
techniques [26] and shock models [27]. Among these, the Marshall-Olkin shock model [27] stands out as a
powerful and intuitive method to model dependencies via common or shared shocks affecting multiple components
simultaneously. In the literature, applications of the Marshall-Olkin technique [27] are not hard to find. For
example the bivariate generalized exponential distribution [28], bivariate exponentiated modified Weibull extension
distribution [29], the Marshall-Olkin bivariate exponentiated Lomax [30] and the bivariate generalized geometric
[31].

Motivated by these developments, this manuscript introduces a novel bivariate model called the bivariate alpha
log power transformation (BVALPT) family. This new family leverages the structure of the ALPT univariate model
and incorporates dependency through the Marshall-Olkin framework [27].

The rest of the article is outlined as follows: We introduce the bivariate alpha log power transformation
(BVALPT) family in Section 2. Some parameter estimation methods are discussed in Section 3. Section 4 covers
the bivariate alpha log power transformed exponential (BVALPTE), a special case of the BVALPT using the
exponential as the parent model. In Section 5, we presented some simulations based on the exponential baseline
model, therefore, in Section 6, we illustrate the usefulness of the BVALPTE distribution using a real-life data set,
followed by concluding remarks in Section 7.

2. Family formulation

Consider three independent sources (source 1, 2, and 3) of extreme shocks affecting a system with two components.
Furthermore, assume that the shock from source 1 reaches the system and immediately destroys component 1
only, the shock from source 2 reaches the system and immediately destroys component 2 only, while if the
shock from source 3 hits the system it immediately destroys both the components. Let T ~ ALPT («y,7),
Ty ~ ALPT (as,n), and T3 ~ ALPT(a3,n) denote the inter-arrival times between the shocks from sources 1, 2
and 3 respectively. Suppose X and Y denote the survival times of component 1 and 2, respectively. Following the
Marshall-Olkin [27] framework, the joint lifetime of the two components follows the BVALPT with cdf given by

) - (IL‘7 y) _ 0‘1— 10%(G(f%77))a2— log(G(ym))a; 10%(G(Z;77))7 3)

where «; € (0,1) for ¢ =1,2,3,  is a parameter vector and z = min{X,Y}. As a result, the lifetimes of
component 1 only, and component 2 only follow the ALPT distribution with cdfs given by

Fo(z) = Fappr(z;aias,n) = (arag)” 0s@@m), 4)
and

Fy(y) = Fappr(y;asas,n) = (agaz)” e@wm), (5

respectively.
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As aresult, the pdf of the BVALPT is given by

ALPT\Z; Q1Q3,1) X JaLpT\Y; Q2,1 <y
f ( )% f ( ) <
fevarpr(z,y) =& farpr(y;a2as,n) X farpr(w;ar,mn) r>y ©)
%J%LPT(UQ ajopas,n) T=Y=1u
where
log(1/(a1a3))g(x;n)
. - 7
fALPT (.%‘, a103, 77) G(l’, 77) (a1a3)log(G(m;n)) ’ )
. _ log(1/as)g(y;n)
fALPT (y7 2, 77) - G(y n)alzog(a(ym)) ) (8)
log(1/(a2cs))g(y; )
. _ 9
fALPT(y»OQa?nn) G(y;n)(a2a3)log(6‘(y;n)) ’ ©)
log(1/ay)g(x;n)
farpr(z;ai,m) = log(G(z:n)) ’ (10)
G(z;n)a (G (z5m))
and

log(1/ (v anas))g(u; n) (11)

farpr(usarazas,n) = G(u;n)(ragaz)los(Glumn)

Hence, the conditional lifetime of component 1, given the lifetime of component 2, is expressed as follows:

farpr(z;0na3,m) X farpr(y;02,m)

faLpr(y;azas,n) T<Y
Flzly) = fALPT(y;(jii:?;;;égg;’l)"(93?041777) >y (12)
log(as) X farpr(u;o aas,n) =y =u,

log(arazaz) X farpr (y;2as,m)

where, farpr(v;aias,n), farpr(y;a2,n), farpr(y; azasz,n), farpr(w;ai,n), and fappr(u; cragas,n) are
given in equations (7), (8), (9), (10) and (11) respectively. In a similar manner, the conditional lifetime of component
2, given the lifetime of component 1, can be easily derived.

