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1. Introduction and motivation

We conduct here a detailed analysis of the Bingham-type non-Newtonian fluid model, described as follows:

—DivS*+Vp® = f° in QF, (1)
Du®
S® = p(||Du®||)Du’ + ¢° if Du® #£ 0,
(IDus]) D] 2
IS5| < ¢° if Du® =0,

where f¢ denotes the volume density of applied forces, u¢ : Q° — R3 represents the flow velocity, p® : Q° — R is
the pressure, and S° : M> — M? signifies the extra stress tensor. The plasticity threshold (yield stress) is defined
as ¢g° : 2° — RT. The physical interpretation of these constitutive laws is elaborated in [22, 23, 26].

Recent years have witnessed a growing interest in the mathematical frameworks that elucidate the steady flow
of incompressible non-Newtonian fluids of Bingham type within confined domains characterized by complex
boundary conditions. This line of inquiry holds considerable practical significance across various technological
and industrial sectors, thus attracting notable attention from the scientific community. The mathematical models
associated with incompressible Bingham fluids are relatively recent developments and have been the subject of
various investigations, as noted in [1, 6, 4].

Asymptotic analysis of these mathematical models is essential for understanding the dynamics of fluids and
structures in complex domains. A number of studies have focused on transforming three-dimensional thin domains
Q° into two-dimensional representations §2, independent of the perturbative €. For example, recent investigations
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have examined the asymptotic properties of Bingham fluids in bounded three-dimensional domains subject to
Tresca and Fourier boundary conditions [14], in [14] the Tresca’s condition is characterized by zero lower surface
velocity. While this paper will analyze a new Bingham model with a Tresca condition, which is characterized by
a nonzero lower surface velocity. Additional research has addressed mechanical contact issues, transitioning from
three-dimensional configurations to thin domain models in two dimensions [21]. Furthermore, the asymptotic
analysis of unilateral contact problems involving Coulomb friction between elastic bodies and thin elastic layers
has emerged as a significant area of study [10]. Collectively, these contributions, along with numerous other works
in the field [5, 14, 12, 25, 4, 24], underscore the diversity of methodologies that enrich our understanding of
complex phenomena related to non-Newtonian fluids and mechanical interactions.

Before detailing the core contributions of this work, we consider the following assumptions:

(Cy) For any matrices K, L € M2X3, we have

sym >
(n(IK)K = p(L)L) : (K - L) = 0;
(C2) The function y is continuous such that
0<po<p(r)<p, VreRy
(Cs) The conditions ¢° € L? () and k° € L> (w) hold.

The hypothesis (C1)-(C2) is applicable to conventional models, such as the Carreau-type and power-law models, as
evidenced in reference [18]. For instance, the Carreau law is described by

t—2

(r) = (po — poo) (1+ ar?) % + jus forall 7 € [0, 400)
witha > 0,1 <t < 2and 0 < p1o < po. This function satisfies 1 € C'*([0, +00)) and
too(r — 8) < pu(r)r — p(s)s < po(r — s) forall r > s > 0. 3)

It has been established that if the viscosity p satisfies condition (3), then the inequalities (C;)-(Cs) are valid, with
suitable constants i, ;411 > 0, as demonstrated in references [7, condition (2.3)] and [8, Lemma 2.1]. Evidently,
when the condition ¢ = 2 is met, the relationship between u(r) and po is equivalent to the linear Newtonian
constitutive relation, as indicated by u(r) = po. Moreover, hypothesis (C2) is satisfied when p is a nondecreasing
function, for example, () = /r + 1/2 for r € [0,4], and 5/2 for r > 4, or u(r) = (arctanr)/2+ pg for r > 0,
see [9, Remark 3].

The aforementioned problem belongs to a family of problems that have previously been examined in various
contexts, particularly in the context of shear flows in narrow films and the theory of lubrication (see [13]). This
family of problems includes the Navier-Stokes system, for which g = 0.

Continuous experimental studies are underway; however, these studies remain challenging due to the thickness
of the gap between the solid surfaces, which can measure as small as 50 nanometers. In such operating conditions,
for example a no-slip condition is induced by chemical bonds between the lubricant and the surrounding surfaces.
Conversely, tangential stresses are so high that they tend to destroy chemical bonds and induce a slip phenomenon.
This phenomenon can be likened to the Tresca free boundary friction model in solid mechanics [15].

