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Abstract In this paper, we study the existence of optimal controls that minimize a given functional. We consider a class
of infinite-dimensional semilinear systems, and a functional that depends on a control function u and the associated solution
of the semilinear equation. The functional is minimized over a set of admissible controls, that is a convex subset of a
nonreflexive control space. Under appropriate assumptions, we derive sufficient conditions for the existence of optimal
controls, for two classes of semilinear systems. Thereby, we provide two examples of partial differential equations to
highlight the obtained results.
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1. Introduction and Problem statement

Optimal control theory is a powerful framework to address various problems in engineering, biology, population
dynamics, or economics. More importantly, optimal control of infinite dimensional semilinear systems enables the
modeling of a wide range of physical problems. Two major questions arise in the study of such problems: Existence
of solutions, and optimality conditions. Thereby, a rich literature has been devoted to both questions. Particulary,
the question of existence of optimal controls has been investigated for various classes of systems. In [2], Ahmed
and Xiang proved the existence of optimal controls for semilinear systems with a linear control term. Meanwhile,
in [14], Li and Yong examined the existence of optimal controls for a class of systems with compact semigroups.
Bradley and Lenhart proved in [7] the existence of an optimal control for a bilinear Kirchhoff plate, with controls
in L∞(Q). In [10], the existence of optimal controls is established over a compact set of L1(0, T ).
As for optimality conditions, Bonnans and Casas derived in [6] necessary optimality conditions for elliptic
semilinear systems, while in [5], Barbu studied a class of elliptic and parabolic semilinear systems, using the
generalized maximum principle. In this respect, Raymond and Zidani also derived in [17] optimality conditions for
a class of semilinear parabolic equations. In [14], assumptions on the reachable set were introduced to extend the
maximum principle to abstract infinite dimensional semilinear systems.
In [19], optimality conditions have been derived for semilinear systems with real-valued controls. Thereby, the
results were extended in [20] to semilinear systems with controls taking values in L2(Ω). In addition, Aronna and
Tröltzsch derived in [4] first and second order optimality conditions for Fokker-Planck equations.
The present paper focuses on developing sufficient conditions for the existence of optimal controls. We consider
a new class of abstract semilinear systems, where the control functions belong to a nonreflexive Banach space.
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Unlike the reflexive case, the existence of a minimizer can be a challenging question, and requires appropriate
assumptions on the system, the functional to be minimized, and the set of admissible controls. This is the purpose
of the present work, where we will develop sufficient conditions for the existence of (at least) an optimal control.
To be more specific, let us consider the below system:{

ż(t) = Az(t) + f(u(t), z(t))
z(0) = z0

(1)

with the following assumptions:

(A1) A : D(A) → Z is the infinitesimal generator of a strongly continuous semigroup T (t)t≥0, where Z is a
reflexive separable Banach space.

(A2) u ∈ Lp(0, tf , U) denotes the control, where 1 < p < ∞, and the control space U is a nonreflexive Banach

space. In what follows, p′ ∈]1,∞[ denotes the conjugate of p, such that
1

p
+

1

p′
= 1.

(A3) The mapping f : U × Z → Z satisfies:

i. For every z ∈ Z, the mapping f(., z) : u 7→ f(u, z) is linear continuous. In what follows, f∗(., z)
denotes the adjoint operator of f(., z).

ii. There exists α ≥ 0 such that

∥f(u, y)− f(u, z)∥Z ≤ α∥u∥U∥y − z∥Z , ∀u ∈ U, ∀y, z ∈ Z. (2)

Denote β = ∥f(., 0)∥L (U,Z), then ∥f(u, 0)∥Z ≤ β∥u∥U , for every u ∈ U . Hence inequality (2) yields

∥f(u, z)∥Z ≤ (α∥z∥Z + β)∥u∥U , ∀u ∈ U, ∀z ∈ Z. (3)

Due to Proposition 2.5.3 in [14], system (1) has a unique mild solution, written as:

z(t) = T (t)z0 +

∫ t

0

T (t− s)f(u(s), z(s))ds (4)