2.1. Survival function and Hazard rate function

The survival function of BVALPT is given by

Si(r,y)  w<y

Spvarer(z,y) =9 S2(z,y) x>y (13)
S (u) x=y=u,
where
Si(z,y) = 1— (ayaz)”18G@M) _ (q,a4) 108G Wm)
(a1a3)7 log(G’(w;n))a; log(G(y;n))’ (14)
Sy(z,y) = 1— (ayag)”18G@M) _ (qya4) 108G Wm)
+ (o) 1o8G@M) (05) 7 los(Glyim) (15)
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and

S3(u) = 1-— (alaB)—log(G(um)) — (a2a3)—log(G(um))

+  (aragog)” oG um) (16)

Hence, the BVALPT has its hazard rate function (hrf) as

farpr(ziaias,n) X farpr(y;o2,m)

S1(z,y) Ty
hrfpvarpr(z,y) = fALPT(y;awgﬂ)gsyf)ALPT(m;al’n) >y (17)
log(as) X farpr (u;01 aaa3,m) T=y=u,

log(a1agasz)XxSz(u)

where, farpr(v;aias,n), farpr(y; a2, n), faLpr(y; aoas,n), farpr(x; a1,m) and
farpr(u; a1asas, n) are given in equations (7), (8), (9), (10) and (11) respectively.

3. Estimation Methods

In this section, we present two commonly used methods from the literature for estimating unknown parameters:
maximum likelihood estimation (MLE) and Bayesian estimation.

3.1. Maximum likelihood Estimation
In this subsection, we apply the maximum likelihood method to estimate the unknown parameters of the BVALPT

family, considering both complete and censored data scenarios.

3.1.1. Complete Data: In this section, we estimate the unknown parameters of the BVALPT using the maximum
likelihood estimation (mle) technique. Consider D = {(x1,v1), (2,y2), ..., (Tk, yx)} be a sample of size k from
the BVALPT famlly Let D, = {(«1:7, yz),xz < yi})’ Dy = {(Iuyz); xri; > yz}), D3 = {(.T,L', yz),xz = y,}) Then the
sets Dy, Dy, and D3 are mutually disjoint and partition the set D. Furthermore, suppose |D1| = n,| D2| =m
|D3| = p, and n + m + p = k. The likelihood function L(A) of this sample is given by

HflmyH 2w 9) | [ fsw)- (18)

Substituting equation (6) into equation (18) yields

L(A) = nlog(log(1l/(a1a3)) +Zlog x;n)) Zlog —log(ayaz Zlog i)

i=1

+ nlog(log(1/as)) + Zlog(g(y 7)) Zlog —log(as Zlog

i=1

+ mlog(log(1/(asas)) +Zlog g(y;m)) Zlog —log(asas Zlog i)
i=1

+ mlog(log(1/(ay)) +Zlog ;1)) Zlog —log(ay Zlog

- plog(log(l/az)HZlog(g(u n)) Zlog — log(cnanas) ZIOg ).

i=1 i=1
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To obtain score functions associated with equation (19), we solve the non-linear systems of equations

T
A_ (ae(A) 9L(A) dU(A) 6€(A>> 0 (19)

Oa; = Oasy ' Oasz B Ou

using numerical methods such as the Newton—Raphson technique, bisection method, secant method, fixed point
iteration, or false position (regula falsi) technique. The variance-covariance matrix of the maximum likelihood
estimators is derived by taking the negative inverse of the matrix of second-order partial derivatives. The standard
errors for the parameter estimates are obtained by computing the square roots of the diagonal elements of this
matrix. These maximum likelihood estimates, along with their corresponding standard errors, can then be used to
calculate asymptotic z-statistics (Wald statistics) or to construct confidence intervals.

3.1.2. Censored Data: We now consider that the data is subject to right censoring. Specifically, let
(1,91), (x2,¥2), ..., (¥, yx) represent a random sample of size k drawn from a bivariate lifetime distribution.
To account for the censoring, we introduce the following indicator variables.

{ Y1i =1 if X, <c¢; and 0 otherwise 20)

Yo = 1 if Y;<cy and O otherwise,

where (c¢14, co;) are the right censoring times (i = 1,2, ..., k). As such, we have four possible situations, as described
in the following

* ¢1: Both X; and Y; are complete observations (v1; = 1,72; = 1);

* co: X; is complete and Y; is censored (y1; = 1,72, = 0);

e ¢3: X, is censored and Y; is complete (y1; = 0,7v2; = 1);

¢ ¢1: Both X; and Y; are censored observations (y1; = 0, v2; = 0).