Our objective is to examine incompressible Bingham-type models in confined three-dimensional domains,
focusing on their reduction to two-dimensional configurations for enhanced understanding and analysis of the
underlying physical phenomena. By implementing a small variable transformation, y = %2, we reformulate the
starting problem in the three-dimensional domain €2° into an equivalent problem in a fixed domain €2, which
remains unaffected by the parameter . This approach will enable us to establish significant results concerning the
strong convergence of velocity, derive a limiting Reynolds-type equation, and characterize the limit of the Tresca
free boundary conditions.
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1134 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

The paper is outlined as below: Section 2 introduces the model for an incompressible Bingham-type fluid
governed by Tresca’s law, deriving its variational formulation and proving its unique solvability. Section 3 provide
estimates for the velocity and pressure that are independent of the parameter ¢, along with several convergence
results. Finally, Section 4 addresses the limit problem, showcasing the uniqueness of the limiting values for both
velocity and pressure.

2. Variational Formulation and Unique Solvability

We provide here the fundamental equations of the flow model for a Bingham fluid. Let Q¢ C R? be a domain
characterized by a Lipschitz boundary I'>. We suppose that I'® is partitioned into three distinct parts w, I'{
and I'S such that I = UT5 UTS. The area w signifies a fixed bounded region in the plane, represented by
x = (z1,72) € R?, serving as the base of the fluid domain. We assume that w possesses a Lipschitz continuous
boundary. Introducing a parameter ¢ close to zero, we define a positive, smooth, and bounded function h : w — R
that satisfies

0<hy <h(z) < hpy, Vzew.

The upper surface I' is given by the equation 23 = ¢h(z). The domain Q¢ can thus be expressed as
Q° = {(z,23) €R® : (2,0) €w, 0 < w3 <eh(x)},

with its boundary comprising the fixed region w and the lateral boundary I'7. The set Q° is occupied by the
incompressible Bingham fluid.

Figure 1.

The Stokes equation embodies the conservation law governing the flow:
—DivS*+Vp*=f° in Q°, (€))

where S : M® — M3 is the extra stress tensor in (¢, defined according to the Bingham constitutive law by

&)

§° = u(|Duf|)Dus + ¢° g if  Duf #0,
IS¢ < g° if Du®=0.

Equation (5) describes the relationship relating the extra stress tensor S° to the strain rate tensor Du®, with
components defined for u® = (uj,...,u5), as follows:

1 (o o
Dij(“>_2(azj+axi>'
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In this context, p denotes the viscosity coefficient, and g° represents the yield stress of the fluid. The additional
stress is limited by a maximum value, denoted as g°, known as the yield limit. When the stress is below this
threshold, the fluid behaves like a rigid body with no deformations. Conversely, once the stress reaches this limit,
the material starts to behave as a fluid. In the case where ¢° = 0 and the viscosity is constant at u(A) = pp, the
constitutive law simplifies to that of a Newtonian fluid within the framework of the Navier—Stokes equations.

The incompressibility of the fluid is conveyed by the solenoidal condition:

divu® =0 in Q°. 6)
The homogeneous Dirichlet boundary condition implies that the fluid is in contact with the wall
u® =0 in I']. (N

The velocity on I'} is oriented parallel to the w-plane, indicating that 4 = 0 on I'f . On the region w, there is a
no-flux condition, such that
5 =0. ®)

On the region w, the tangential velocity adheres to Tresca friction law, where k° represents the upper limit for the
stress. The law can be expressed as follows:

05| < k* = uf =s,
on w, &)

|o5| = k® = 3\ > s suchthat uf = s — \o5

where | - | represents the Euclidean norm in R2. Let n = (ny,no, n3) represent the unit outward normal to . By
employing Finstein summation conventions, we obtain:

£

U,

— /€ 2, € __ € _ €.
=ut N =uing,  Up = U — Uy NG,

€

On

_ g . g __ g L € .
= (0°n) -n=o0;nin;, o = 05N — 0N,

where v, and u7, denote the normal and tangential velocities on w, respectively, while o}, and o7, represent the
components of the normal and tangential stress tensors on w.

In order to obtain the weak formulation of Problem (4)—(9), we introduce some function spaces:
K¢ = {(pe (Hl(Qs))3;@:0 on T{UTS and ¢-n=0 on w})

Ki={veK:div(v) =0 in Q°},
and
L3(99) {q € L? () : / g dx dzz = 0 where dx :dxldazg}.

€

Korn’s relation indicates (see [26]), that V' equipped with the normal ||u|y = ||Du|| ;2 (q)ax« becomes a separable
and reflexive Banach space, and there exists Cx > 0 such that

Ckllollz2(0e)s < (D@l p2(qeysxs, Vo € K°. (10)
To establish the variational formulation, we assume that u, S, and p are sufficiently smooth functions that comply

with equations (4) through (9). Consider ¢ € K© and u® € K. We multiply equation (4) by ¢ and u®, and then
integrate over the domain )¢ to obtain:

/ (—DivS®) - (p — u®)dxdrs +/ Vp© - (¢ — u®)drdrs = f& (o —u®)dadxs. (11)
€ £ Qe
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1136 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

Then, using standard reasoning, the variational formulation of Problem (4)-(9) is given as follows.