Let Uad be a nonempty and convex set in Lp(0, tf ;U). In what follows, Uad will be referred to as the set of
admissible controls. The present optimal control problem consists in finding a control u∗ ∈ Uad that minimizes the
following functional

J(u) = G (z(tf )) +

∫ tf

0

Q(z(t))dt+ R(u) (5)

where z is the solution of (4), associated with u, and G ,Q : X → R+ and R : Lp(0, tf ;U) → R+ are continuous
mappings.
Then the present problem is formulated as follows.{

min J(u)
u ∈ Uad

(6)

The present study focuses solely on the existence of solutions of problem (6). This is the purpose of Section 2,
where sufficient conditions for the existence of solutions are developed. Then, Section 3 provides two examples
that illustrate the theoretical results.

2. Sufficient conditions of existence

In order to formulate sufficient conditions of existence, we need the following lemmas.
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1026 EXISTENCE OF OPTIMAL CONTROLS FOR SEMILINEAR SYSTEMS...

Lemma 2.1
Let u, v ∈ Uad, and denote zu and zv the mild solutions of (1) associated with u and v respectively. Then, for every
t ∈ [0, tf ],

∥zu(t)− zv(t)∥ ≤
∥∥∥∥∫ t

0

T (t− s)f(u(s)− v(s), zv(s))ds

∥∥∥∥× exp

(
Me|ρ|tfαt

1
p′

f ∥u∥Lp(0,tf ,U)

)
(7)

where the constants M ≥ 1 and ρ ∈ R are such that ∥T (t)∥ ≤ Meρt, for every nonnegative t.

Proof
Let u, v ∈ Uad. Then equation (4) yields

zu(t)− zv(t) =

∫ t

0

T (t− s)[f(u(s), zu(s))− f(v(s), zv(s))]ds

=

∫ t

0

T (t− s)[f(u(s)− v(s), zv(s))

+ f(u(s), zu(s))− f(u(s), zv(s))]ds

By inequality (3), one gets

∥zu(t)− zv(t)∥Z ≤
∥∥∥∥∫ t

0

T (t− s)[f(u(s), zu(s))− f(v(s), zv(s))]ds

∥∥∥∥
Z

+

∫ t

0

∥T (t− s)∥(α∥u(s)∥U∥zu(s)− zv(s)∥Z)ds

By the Gronwall lemma, one gets

∥zu(t)− zv(t)∥Z ≤
∥∥∥∥∫ t

0

T (t− s)[f(u(s), zu(s))− f(v(s), zv(s))]ds

∥∥∥∥
Z

× e
∫ t
0
∥T (t−s)∥α∥u(s)∥Uds

There exist M ≥ 1 and ρ ∈ R are such that ∥T (t)∥ ≤ Meρt, for every t ≥ 0. Hence∫ t

0

∥T (t− s)∥α∥u(s)∥Uds ≤ Me|ρ|tfαt
1
p′

f ∥u∥Lp(0,tf ,U)

which yield (7).

Lemma 2.2 ([13], p. 250)
Let X be a normed space, Z a separable Banach space, and let L : X → Z be a continuous linear operator. Denote
L∗ the adjoint operator of L. The operator L is compact if and only if, for every sequence (yn) in Z∗ such that
yn

∗
⇀ 0 for σ(Z∗, Z), we have L∗yn → 0 in norm in X∗.