In every case, the observed data are defined as t1; = min(X;, ¢1;) and to; = min(Y;, c2;). Therefore, the likelihood
contribution from the i*" observation is expressed as:

_ L 08 (t1i, t2:) 0S(t14,t2;)
= 16'[ Ftri, t2:) 16'[ < T ) 16'[ ( T ) 16'[ S(tui ta), 1)
1ecy 1€C2 i€cs i€ca

where 0S(t1;,t2;)/0t1; and 9S(t1s,ta;)/0to; are the derivatives of the joint survival functions of 77 and T5
respectively.

3.1.3. Bayesian approach Suppose an independent Uniform or Gamma prior distributions for the model
parameters and suppose that 5; ~ I'(a;, b;)(j = 1,2, 3). Hence,

a;j

q'j_le_bjﬂj,ﬂj > 0, a; > 0, b]' > 0.

J
L(a;)
As such , the joint posterior density of 3 can be expressed as

L(A) T i (5))
fooo fooo fooo L(A) Hj:l 4 (ﬁj)dﬂj

Using equation (22), a Bayes estimator of any function of 3, say p(3), assuming the squared error loss function, is
given by

T (B;) =

m(Blt) =

(22)

Jo Iy Jy p(B)L(A) H?=1 ;(8;)dB;
IS ST LA Ty m(85)dB;

Since posterior equation (22) cannot be computed analytically, MCMC methods should be considered [32, 33] to
obtain posterior summaries from equation (23).

(B) = (23)
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1468 A NEW FAMILY OF BIVARIATE ALPHA LOG POWER TRANSFORMATION MODEL

4. Bivariate alpha log-power transformation exponential

The formulation of the bivariate alpha log-power transformed exponential (BVALPTE) is obtained by taking the
exponential distribution with scale parameter ”a” as a baseline model for Equation (3). Thus the BVALPTE has its

cdf given by

— 1 —ax —1 l—e ¥ —1 1_e— 2%
Fpyarpre(x,y) = ay og(1- )% og(1-e )QS og(1-e )7

where z = min{X,Y}. Figure 1 shows the cdf plots of the BVALPTE for different parameter values.

alpha_1=0.05, alpha_2=0.4, alpha_3=0.09, a=2.5 alpha_1=0.3 , alpha_2=0.4, alpha_3=0.09, a=0.05
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Figure 1. The cdf plots of the BVALPTE for different parameter values

4.1. Joint probability distribution function
The pdf of the BVALPTE is given by

filzyy) <y
fevarpre(z,y) = fa(z,y) >y
f3(u) r=y=u,

where
filz,y) = farpre(®;aias,a) X fappre(y; oz, a)
= log(1/(arag))a’e™* (1 — efaz)—l (al%)_log(l_ewr)
X log(1/az)e™ ¥ (1— =)~ ag 7",
folzy) = farpre(y;osas,a) X farpre(z;ar,a)
— (1 (oo (1 — =) agag) i)

x log(]/oﬂ)@_aﬂc (1 _ e—az)—l al— log(l_efaz)

and

f3(u)

log(a
&fALPTE(yvalaQOlSa a)
log(ayasas)

= log(1/asg)ae " (1 — e““‘)fl (alagag)_log(l_eiw).

For various parameter values, the pdf plots of the BVALPTE are given in Figure 2.
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alpha_1=0.3 , alpha_2=0.4, alpha_3=0.5, a=2.5 alpha_1=0.5, alpha_2=0.3, alpha_3=0.9, a=1.5

Figure 2. The pdf plots of the BVALPTE for different parameter values

4.2. Marginal distributions
The marginal cdfs of X and Y are respectively given by:

Fy(z) = Farpre(r;aias,a) = (CY1OZ3)_1Og(1_e )
and

Fy(y) = Farpre(y; aoas, a) = (azars)~o8(1=e™),
Correspondingly, the marginal pdfs of X and Y are respectively expressed as:

—ax —az\ 1L —log(1—e™ 9"
fo(@) = farpre(z;aras,a) = log(1/(aras))ae (1 —e ) (a1a3) log(1 ),

and

fy(W) = farpre(y; azas, a) = log(1/(azas))ae™* (1 — e_“y)71 (a2a3)’1°g(1*6_w).