Problem (PV.1). Find a velocity u® € K5 and p® € L3 (Q°) such that
a(us o —u) = (p°,dive) + j°(¢) = j° (u°) = (f*,p —u®), Ve € K", (12)

where
a (uf, ) = / u(De | )Duf : D()dadzs,

(f67<p) = fE'QDdl'dCC;gn
QE

(p°,divey) :/ pediv pdxdrs,

501 = [ Klo—slan+ [ g IDpldsas.
If the test function belongs to K5, we obtain the subsequent variational problem.

Problem (PV .2). Find v* € K such that
a(u, o —u) +j7(p) = j° (u%) 2 (ff o —u’), Ve K (). (13)

The subsequent theorems provide a proof of unique solvability for both Problems (PV.2) and (PV.1).

Theorem 2.1
Suppose that (C1)-(C3) and f< € (L2 (9F)) 3) hold, Thus, Problem (PV.2) possesses a unique solution. In addition,
when s = 0 the weak solution u° satisfies the energy equality

| n Do D )P dodos + [ g° 1D () o+ [

w

k® |uf|dx = € - uf dedes.
e

Proof

According to [11], it is sufficient to verify that the bilinear form a is continuous and coercive on Kj x K. We
recall that the functional j® is convex and continuous on K. The bilinear form a is continuous and coercive. In
fact, from condition (Cs), we have

la(u,v)| = ] / (Dl )D(w) : D(v)dodas

< w||D(u)]| L2 Qe vy D) 22 (s 3y = wa|[ul ks [[v][ks

and
a(u,u) = / ||D(w)||? dedzs > po Hu||§(z , forallu € Kj.
Qe

The convexity of ;¢ is a direct consequence of the convexity of ¢ — ¢°||D(y)||. moreover, j¢ is continuous. In fact,
from hypothesis (C3) and the continuity of the trace operator, we have :

& e € 1 e
17 (w) = 55 ()] S &) o @] 2 lu — vl L2(w) + [|9°] L2(0) ID(u — ) || L2 (0 13
1
<Nk | o0 02 Collw = vl 102y + 1971 L2 (05 [lu = vl 2

By applying Korn’s inequality (10), we can write:

. . 1 Gy
50 =570 £ (I8 bolt G2+ 5 e ) = ol
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Next, we demonstrate that the energy equality holds for any solution u® of Problem (PV.2). Specifically, by
substituting ¢ = 2u° into Problem (PV.2), we obtain:

/Q (1D () ) I ()| dadas + /Q g7 ID ()| dadas + /

w

k® Juf|dx > / & u® dedas.
Qe
On the other hand, selecting ¢ = 0 in Problem (PV.2) yields:

—/ (D (u)|]) I (u®)||? dedas — / 9° ID (u)|| dedxs — / k® |uf| dx > —/ € - uf dedxs.
Qe Qe w e

Clearly, by combining the last two inequalities, we obtain the energy equation. U

Theorem 2.2
Under the conditions of Theorem 2.1, the problem (PV.1) admits a unique solution (uf,p°) in K° x L3(Q2°).

Proof

Given that the test function is part of K3, Theorem 2.1 guarantees the unique solvability u* € K for the variational
Problem (PV.1). To obtain p®, we will utilize the duality results from convex optimization [16]. First, note that we
can rewrite Problem (PV.1) to ensure it is defined over K. To do this, we introduce the indicator functions:

0 ifu e K¢,

. 2 ()} R i —
ok : (L*(92°))" = R with u»—>¢K5(u)—{+Oo g K7

and
0 if g =0,

R:L2 () > R with g— R(g) =
(%) with g (9) {+OO g 40,

Then, we can therefore express (13) as follows:
a(u, ¢ —u) + j°(p) = J°(u°) + dK=(p) — dr=(u") = (f*, ¢ —u"), Vo € K* with div(p) =0,

and the specific solution identified in Theorem 2.1 minimizes the functional

. {(1/2)alp,9) = (%,9) + 57 () + R(div(p)) + dxc- ()} (14

This can be represented as below:
inf F(e) + G(A(p)),

peK=®
where )
F:KE*)R7 ¢*_>F(7/)):§a(¢vw)*(faa¢)»
AK® = X =L%(w) x L?(Q°) x K&, b A@Y) = (A9, Aoth, ¥) = (], , div(y), ¥),
and

G:X =R, e GW) =71 +R (W) + bre (U3).