Lemma 2.3 ([14], p. 106)
Let (T (t))t≥0 be a compact semigroup on a Banach space Z, and let yn ∈ L2(0, tf ;Z) such that yn ⇀ y weakly in
L2(0, tf ;Z). Then

lim
n→∞

sup
0≤t≤tf

∥∥∥∥∫ t

0

T (t− s)(yn(s)− y(s))ds

∥∥∥∥ = 0 (8)
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N. EL BOUKHARI 1027

2.1. First class of systems

In addition to assumptions (A1)-(A3), we assume that:

(A1.1) U is the continuous dual space of a separable Banach space U0.
(A1.2) There exists a Hilbert space H such that the embeddings

U ↪→ H ↪→ U0

are dense and continuous, and ⟨v, u⟩H = ⟨v, u⟩U×U0 , for every (v, u) ∈ U ×H .
(A1.3) For every z ∈ Z, the adjoint operator of f(., z) satisfies

f∗(., z)x ∈ U0, ∀x ∈ Z∗

(A1.4) The semigroup (T (t))t≥0 is compact, or the operator f(., z) is compact, for every z ∈ Z.

Then we have the following sufficient conditions.

Proposition 2.4
Let the assumptions (A1.1)-(A1.4) hold. We assume that

• Uad closed in Lp(0, tf ;H) and bounded in Lp(0, tf ;U)
• There exist r ≥ 0 and s ≥ 0 such that R(u) = r∥u∥sLp(0,tf ;H)

Then there exists an optimal control u∗, solution of problem (6).

Proof
Denote J∗ = inf

u∈Uad

J(u), and let (un)n be a sequence in Uad such that J(un) → J∗. The set Uad is bounded

in Lp(0, tf ;U), then, by the Alaoglu-Bourbaki theorem, there exists a subsequence, still denoted (un)n, that is
convergent for the weak ∗ topology of Lp(0, tf ;U). Denote u∗ its limit, then, for every v ∈ Lp′

(0, tf ;U0), we have

⟨un, v⟩Lp(0,tf ;U)×Lp′ (0,tf ;U0)
→ ⟨u∗, v⟩Lp(0,tf ;U)×Lp′ (0,tf ;U0)

By assumption (A1.2), the embedding Lp′
(0, tf ;H) ↪→ Lp′

(0, tf ;U0) is continuous. Then, for every v ∈
Lp′

(0, tf ;H), we get
⟨un, v⟩Lp(0,tf ;H)×Lp′ (0,tf ;H) → ⟨u∗, v⟩Lp(0,tf ;H)×Lp′ (0,tf ;H)

It follows that un ⇀ u∗ weakly in Lp(0, tf ;H). Moreover, Uad is convex and strongly closed in Lp(0, tf ;H). Thus
Uad is weakly closed in Lp(0, tf ;H). Therefore, u∗ ∈ Uad.
Let zn and z∗ be the mild solutions of (1), associated with un and u∗ respectively. Denote µ = sup ∥un∥Lp(0,tf ;U).
Then inequality (7) yields

∥zn(t)− z∗(t)∥Z ≤ ∥Lt(un − u∗)∥Z exp

(
Me|ρ|tfαt

1
p′

f µ

)
(9)

where the linear operator Lt : L
p(0, T ;U) → Z is defined as:

Ltu =

∫ t

0

T (t− s)f(u(s), z∗(s))ds. (10)

Assumption (A1.4) leads to two cases, which are discussed below.
Case 1: We assume that the operator f(., z) is compact, for every z ∈ Z.
Let us prove that Lt is compact. Given that Z is reflexive, Z can be identified with its bidual Z∗∗. It follows that Lt

is the adjoint operator of L0 : Z∗ → Lp′
(0, T ;U0), given by:

L0y =

{
f0(., z

∗(s))T ∗(t− s)y if 0 ≤ s < t,
0 otherwise,
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1028 EXISTENCE OF OPTIMAL CONTROLS FOR SEMILINEAR SYSTEMS...

for every y ∈ Z∗, where operator f0(., z∗(s)) : Z∗ → U0 is written as:

f0(., z
∗(s)) : y 7→ f∗(., z∗(s))y

By assumption (A1.3), operator f0(., z
∗(s)) is well defined. Additionally, the adjoint operator of f0(., z

∗(s)) is
f(., z∗(s)). By the compactness of f(., z∗(s)), it follows that f0(., z∗(s)) is compact too. Let (ym)m be a sequence
in Z∗ such that ym ⇀ 0 weakly in Z∗. To prove the compactness of L0, it suffices to show that L0ym → 0 strongly
in Lp′

(0, T ;U0), which is separable.
Let s ∈ [0, t]. By the compactness of f0(., z∗(s)), operator f0(., z∗(s))T ∗(t− s) is also compact. Hence

lim
m→∞

∥f0(., z∗(s))T ∗(t− s)ym∥U0 = 0, ∀s ∈ [0, t].