4.3. Survival functions

The survival function of the BVALPE is expressed as:

Si(zy) <y
Spvarpre(z,y) = Sa(z,y) >y
Sg(u) xr =1y =u,
where
51(377:[/) = 1- (a1a3)_10g(1_eiaz) _ (azag)—IOg(l—Efay)
+ (oz1a3)_1°g(1—€7‘”)a;log(l_ewy),

1-— (a1a3)*log(176_‘”) . (agag)ilog(lie_ay)

+ (1)” log(1—e™ ") (apai3)™ log(1—e~¥)

SQ(xvy)

)

1469

(29)

(30)

€19

(32)

(33)

(34

(35)
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and

S3(u) = 1— (a1a3)_1°g(1—€7““) _ (OQO[?’)—IOg(l—e*a“)

+ (0é1042043)_10g(1_eiw). (36)
The plots the survival function of the BVALPTE for different parameter values are given in Figure 3.

alpha_1=0.05, alpha_2=0.3, alpha_3=0.09, a=2.5 alpha_1=0.5, alpha_2=0.4, alpha_3=0.3, a=1.5
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Figure 3. The plots of the survival function of the BVALPTE for different parameter values

4.4. Hazard rate functions
The BVALPTE has its hrf as

fi(z.y)
Siew) <Y
L _ f2(z,y) 37
rfevaLpre(T,y) S@y) TV (37
f3(u)
B amu-n

where, f1(x,y), f2(z,v), f3(u), S1(x,y), S2(x,y), and S3(u), are as given in Equations (26), (27), (28), (34), (35),
and (36), respectively. The hrf plots of the BVALPTE for different parameter values are given in Figure 4.

4.5. Conditional probability density functions
The conditional probability of X, given Y is provided by

_ hmy)
farpre(y;azas,a) T <y
Faly) = Tt £ Y 38)
fa(u) t=y=u,

farpre(y;02a3,a0)

where, f1(z,y), f2(x,y), f3(u), and farpre(y; azas,a) are as given in Equations (26), (27), (28), and (32),
respectively. In a similar manner, the conditional probability of Y, given X, can be easily derived.
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alpha_1=0.05, alpha_2=0.3, alpha_3=0.09, a=2.5 alpha_1=0.5, alpha_2=0.4, alpha_3=0.9, a=1.5

Figure 4. The hrf plots of the BVALPTE for different parameter values

5. Simulation Study

A BVALPTE Monte Carlo simulation is carried out in this section using R software. Generating random numbers
from a joint distribution was discussed by [22]. We can generate a bivariate sample by using the conditional
approach using the following steps [34];

e U and V are generated independently from uniform (0, 1) distribution.
e Setz = Qp(u) =—a tlog(l —U).

* Set F,|,) =V, to obtain y by numerical analysis.

* Repeat above steps (n) items to get (z;,v;),i = 1,...,n.

A simulation experiment was carried out based on the data generated from the BVALPTE distribution for different
sample size (n = 25,100, 200, 400, 500, 800, 1000) with 2000 replications. The simulation methods are evaluated
based on their effectiveness in parameter estimation. This comparison is carried out by computing and recording
the estimate, the root mean squared error (RMSE) and the bias for all sample sizes. Tables 1 and 2 shows that
as the sample size increases, the estimates approaches the initial parameter values and both the RMSE and Bias
decreases.

6. Application

In this section, we analyse the computer systems data [35] and diabetic nephropathy [36] to show the practicality
of the BVALPTE model.

6.1. Computer System Data

The data was extracted from [35]. The dataset consists of a simulated rudimentary computer system comprising a
processor and memory across n = 50 units. The system functions only if both components operate properly. Over
time, the system undergoes a latent deterioration process, with degradation accelerating rapidly within a short
period (measured in hours). As the system weakens, it becomes increasingly susceptible to shocks, any of which
can randomly cause the failure of one or both components. A critical aspect of this process is that a catastrophic
shock can simultaneously disable both components, challenging the assumption of component independence. To
address this, we applied the BVALPTE extreme shock model to analyze system failure dynamics. The data set is
given as follows:

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1472 A NEW FAMILY OF BIVARIATE ALPHA LOG POWER TRANSFORMATION MODEL

Table 1. BVALPTE Model’s Simulations Results 1

(0.5,0.5,0.5,1.0) (0.2,0.5,0.5,1.0)
Parameter | Sample Size | MLE RMSE Bias MLE RMSE Bias

o 75 0.9690 562.9358 48.469 | 0.8027 769.8674 55.6027
100 0.7603 534.7081 27.2603 | 0.8030 112.7451 11.8304