Next, the following represents the dual problem to (14), i.e.,
Find p* in X* = L*(w) x L? () x K** such that:

sup {—F*(A*¢") — G* (—q")},
q*ey*
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1138 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

where

F*(A*q*) = Sup {(ATd}, @) + (A5q5, ) + (A5d5, ) — F(p)},
%) €

G*(—q") = sup { (—¢*,q) — G(q)}

qeX

= suwp {(—al.q)—Jj(@)}+ sw {(-¢,0)—Rp)}
G EL2(w) q2€L2(2¢)

+ sup { <*Q§»Q3> — QK- (113) }

Since the function G : X — R is continuous, there is p* € X* that satisfies the following relation, as stated in [21]:

{F () + G(A@W)} + {F" (Ap") + G" (=p")} = 0,

this can be formulated as

{F (u%) +j (Aru®) + R (Azu®) + e (Agu®)} + {F* (Ap*) + 5" (=p7) + (¢xc=)" (—p3) } = 0.

By subtracting (p3, Asu®) from both sides, we obtain
F(u®) = F(p) + j(A1w") — ja1) + ¢x=(Asu®) — di=(g3) + (Aipi, )
+ (Asps, ) + (A3ps, 0) + (—af, @1) + (— a5, a3) — (p5, Aou®) + R(Aqu®) = —(p5, Agu®).
Based on the definition of R, for any ¢ = (q1,¢2,¢3) in X = L?(w) x L% (Q°) x K¢, we have
G* (—=q") = {{—al, @1) —j (@)} + {{—a3, a3) — PK=(g3)} -
By combining (15) and (16), utilizing the definition of R and tacking ¢ = A for ¢ in K¢, we obtain
F(u?) = F(p) + j(Au) = j(Ar1p) + dxe (Asu”)
— pre(Asp) + (p3, A2p) — (p3, A2u®) < { — H(Azu®) — (p3,div (u7)) } <0,
which corresponds that for all p € K¢, we have
a(u®, o —u”) +j(p) = J(u°) + ¢x-(Asp) — x=(Asu”) — (p5, div (p —u%)) = (f5,p — ),
Since € is unique in K¢, it follows that p} is also unique in L?(2¢). Thus, Theorem 2.2 has been proven.

Lemma 2.3
Let u® be a solution of problem (12), then

(e’:‘hM)2
QMCk

€

o) s

Proof
By selecting ¢ = 0 as the test function in inequality (13), we obtain

1
|D (u®)| dx dzs + / k® |u® —s|dx < i,uCk HVUEHQLQ(QE) +

a(us,us)—kgs/ |D(UE)‘dId1‘3+/k€ [u® — s|dx < (f%,uf).

€ w

Applying the Poincaré inequality [10], we find

[0l L2 ey < har VUl 20y,

2
T

5)

16)

a7

(18)
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Using the Young inequality, we get

(f5,u) < ehnr (VUS| g2 ey 1/ T p2 (e

1 ehn
< (HCR)Z IV |l 2oy ——1 1 2200
(1Cy,)?
1 o2 (ehm)? | ey
< GHOK IVElizae) + 5 = 17512 ae)

Thus, from (18) and (19), we deduce

a(ue,ue)—i-ge/ |D (u®)| dx dx3+/k5\u€—s|dx

Qe w
1 2 (ehar)? 2
< —uCr |IVut . oy -
< SHCK VU200 + 21C) 1512 00

3. Boundedness and weak convergences

1139

19

(20)

For the asymptotic analysis of Problem (PV.1), we transform the problem from the domain 2¢, which relies on a
small parameter ¢, to an equivalent problem in the fixed domain €2 that is independent of €. This is done by applying
a scaling technique on the =3 coordinate, introducing the variable change y = “*. Hence, we specify the domain as

Q={(z,y) eR’: (z,0) €w, 0<y<h(x)}.

We represent its boundary by I' = 'y UT', U @ and proceed to define the following functions in Q:

i (v, y) = ui (z,23) (i=1,2),

5, y) = ~u (x,75),

P (2,y) = €2 (2,25
The vector independent of € must first be defined:

fa) = (Al Ly, ).
Next, we make the following assumption regarding the dependence of the data on ¢:
f(x,y) =e%f% (x,23), §=-¢eg° and k=cke.
We then introduce the following useful sets and spaces:
K(Q) ={pe(H'(©) :¢=0o0n T UT, $-n=0 on w},

Ka(Q) ={p € K(Q) :divg =0in Q},

and
. (9’[)1'

V, = {v=(v1,02) € (L) dy

€L*(Q)(i=1,2),v=0 on I'}.