It follows that lim
m→∞

∥(L0ym)(s)∥U0
= 0, for almost every s ∈ [0, tf ]. Using appropriate bounds, the dominated

convergence theorem yields
lim

m→∞
∥(L0ym)∥Lp′ (0,T ;U0)

= 0.

Hence L0 is compact, which proves the compactness of L∗
0 = Lt. Now, by applying Lemma 2.2 to L0 and Lt, the

weak ∗ convergence (un − u∗)
∗
⇀ 0 leads to

Lt(un − u∗) → 0 strongly in Z.

Then inequality (9) yields, for every t ∈ [0, tf ],

lim
n→∞

∥zn(t)− z∗(t)∥Z = 0.

By the continuity of G and Q, one gets

G (z∗(tf )) = lim
n→∞

G (zn(tf )), Q(z∗(t)) = lim
n→∞

Q(zn(t)).

Hence, the dominated convergence theorem yields∫ tf

0

Q(z∗(t))dt = lim
n→∞

∫ tf

0

Q(zn(t))dt.

Finally, R(un) = r∥un∥sLp(0,tf ;H). By the lower semicontinuity of norms, the weak convergence un ⇀ u∗ in
Lp(0, tf ;H) yields

R(u∗) ≤ lim inf
n→∞

R(un).

Therefore J(u∗) ≤ lim inf
n→∞

J(un). Hence u∗ is a minimizer of J over Uad.

Case 2: We assume that the semigroup (T (t))t≥0 is compact.
Inequality (9) can be written as:

∥zn(t)− z∗(t)∥Z ≤
∥∥∥∥∫ t

0

T (t− s)f(un(s)− u∗(s), z∗(s))

∥∥∥∥
Z

× exp

(
Me|ρ|tfαt

1
p′

f µ

)
(11)

Let f(un − u∗, z∗) denote the mapping

s 7→ f(un(s)− u∗(s), z∗(s)).

Then f(un − u∗, z∗) ∈ Lp(0, tf ;Z). Let us prove that f(un − u∗, z∗) ⇀ 0 weakly in Lp(0, tf ;Z). To this end, let
y ∈ Lp′

(0, tf ;Z
∗). By assumption (A1.3), f∗(., z∗(s))y(s) ∈ U0, a.e. on [0, tf ]. Then

⟨f(un(s)− u∗(s), z∗(s)), y(s)⟩Z×Z∗ = ⟨un(s)− u∗(s), f∗(., z∗(s))y(s)⟩U×U0
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In addition, by inequality (3), we have

∥f(., z∗(s))∥L (Z,U) = ∥f∗(., z∗(s))∥L (U∗,Z∗)

≤ α∥z∗(s)∥+ β.

Hence
∥f∗(., z∗(s))y(s)∥U0

≤ (α∥z∗(s)∥Z + β) ∥y(s)∥Z∗

which implies f∗(., z∗)y ∈ Lp′
(0, tf ;U0). Thereby

⟨f(un − u∗, z∗), y⟩Lp(0,tf ;Z)×Lp′ (0,tf ;Z∗) = ⟨un − u∗, f∗(., z∗)y⟩Lp(0,tf ;U)×Lp′ (0,tf ;U0)
.

The weak ∗ convergence un
∗
⇀ u∗ yields

lim
n→∞

⟨un − u∗, f∗(., z∗)y⟩Lp(0,tf ;U)×Lp′ (0,tf ;U0)
= 0.