200 0.6098 23.0799 1.5980 | 0.9511 4.9372 0.7511

400 0.5954 1.7639 0.0954 | 0.2777 0.9097 0.0777

500 0.5037 0.4574 0.0037 | 0.2146 0.1772 0.0146

800 0.4166 0.1954 -0.0834 | 0.1823 0.0853 -0.0177

1000 0.4063 0.2099 -0.0937 | 0.1706 0.0941 -0.0294

% 75 0.6626 32.4791 5.1626 | 0.8238 39.4054 5.7384
100 0.7353 16.8174 2.2353 | 0.8749 14.6501 2.2491

200 0.8334 2.7695 0.8336 | 0.8206 2.1583 0.7057

400 0.8035 0.6371 0.3035 | 0.7881 0.5712 0.2881

500 0.7645 0.5510 0.2645 | 0.7609 0.4448 0.2609

800 0.7086 0.3562 0.2086 | 0.7068 0.3011 0.2068

1000 0.6616 0.2633 0.1616 | 0.6585 0.2343 0.1585

s 75 0.7059 12.7124 4.2059 | 0.9053 13.1934 4.5533
100 0.9155 9.0755 2.4155 | 0.9016 8.0206 2.4016

200 0.8292 2.9656 0.7916 | 0.8215 2.3587 0.7150

400 0.7822 1.0041 0.2822 | 0.7571 0.8135 0.2571

500 0.7153 0.5548 0.2153 | 0.7054 0.4103 0.2054

800 0.6554 0.2788 0.1554 | 0.6497 0.2402 0.1497

1000 0.6140 0.2142 0.1140 | 0.6088 0.1929 0.1088

a 75 0.8715 0.6329 -0.1285 | 0.8355 0.6286 -0.1645
100 0.8837 0.5647 -0.1163 | 0.8576 0.5702 -0.1424

200 0.8597 0.4318 -0.1403 | 0.8490 0.4249 -0.1510

400 0.8602 0.3068 -0.1398 | 0.8535 0.2881 -0.1465

500 0.8688 0.2876 -0.1312 | 0.8494 0.2753 -0.1506

800 0.8702 0.2363 -0.1298 | 0.8571 0.2325 -0.1429

1000 0.8940 0.2010 -0.1060 | 0.8885 0.1875 -0.1115

Processor lifetime (X): 1.9292 3.6621 3.6621 3.6621 1.0833 1.0833 0.3309 0.3309 0.5784 0.5520 1.9386
2.1000 0.9867 0.9867 1.3989 2.3757 3.5202 2.3364 0.8584 4.3435 1.1739 1.3482 3.0935 2.1396 1.3288 0.1115
0.8503 0.1955 0.4614 3.3887 0.1181 5.0533 1.6465 0.9096 1.7494 0.1058 0.1058 0.9938 5.7561 5.7561 0.6270
0.7947 0.5079 2.5913 2.5372 1.1917 1.5254 1.0986 1.0051 1.3640.

Memory lifetime (Y'): 3.9291 0.0026 0.0026 0.0026 3.3059 3.3059 0.3309 0.3309 1.8795 0.5520 4.0043 2.0513
0.9867 0.9867 4.1268 2.7953 1.4095 0.1624 1.9556 1.0001 3.3857 1.9705 3.0935 2.1548 0.9689 0.1115 2.8578
0.1955 0.8584 1.9796 0.0884 2.3238 2.0197 0.6214 2.3643 0.1058 0.1058 1.7689 0.3212 0.3212 1.7289 0.7947
5.35352.5913 2.4923 0.0801 4.4088 1.0986 1.0051 1.3640.