2y
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1140 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D
The space V,, equipped with the following norm, is a Banach space.
1/2
vllv, = (Z ||vl|L2(Q)+‘ )
L2(Q)

and define its linear subspace, which is equipped with the same topology

avl
Oy

V, = {v € Vj, : v satisfies condition (D’) },
where the condition (D’) is given as follows:
-~ 00 - 00 -
/ (p15— + po=—) dzdy =0 forall (¢,0) € (LQ(Q))2 x C5°(92).
9] 8%1 5
By incorporating new data and unknowns into Problem (PV.1) and multiplying by ¢, we obtain:
a (i, @ — i) = (5%, div (9)) + j(9) = ] () = (frp—a°), Wpek,

Where

2 ~

S (HE B ~EY 1 2 aﬁ’f au: 9
a(uﬁp—u)—yif Z_:l/ <8x]+3x2>8%( 43) dedy

o0u; 2 0u5\ 0
; < 3y +e 8%) a (Pi — 45) dady

2 ~

1 2 817’5 6“’; 0 ~ ~E

+§ME Z/ (8 oz, +37y 67%(% 13) dedy

oug 0 . e
2 2. 873/ (3 — 13) dxdy.

v (@) = [ 5 (G 522+ 52 ) asa,
@)= [ Ho-sdas+g [ [Bie)

(fro-a) - Z/Qf (91— i) do dy-+ [ fs (0 — i5)do
i=1

<o

and

)

1=

(1o o 3ﬂ§2128ﬁ§ ,0u5\° L (ous\?\ "
( Z(@xj Ox; Jrizl Oy te Ox; te Oy '

(22)

In the following part of this section, we will establish the estimates and convergence results for the velocity field

4¢ and the pressure p° within the domain 2.

Theorem 3.1

Under the conditions of Theorem 2.1, if (4%, p°) € Kq(Q) x L3(£2) is the solution to problem (22), then there exists

a constant C' > 0, independent of ¢, for wich we have

2
+Z<
L2(Q) =1

2 2

6u
('M J

8u3
"oy

6u3
le

4
L2 ()

ij=1 LZ(Q)

<C
L2(9)

(23)
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Proof
After multiplying (17) by ¢ and utilizing the relation

3
120 = &5 1 i
we obtain:
- - 1 2
cuf)+g [ |D(@F)|dad o€ — s|dz < = uChre [Vl |2 e H‘ e
catu ) +4 [ D) dray+ [ F1a = sla < St IV B + gt |70 @
According to Korn’s inequality, there is C' > 0 that is independent of ¢ for wich we have
A, u) 2 uC [V ey - (25)
By combining (24) and (25), we obtain
1 112 ~ M (A€ 7oInE
ei,uCkEHVu I 22(0¢) —Fg/Q |D (4°)| dz dy —i—/wk:|u —sldx < Quck Hf‘ @’ (26)
and )
9 o0us oug 8u
EHVUEHLQ(QE a H -3 a 3 .
=11l 9%illL2 (e L?(Q) i= 1 L2<n> Tillee @
Then, we find
2 o2 o112
Z ous L 8u3 ‘52 0§ <c,
ij=1 0x; |20 "oy 112(Q i L2(Q) 0z || 120
where )
har NE
C:=— ‘ .
<u0k> f L2(Q)
O
Theorem 3.2

Suppose the conditions of Theorem 2.1 hold, if (4%, p°) € Kq(2) x L2() represents the solution to problem (22),
then there is C’ > 0, which does not depend on ¢, for wich we have

Proof
By selecting an arbitrary ¢ € (HJ(Q2))3 and substituting ¢ = u + 1 into (12), we obtain:

op°
8:52-

op°
dy

<e(C.
H-1(Q)

<C'(i=1,2) and ‘

H=1(Q)

(F, divib) < a(u, ) + / gID)] dedas + (7%, ). @7

According to [10] we find
a(u®,¥) < pa IV g2 ey IVl p2e0ey -

Then, after multiplying (27) by € and applying Holder’s inequality, we obtain:

. e ~ 1
(0%, divy) < e V| 12 e) IVl 2 (qey + 91912 1DVl 20 02

o 520

Stat., Optim. Inf. Comput. Vol. 15, February 2026



1142 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

Thus,
A~ . R 1 ~
(5%, div) < pae |V gy [l as ey +8190% @l oy ]|, g 1900
(28)
JUN. ;
< (1O + 3120} o+ ||| o) 1l -
Similarly, by choosing ¢ = «* — 4 in (12), we find
~ . A 1 ;
— i) < (mC+ 3100 et £, ) Wl o 29)
Then, by utilizing the inequalities (28) and (29), we obtain
. I § ;
6 dive)| < (O +g12 at||f]| L VWl Vo € HI@. (30)
Substituting ¢ = (¢, 0,0) and ¥ = (0, ¢, 0) into (30), and applying Green’s formula, we deduce:
/ O gzdy| < (jnC+ 3100 a+ HfH 18|l fori=1,2
o 0z; Y=\ g L2(9) H(Q) = 1,2
On the other hand, by substituting ¢» = (0, 0, £¢) into (30), we obtain
O saway| < C+ g0’ f
[ Gy ey << (mO+atofat |7, ) I6lme
O
Corollary 3.3
If assumptions of Theorem 2.1 hold, there exist u} € V,, fori = 1,2 and p* € LZ(Q) for wich we have
4 —»u; weaklyinV, (i=1,2), 3D
ous .o .
5 — 0 weaklyin L*(Q2) (i,5 =1,2), (32)
8.’Ej
NE
%“3 0 weakly in L2(Q2), (33)
Y
20U 72 .
9 0 weaklyin L*(Q) (i=1,2), (34)
et — 0 weakly in L*(9), (35)
P — p*  weakly in L(9). (36)
Proof
To begin, from equation (23), we get a constant C that is independent of ¢ satisfying:
he |2
Haul <C fori=1,2. 37)
9 |l o)
Applying the Poincaré inequality [4] in conjunction with condition (7), we derive:
) s ||° .
L2(Q)
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From inequalities (37) and (38), we can conclude the result presented in (31). To demonstrate the convergence in
(32), we utilize both the inequality in (23) and the convergence established in (31). Furthermore, we rely on the
previously obtained results along with the condition div(u5) = 0, which yields:

Thus, from (32), the convergence (33) holds, and from (23), there exists a constant C' > 0 for which

|

2
NE
20U

<C fori=1,2. 39)
L2(Q)

€L

Utilizing (38), we derive:
2

o2 2 || 003
leti3]| 2 (o) < 2R3y ||€ P : (40)
Y llz2 @)
From (23), we also have:
oag ||*
Hs 3 <C fori=1,2. (41)
9 Il o)
Combining results from (39), (40), and (41), we conclude that:
a’\e
2945 g weakly in L2(Q, (i=1,2).
6xi
From (40) and (41), we can assert that there is C' > 0 such that:
HffL?,HQH(Q) <C (42)
Consequently, there exists u} € L?((2) such that:
et — ui  weakly in L*(Q). (43)
This implies:
et — u} in D'(Q). (44)
Given that div(a°) = 0 in , for any ® € L3(2), we have:
/ & div(4®) de dy = 0. (45)
Q
We select ® such that ®(z,y) = yp(z) — 8, where ¢ € C§°(w) and:
5= fQ yp dr dy
Jo dxdy
Using (45), the Green formula, and the boundary conditions on I', we obtain:
& )
—Z/ yeu; Ld dx dy — / peus drdy = 0.
i=1 /9 O Q
As 4 — u*in V, for i = 1,2, then as ¢ tends to zero, (35) holds. Finally, we have (see [17]):
16 L2 ) < CEIVE Il -1 -
Since L3(2) is weakly closed in L?(2), from Theorem 4.2, we conclude (see (36)):
p° — p*  weakly in L3(Q).
This completes the proof. O

Stat., Optim. Inf. Comput. Vol. 15, February 2026



1144 BINGHAM TYPE FLUIDS WITH TRESCA LAW IN 3D

4. Study of Limiting Problems

We analyze the limit behavior of Problem (PV.1) as £ approaches zero. We will prove the theorem below,
establishing the equations that the limits p* and u* of p° and 4° satisfy in €2, along with the inequalities for
the trace of the velocity u*(z,0).

Theorem 4.1
Assuming the conditions of Theorem 3.1 are satisfied, the limit functions (u*, p*) fulfill the following conditions:

p* € H'(w), (46)

1 0%ur 3p* ; . . oo
o 352 &rz =f; (fori=1,2)in L*(2). 47)

Proof
To begin the proof, we choose @3 = 4§ 41 and ; = 45 for i = 1,2, where ¢ belongs to H} (£2). This selection in
equation (22) yields the following result:

5005 oY
e Z/( e y>a dwdy*/

By applying equations (31), (33), (34), and (36), we obtain for € — 0, the following results :

awd dy —/ Agawdxdy—/sfgwdmdy. (48)
y Oy Q Q

/p*a—wdacdy =0, Ve H&(Q)
o Oy

Therefore, by using green’s formula, we find

op*

— - -1
oy =0 inH (Q). (49

Alternatively, selecting ; = 45 & 1); where v; € H}(Q) (i = 1,2), and setting ¢3 = 45 in (22) to obtain:

Vi
MEZ/(&T] 8;&)8 dedy

1,7=1

2
1 /04,  ,0u5)\ O
z 50
-I-;/ u(ay +e€ 8@) 8ydxdy (50)

Employing equations (31), (32), (34), and (36), we deduce that as ¢ approaches zero, first with ¢; = 0 and
1o € HE(Q), and subsequently with ¢ = 0 and v, € H{ (), the following equality holds:

2
Z/ LI —Z/ Gotdady = [ fubsdady, G
=170

then, by using Green’s formula, we get

1 (92 x 5‘p* 2 . . —1
—5H 8y aixiifi (fori=1,2)in H *(Q). (52)
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Let’s recall from (49) that p* is a function that depends solely on = € w. By substituting ); into (51), where
Yi(z,y) = y(y — h(x))p(x) with ¢ € H}(w), and applying Green’s formula, we obtain:

a(h3 -
E / p* ( Lp) dr — u/ ha}odr = / fipdx
6 w 8331 w w

» 7i h(z) N

where

and
. h(w) .
F@) = [ uty = )itz dy
0
which, upon applying Green’s formula, yields
1 .0p*
_Zp3
6 axi
Since f; € L?(R), it follows that f; € L?(w). Similarly, because u} € V,,, we also have @} € L?(w). From (53),
2, x
we then obtain p* € H'(w). Furthermore, since f; € L2(£), it follows from (52) that 2% € L%(). Hence, (47)

0y?
holds. We also deduce that Bau,; € V,. Thus, the proof is complete. O

Y

—phur = f; (fori=1,2)in H1(Q). (53)

We now introduce the limiting form of the Tresca boundary conditions. The following notations will be used:

s*(z) = u*(2,0) and 7*(z) = (%i)(x,()).

85;* belongs to V, it follows that 7 € L*(w).

Theorem 4.2
Under the same hypotheses as Theorem 4.1, the pair (s*, 7*) satisfies the following inequalities:

Since

[RGurs —sl =l = s do= [ Jurvdezo, voe (22w).

w

and

1 .
§u|7'*\ =k = 3N >0 suchthat s* = s+ 7™,

1 .
§,u|7'*\<k = s* =35 ae. in w.

Proof
By choosing ¢ = (@5 + 1,15 + 9, €05) , where ¢; € Hf. . (w) fori = 1,2, and

HE op, (w) = {ve H'(Q):v=0on I} UL},
Substituting this into (22) leads to

2 . 2
1, ous 05\ oy 1 ous 2 0u5\ 0
= L drdy + = L dzd
g He Z/Q<8xj+6xi Oz, * y+2u;/ﬂ oy te Ox; ) Oy v

ij=1

- [BG@)

2
oY, - . . . <
_Z/ﬁsw dxdy+/k(w+u5—s|—|u5—s) dx—l—g/ (‘D(Lp) )dmdy
/o O, w Q

2
>3 [ dsdsay
i=1 7
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By applying Corollary 3.3, we conclude that as € tends to zero, the following holds

2

L au:awl 2 *8wl ~ . .
5#; o oy Iy dxdy—;/ﬂp amidmdy+/wk(|¢+s — 5| —|s* —s|) dx

. 1Qawi—u;2% 125%.*2%
(S )) - GxG)) ) e
=1 =1
2
> [ Gbsdady
i=178

By applying Green’s formula along with equation (47) and the condition that ¢; = 0 on I'; N I'z, we obtain:

N 1
/k(|¢+s*—s|—\s*—s|) dx—/i/u—*wdx

R 1o (O +ur\’ : 1 our\’ : (55)
+g/g <QZ< dy )) _<2Z(3y)> A

=1

>0, Ve (H o, W)

Since (55) holds for all ¢ in D(w)?, extended also to (Lz(w))2 due to the density of D(w) in L?(w). Thus, we infer
. 1
/ k(| +s* —s| —|s* — s|) dx —/ §,ur*wdac >0, Wwe (LZ(W))Q. (56)

By substituting 1) = +(s* — s) into equation (56), we obtain

/ (l% |s* —s| — %MT* (s* — s)) dx = 0. (57)

Letty) = — (s* —s) withp € (L2 (w))z. By inserting this expression into equation (56), we obtain

a 1 R 1
/ <k7</7| - 2N7’*<P> dx > / <k |s* —s| — 5#7'* (s* — S)> de.