Consequently
lim

n→∞
⟨f(un − u∗, z∗), y⟩Lp(0,tf ;Z)×Lp′ (0,tf ;Z∗) = 0,

∀y ∈ Lp′
(0, tf ;Z

∗),

which means that f(un − u∗, z∗) ⇀ 0 weakly in Lp(0, tf ;Z). Now, the semigroup (T (t))t≥0 is compact, then
Lemma 2.3 yields

lim
n→∞

sup
0≤t≤tf

∥∥∥∥∫ t

0

T (t− s)f(un(s)− u∗(s), z∗(s))ds

∥∥∥∥ = 0.

By inequality 11, it follows that (zn) converges uniformly to z∗ in C([0, tf ];Z). Finally, using similar arguments
to Case 1, we obtain J(u∗) ≤ lim inf

n→∞
J(un). Therefore, u∗ minimizes J over Uad.

Proposition 2.5
Let assumptions (A1.1)-(A1.4) hold. We assume that

• Uad is closed in Lp(0, tf ;H).
• There exist r > 0 and s > 0 such that R(u) = r∥u∥sLp(0,tf ;H).

Then the optimal control problem (6) has at least a solution.

Proof
Let (un)n be a sequence in Uad such that J(un) → J∗ = inf

u∈Uad

J(u). Since r, s > 0, and

R(un) = r∥un∥sLp(0,tf ,H) ≤ J(un),

then sequence (un)n is bounded in Lp(0, tf , H). Thereby, there exists a subsequence still denoted (un)n, such that
un ⇀ u∗ weakly in Lp(0, tf , H). In addition, Uad is convex and closed in Lp(0, tf , H), hence weakly closed in
Lp(0, tf , H), which yields u∗ ∈ Uad. Thereby, for every v ∈ Lp′

(0, tf , H), we have

⟨un, v⟩Lp(0,tf ,U)×Lp′ (0,tf ,U0)
= ⟨un, v⟩Lp(0,tf ,H)×Lp′ (0,tf ,H)

→ ⟨u∗, v⟩Lp(0,tf ,H)×Lp′ (0,tf ,H)

Using the density of the embedding
Lp′

(0, tf , H) ↪→ Lp′
(0, tf , U0),

and by the Moore-Osgood theorem for interchanging limits, one gets

⟨un, v⟩Lp(0,tf ,U)×Lp′ (0,tf ,U0)
→ ⟨u∗, v⟩Lp(0,tf ,U)×Lp′ (0,tf ,U0)

,
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1030 EXISTENCE OF OPTIMAL CONTROLS FOR SEMILINEAR SYSTEMS...

for every v ∈ Lp′
(0, tf , U0), which yields un

∗
⇀ u∗ weakly ∗ in Lp(0, tf , U0).

Let zn and z∗ be the mild solutions of (1), associated with un and u∗ respectively. By similar arguments to the
proof of Proposition 2.4, we prove that, for every t ∈ [0, tf ],

lim
n→∞

∥zn(t)− z∗(t)∥Z = 0.

Consequently
G (z∗(tf )) = lim

n→∞
G (zn(tf )),∫ tf

0

Q(z∗(t))dt = lim
n→∞

∫ tf

0

Q(zn(t))dt,

R(u∗) ≤ lim inf
n→∞

R(un),

which yields J(u∗) ≤ lim inf
n→∞

J(un).

2.2. Second class of systems

Now, in addition to (A1)-(A3), we assume that:

(A2.1) U is the continuous dual space of a Banach space U0, and the embedding U0 ↪→ U is continuous.
(A2.2) The semigroup (T (t))t≥0 is compact, or the operator f(., z) is compact, for every z ∈ Z.

Then we have the following result.

Proposition 2.6
We assume that

• Uad is a closed and bounded subset of Lp(0, tf ;U0).
• The mapping u 7→ R(u) is convex and continuous on Lp(0, tf ;U0).

Then there exists an optimal control u∗, solution of (6).