Before analysing the data using the bivariate alpha log power transformed exponential model, we first fit the
marginals X,Y and min(X,Y’) separately on the same data. Figures 5 to 9 show the fitted probability density
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Table 2. BVALPTE Model’s Simulations Results 2

(0.2,0.5,0.2,1.0) (0.5,0.5,0.3,1.0)
Parameter | Sample Size | MLE RMSE Bias MLE RMSE Bias
o 75 0.7274 4.7582 1.0742 | 0.7335 50.8870 4.8352
100 0.7620 3.3107 0.5620 | 0.7057 10.2519 1.5565
200 0.2414 0.3949 0.0414 | 0.7145 1.3175 0.2145
400 0.1594 0.1791 -0.0406 | 0.4584 0.4405 -0.0416
500 0.1385 0.1504 -0.0615 | 0.4383 0.3716 -0.0617
800 0.1380 0.1422 -0.0620 | 0.3856 0.2816 -0.1144
1000 0.1132 0.1261 -0.0868 | 0.3747 0.2428 -0.1253
o 75 0.9369 48.4408 9.4369 | 0.9098 36.1855 8.5980
100 0.8485 27.9628 4.9854 | 0.7503 21.3124 4.5325
200 0.8450 8.1284 0.9496 | 0.7508 7.5746 1.0081
400 0.8029 0.6859 0.3029 | 0.7584 0.7801 0.2584
500 0.8045 0.4781 0.3045 | 0.7241 0.7318 0.2241
800 0.7308 0.3554 0.2308 | 0.6706 0.3372 0.1706
1000 0.8453 0.4711 0.3453 | 0.6581 0.2770 0.1581
% 75 0.7039 3.5245 0.8395 | 0.9577 5.4632 1.6577
100 0.5930 1.5780 0.3930 | 0.6134 2.7890 0.8337
200 0.3341 0.2922 0.1341 | 0.5295 0.7476 0.2295
400 0.2888 0.1423 0.0888 | 0.4053 0.2394 0.1053
500 0.2931 0.1353 0.0931 | 0.3893 0.1953 0.0893
800 0.2742 0.1165 0.0742 | 0.3739 0.1442 0.0739
1000 0.3050 0.1354 0.1050 | 0.3696 0.1261 0.0696
a 75 0.8104 0.4665 -0.1896 | 0.8413 0.5303 -0.1587
100 0.8006 0.4227 -0.1994 | 0.8457 0.4775 -0.1543
200 0.8192 0.3384 -0.1808 | 0.8631 0.3651 -0.1369
400 0.8290 0.2765 -0.1710 | 0.8866 0.2750 -0.1134
500 0.8065 0.2773 -0.1935 | 0.8900 0.2498 -0.1100
800 0.8379 0.2461 -0.1621 | 0.8926 0.2122 -0.1074
1000 0.7673 0.2978 -0.2327 | 0.8924 0.1999 -0.1076

function (pdf) plots, fitted emperical cumulative distribution function (ECDF), Kaplain Meirer (KM) and the
probability plots (ppp). We can observe that the marginals fit the dataset well, therefore the bivariate alpha log-
power transformed exponential model can be used to analyse this dataset.

Table 3 discuss MLE estimator of marginal parameters with standard errors in parenthesis, also different
measures of goodness of fit (GoF) statistics such as the —2 log-likelihood (—2 log L) Akaike information criterion
(AIC), the corrected AIC (CAIC) and the Bayesian information criterion (BIC) for models fitted the processor
and memory lifetime data. Models fitted are the novel bivariate alpha log power transformation exponential
(BVALPTE) model, bivariate exponential modified Weibull (BVEMW) model [37] and the bivariate exponentiated
modified Weibull extension (BVEMWE) model [29]. The novel BVALPTE outperforms other comparative
bivariate models discussed in this paper as it has the lowest GOF statistics values.

Stat., Optim. Inf. Comput. Vol. 15, March 2026



1474 A NEW FAMILY OF BIVARIATE ALPHA LOG POWER TRANSFORMATION MODEL
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Figure 6. Fitted ECDF plots for X,Y and min(X,Y")
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Figure 7. Fitted KM plots for X, Y and min(X,Y")

6.2. Diabetic Nephropathy

In this subsection, we consider both serum creatinine (SrCr) levels and the duration of diabetes. Since all
patients were already diagnosed with diabetes, our focus is on assessing potential complications arising from
it. Based on SrCr levels, patients were categorized into two groups: those with diabetic nephropathy (DN),
defined as SrCr > 1.4mg/dl, and those without DN, with SrCr < 1.4mg/dl. SrCr data were available for 200
patients, with reports collected a pathology lab between January 2012 and August 2013. The dataset includes the
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PP Plot

PP Plot

Figure 8. Fitted PPP plots for X,Y and min(X,Y)

Table 3. Estimates, Standard errors and GoF statistics values
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Figure 9. Fitted hrf plots for X, Y and min(X,Y)
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Model Parameter Estimates —2log L AIC BIC
aq (e g a -