Then, by using (57), we deduce

/ (/%|90 - ;MTW’) dr >0, Vo€ (LQ(w))Q. (58)

By taking ¢ = (1, p2) with ¢; > 0 for i = 1, 2, we substitute into equation (58) to obtain
7, 1 * * 7. 1 * *
Bl = gl leleos (7%, 0) ) du = [ (k= 5plr*lcos (7%, ) ) Igldz > 0.
w w

1 .
S H [7*|cos (7%,) <k ae.on w. (59)

Thus,

Now, by considering —¢, where ¢ = (¢1, ¢2) and ; > 0 for ¢ = 1,2, in equation (4.13), we find

N 1 ~ 1
[ (el + gule - leleos o) o = [ (4 gulrlcos(e,) ) leld > .
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Then, .
—§u|7'*|cos (7",¢) <k ae.on w. (60)

Using (59) and (60) we get

1 .

5u\7*| <k ae.on w. (61)
Hence, ) )

ks —s| > §,u|7'*|-|s*—s| > iﬂT*-(s*—s) a.e.on w,

and

A 1
k|s*—s| — §NT* (8" —s)>0 ae.on w,

Then, it follows from (57) that a.e. on w, we have
- 1
k|s* — s —§,uT*~(8*—s) =0. (62)

If Jp|m*| = k, then from equation (62), we have

plr - s* —s|=pr*-(s* —s) ae.on w,

which implies cos (s* — s, u7*) = 1 and leads to s* = s + Au7* for some A > 0. Conversely, if $|7*| < k, then
we derive from (62) that a.e. on w, we have

. 1 ~ 1
k|s*fs\f§m'*'(s*fs):02 <k2u|7'*|> |s* —s|.

Consequently, we have s* = s almost everywhere on w. O
Theorem 4.3 .
Let us consider the same hypotheses as in Theorem 4.1, and assume that f is a function of x only. Then, we have
R?_ . 1 . h , h%,
?Vp + ius + SHT Ef =0 a..on w, (63)
h, h_ , h®; 1
-5 — —Vp*+ —f | Veodzr = ol -n forall ¢ € H (w), (64)
w \2 6 6 Ow
/ (4hs*(z) + B*7*) Vo do = 6/ @l -n forall p € H'(w). (65)
w ow
Proof
By Theorem 5.1, we have the following relationship:
1 &%ur  Opr .
_i'u ay2 + oz, ZfZ fOI"LZl,Q.

Integrating this equation twice from 0 to y, we obtain:

1, 1, y?Op*(x) 1  Oul(x,0) B Y2 . o

Setting y = h, we find that (63) holds, since u}(z, h) = 0. Next, integrating (66) from 0 to h, we obtain:

- . R 2 . R,
ha*(z) = hs*(z) + @Vp (x) + =57 - @f(x), 67)
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where

1 h(z)
u*(z) = h)/ u (z,y)dy, V€ w.
0

(z

On the other hand, for every ¢ € H'(w), we have:

/(pdlv( £)dxzdy = 0.
Q

IEDE

Since 4§ = 0 on 90 = & U Ty UT, we then have:

/w w(w)i

Thus, it follows that:

+ a5(x, h) — a5(z, o)) dz = 0.

o (hig)
5 dx = 0.

T

Applying Green’s formula, we obtain:

2

2
Z/hﬁfajdz+2/a hiispn; dT = 0.
i=1vw ¢ i=1 v ow

As 4 — u} in V,, we find that 45 — @ in L?(w). Thus, we have:

Z/h &'Ddoc—Z/ 2)nidl, Vo € H (W),

where

¢; = hi¢ on Ow.

(2

From (67), we derive:

h3 h? h? .
/ hs*+ —Vp*+ —17"— —f chdm:/ ol -ndl, VYyec H'(w). (68)
w Sp’ 2 3:u ow
The weak formulation of Reynolds equation (64) follows from (63) and (68). So, to get (65), we use (63)-(64).
O

Remark 4.4. The uniqueness of (u*, p*) follows from (64)-(54), using the same arguments as in [11, Theorem 5.3].

Conclusion

In this work, we studied an incompressible Bingham fluid model in a perturbed three-dimensional domain with
Tresca and Dirichlet boundary conditions. We proved the unique solvability of the problem and conducted an
asymptotic analysis as one dimension of the domain tends to zero. Our approach established the strong convergence
of the velocity field, derived a Reynolds-type limit equation, and analyzed the asymptotic behavior of the Tresca
boundary conditions, rigorously proving the uniqueness of the limiting velocity and pressure fields. These results
not only provide a deeper understanding of the fluid’s behavior in confined geometries but also open avenues for
exploring more complex non-Newtonian fluid models and boundary conditions. Future research could extend this
framework to account for additional physical effects, such as temperature dependence or more intricate rheological
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properties, as well as investigate the applicability of the derived limit equations in real-world engineering scenarios,
such as lubrication or flow through porous media.
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