Proof
Let (un)n be a a sequence in Uad such that J(un) → J∗ = inf

u∈Uad

J(u). Considering the canonical embedding

U0 ↪→ U∗∗
0 = U∗, Uad is a bounded subset of Lp(0, tf , U

∗). It follows that (un)n is bounded in Lp(0, tf , U
∗).

Thereby, there exists a subsequence, denoted (un) as well, such that un
∗
⇀ u∗ weakly ∗ in Lp(0, tf ;U

∗). Namely

⟨un, v⟩Lp(0,tf ;U∗)×Lp′ (0,tf ;U) → ⟨un, v⟩Lp(0,tf ;U∗)×Lp′ (0,tf ;U),

for every v ∈ Lp′
(0, tf ;U). It follows that

⟨un, v⟩Lp(0,tf ;U0)×Lp′ (0,tf ;U) → ⟨un, v⟩Lp(0,tf ;U0)×Lp′ (0,tf ;U), ∀v ∈ Lp′
(0, tf ;U),

which means that un ⇀ u∗ weakly in Lp(0, tf ;U0). Now, Uad is convex and closed in Lp(0, tf ;U0), then Uad is
weakly closed in Lp(0, tf ;U0). Therefore, u∗ ∈ Uad.
Let zn and z∗ be the mild solutions of (1), associated with un and u∗ respectively, and denote µ =
sup ∥un∥Lp(0,tf ;U). Then

∥zn(t)− z∗(t)∥Z ≤
∥∥∥∥∫ t

0

T (t− s)f(un(s)− u∗(s), z∗(s))

∥∥∥∥
Z

× exp

(
Me|ρ|tfαt

1
p′

f µ

)
. (11)

Two cases arise from assumption (A2.2), and are discussed hereafter.
Case 1: We assume that f(., z) is compact.

Stat., Optim. Inf. Comput. Vol. 15, February 2026
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We consider the following linear operator

Λt : L
p(0, tf ;U0) → Z

u 7→
∫ t

0

T (t− s)f(u(s), z∗(s))
(12)

Λt is well defined, since the embedding U0 ↪→ U is continuous, and its adjoint Λ∗
t : Z∗ → Lp′

(0, tf ;U) is given
by:

(Λ∗
t y)(s) =

{
φ∗
sT

∗(t− s)y if 0 ≤ s ≤ t,
0 otherwise,

where φ∗
s : Z∗ → U denotes the adjoint operator of

φs : U0 → Z
v 7→ f(v, z∗(s))

It is clear that φs is the restriction of f(., z∗(s)) on U0. By the continuity of the embedding U0 ↪→ U , and the
compactness of f(., z∗(s)), it follows that φs is compact. Subsequently, operator φ∗

sT
∗(t− s) is compact, for every

s ∈ [0, t].
Now, let (ym)m be a sequence in Z∗ such that ym ⇀ 0 weakly. The compactness of φ∗

sT
∗(t− s) yields

lim
m→∞

∥φ∗
sT

∗(t− s)ym∥U = 0, ∀s ∈ [0, t].

Then, lim
m→∞

∥(Λ∗
t ym)(s)∥U = 0 a.e. on [0, tf ].

Using appropriate bounds, and applying the dominated convergence theorem, one gets

lim
m→∞

∥(Λ∗
t ym)∥Lp′ (0,tf ;U) = 0.

Applying Lemma 2.2 to operator Λt, it follows that Λt is compact.
Thereby, the weak convergence un ⇀ u∗ in Lp(0, tf ;U0) leads to lim

n→∞
∥Λt(un − u∗)∥Z = 0. Then, from inequality

(11), it results that:
lim
n→∞

∥zn(t)− z∗(t)∥Z = 0, ∀t ∈ [0, tf ].

Therefore
G (z∗(tf )) = lim

n→∞
G (zn(tf )).

Q(z∗(t)) = lim
n→∞

Q(zn(t)), a.e. on [0, tf ].