BVALPTE 0.6127 0.6391 0.4635 0.5900 - 14376.8300  14384.8300 14383.6258
(0.0106) (0.0094) (0.0108) (0.0116) -
aq (6D Qs [4 6

BVEMW 2.4584 2.0544 3.3373 0.6714 0.1706 14890.6500 14896.6500 14900.8438
(0.5379) (0.4526) (0.7488) (0.0173) (0.0219)
0! V2 V3 a B

BVEMWE  0.3089 0.2497 0.4017 0.1372 1.4777 14787.4100 14793.4100 14797.6038
(0.0546) (0.0432) (0.0699) (0.0324) (0.2336)

average duration of diabetes among 132 individuals diagnosed with type 2 diabetic nephropathy over varying time
intervals, as reported [36, 38]. The data is as follows:

Duration of diabetes (X): 7.4, 9, 10, 11, 12, 13, 13.75, 14.92, 15.8286, 16.9333, 18, 19, 20, 21, 22, 23, 24,
26, 26.6.
Serum Creatinine (Y): 1.925, 1.5, 2, 1.6, 1.7, 1.7533, 1.54, 1.694, 1.8843, 1.8433, 1.832, 1.59, 1.7833, 1.2, 1.792,
1.5, 1.5033, 2, 2.14.

Before applying the bivariate alpha log power transformed exponential model to the diabetic nephropathy data,
we begin by fitting the marginal distributions X,Y and min(X,Y’) separately to the same dataset. Likewise,
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Figures 10 to 14 display the fitted pdfs, ECDFs, KM curves, and PPP plots. The results indicate that the marginal
distributions provide a good fit to the data, supporting the use of the bivariate alpha log-power transformed
exponential model for further analysis.
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Table 4 presents the MLE estimates of the marginal parameters, with standard errors shown in parentheses, along
with various GoF statistics for models applied to the processor and memory lifetime data. The BVALPTE model

Stat., Optim. Inf. Comput.

Vol. 15, March 2026



PP Plot

hif

015
L

0.10
L

005
L

000
L

25

R. R. MUSEKWA, L. GABAITIRI AND B. MAKUBATE

PP Plot
0

hrt

PP Plot

00

Figure 14. Fitted hrf plots for X,Y and min(X,Y)

1477

min(X,Y)

min(X,Y)

demonstrates superior performance, as indicated by its consistently lower GoF statistic values compared to the
other models.

Table 4. Estimates, Standard errors and GoF statistics values

Model Parameter Estimates —2 log L AIC CAIC BIC
ap (65} Qa3 a - -

BVALPTE  8.8624x107° 0.5515 0.3836 0.1657 - - 3774.8500 3782.8500 3785.7071 3779.9650

(9.2243x107°)  (0.0197) (4.0416x107°) (0.0067) - -

ai Qs as 0 B ol

BVEMW 2.1372 0.0120 1.0120 0.0878 0.5446 0.1013  4341.5620 4353.5620 4359.5620 4349.2345
(0.1318) (0.0460) (0.0460) (0.0030) (0.0643) (0.0130)
" Y2 V3 a B A

BVEMWE 1.6377 1.0470 2.0470 0.0365 0.1044 3.0079 76357930 7647.7930 7653.7930 7643.4655
(0.0863) (0.0877) (0.0877) (0.0045)  (0.0090) (0.1675)

7. Conclusions

In this research, we introduced the BVALPT distribution, developed by incorporating the ALPT into the
Marshall-Olkin extreme shock model. This new family offers enhanced flexibility in modeling dependent lifetime

data, especially for systems that are susceptible to several shock sources.
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For the survival functions, hazard rate functions, conditional densities, and joint and marginal distributions,
we provided closed-form expressions. The BVALPTE, a special case of this model was explored in detail. We
produced parameter estimates using maximum likelihood estimation and showed that the BVALPTE is applicable
to real-world data.

A thorough goodness-of-fit analysis was performed to evaluate the model’s performance in comparison to other
well-known bivariate models. The findings demonstrate that the BVALPTE model fits the data better and more
accurately depicts the underlying dependency structure.

For practitioners in risk assessment, reliability engineering, and survival analysis, the suggested BVALPT
family may be a useful substitute. Future research could look into using the model in larger empirical contexts
with censored or truncated data, investigating Bayesian estimation techniques, or expanding the model to higher
dimensions.
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