By the dominated convergence theorem, we get∫ tf

0

Q(z∗(t))dt = lim
n→∞

∫ tf

0

Q(zn(t))dt.

Finally, u 7→ R(u) is convex and continuous on Lp(0, tf ;U0). Then R is lower semicontinuous for the weak
topology of Lp(0, tf ;U0). Then the weak convergence un ⇀ u∗ in Lp(0, tf ;U0) leads to R(u∗) ≤ lim inf

n→∞
R(un).

Consequently, J(u∗) ≤ lim inf
n→∞

J(un), hence u∗ is an optimal control.

Case 2: We assume that (T (t))t≥0 is compact.
Let us define the following linear operator

f1(., z
∗) : Lp(0, tf ;U0) → Lp(0, tf ;Z)

u 7→ f(u(.), z∗(.))
(13)
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Since the embedding U0 ↪→ U is continuous, then there exists a constant γ ≥ 0 such that ∥v∥U ≤ γ∥v∥U0
, for every

v ∈ U0. If u(s) ∈ U0, then inequality (3) implies

∥f(u(s), z∗(s))∥Z ≤ γ(α∥z∗(s)∥Z + β)∥u(s)∥U0

which yields
∥f(u(.), z∗(.))∥Lp(0,tf ;Z) ≤ γ(α∥z∗∥C([0,tf ];Z) + β)∥u∥Lp(0,tf ;U0),

for every u ∈ Lp(0, tf ;U0). It follows that operator f1(., z
∗), given by (13), is continuous. Hence f1(., z

∗) is
continuous for the weak topology. Thereby, the weak convergence un − u∗ ⇀ 0 in Lp(0, tf ;U0) yields

f1(., z
∗)(un − u∗) = f(un − u∗, z∗) ⇀ 0

weakly in Lp(0, tf ;Z). By Lemma 2.3 and the compacity of (T (t))t≥0, we obtain

lim
n→∞

sup
0≤t≤tf

∥∥∥∥∫ t

0

T (t− s)f(un(s)− u∗(s), z∗(s))ds

∥∥∥∥ = 0.

Thereby, by inequality (11), (zn)n converges uniformly to z∗ in C([0, tf ];Z).
By similar arguments to Case 1, one gets J(u∗) ≤ lim inf

n→∞
J(un), which proves that u∗ is a minimizer of functional

J on Uad.

3. Examples

In this section, the previous results will be applied to two examples of semilinear partial differential equations, a
heat equation, and a wave equation.

Example 1

On I = [0, 1], we consider the below heat equation, with Neumann boundary conditions.
∂z

∂t
(x, t) = ∆z(x, t) + u(x, t)B(z)(x, t), in I × [0, tf ]

∂z

∂x
(0, t) =

∂z

∂x
(1, t) = 0, on [0, tf ]

z(x, 0) = z0(x), on I

(14)

where z0 ∈ L2(I) and B : L2(I) → L2(I) is a Lipschitz operator. The control function u is such that u(., t) ∈
L∞(I).
We set Z = L2(I), z(t) = z(., t), u(t) = u(., t), and

A = ∆ with D(A) =

{
z ∈ H2(I) :

∂z

∂x
(0) =

∂z

∂x
(1) = 0

}
.

The control space is U = L∞(I), and u ∈ L2(0, tf ;L
∞(I)). We define the mapping f : U × Z → Z as:

f(u, z)(x) = u(x)(B(z))(x), a.e. on I.

Then assumptions (A1)-(A3) are satisfied. In addition, A is the generator of the below compact semigroup

T (t)(z) =

∞∑
n=0

e−π2n2

⟨z, en⟩L2(I)en
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where e0(x) = 1, en(x) =
√
2 cos(nπx), if n ≥ 1 (See Chapter VI, Example 8.9 in [12] for further details).

We consider the below functional:

J(u) = a0

∫
I

z(x, tf )
2dx+ a1

∫ tf

0

∫
I

z(x, t)2dxdt (15)

where a0, a1 > 0. Let the set of admissible controls be

Uad = {u ∈ L2(0, tf ;L
∞(I)) : m ≤ u(x, t) ≤ M a.e. on I × [0, tf ]} (16)

such that m < M . By the boundedness of I , the embeddings

L∞(I) ↪→ L2(I) ↪→ L1(I)

are continuous. The density of the above embeddings follows from the density of Cc(I) in L2(I) and L1(I). Then
assumptions (A1.1) and (A1.2) hold, for U = L∞(I), H = L2(I), and U0 = L1(I). In addition, the adjoint of
f(., z) is given by:

(f∗(., z)y)(x) = y(x)(B(z))(x), ∀y ∈ L2(I).

Then f∗(., z)y ∈ L1(I) = U0, for every z ∈ L2(I). Hence assumption (A1.3) holds. Finally, (A1.4) is satisfied
since the semigroup (T (t))t≥0 is compact.
Now, The set Uad, given by (16), is closed in L2(0, tf ;L

2(I)) and bounded in L2(0, tf ;L
∞(I)). Considering

functional (15), we have R(u) = 0. Therefore, by virtue of Proposition 2.4, there exists an optimal control u∗ that
minimizes (15) over Uad.

Example 2

On I = [0, 1], we consider the following wave equation.
∂2y

∂t2
(x, t) = ∆y(x, t) +

∫
I

y(x, t)dµ(t), in I × [0, tf ]

y(0, t) = y(1, t) = 0, on [0, tf ]

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = y1(x) on I

(17)

where y0 ∈ H1
0 (I), y1 ∈ L2(I), and µ(t) ∈ M(I), where M(I) is the space of real-valued Radon measures over

I . Hence the control space is set to be U = M(I). It follows that U is the dual space of U0 = C(I), the space of
continuous functions on I .
We set Z = H1

0 (I)× L2(I), and

z(t) =

(
y(., t)
∂y

∂t
(., t)

)
, A =

(
0 Id
∆ 0

)
,

with D(A) = [H2(I) ∩H1
0 (I)]×H1

0 (I). Besides, we define the mapping f : M(I)× Z → Z as:

f(µ, z) =

 0∫
I

z1(x)dµ

 .

Then equation (17) has the form of system (1). Z is endowed with the norm ∥z∥2Z = ∥z1∥2H1
0 (I)

+ ∥z2∥2L2(I), for
every z = (z1, z2) ∈ Z. In addition, we have

∥f(µ, z)∥Z ≤
∣∣∣∣∫

I

z1(x)dµ

∣∣∣∣ ≤ ∥µ∥M(I)∥z1∥C(I)
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Since z1(0) = 0 then, applying the Cauchy-Schwarz inequality yields, for every x ∈ I ,

|z1(x)| =
∣∣∣∣∫ x

0

z′1(ξ)dξ

∣∣∣∣ ≤ (∫ x

0

z′1(ξ)
2dξ

) 1
2

≤ ∥z1∥H1
0 (I)

.

Then
∥z1∥C(I) = sup

x∈I
|z1(x)| ≤ ∥z1∥H1

0 (I)
.

It follows that

∥f(µ, z)∥Z ≤ ∥µ∥M(I)∥z1∥H1
0 (I)

≤ ∥µ∥M(I)∥z∥Z .

Therefore, the mapping f satisfies assumption (A3).
Operator A is the infinitesimal generator of a continuous semigroup (T (t))t≥0 (For further details, see Example
2.41 in [9]).
We consider the following functional:

J(u) = a0

∫ tf

0

∫
I

y(x, t)2dxdt+ a1

∫ tf

0

∫
I

∂y

∂t
(x, t)2dxdt+ a2∥u∥M(I) (18)

where a0, a1 > 0 and a2 ≥ 0. The set of admissible controls is defined as follows.

Uad = {u ∈ L2(0, tf ;C(I)) : |u(x, t)| ≤ M on I × [0, tf ]} (19)

Every u ∈ U0 = C(I) can be identified with a measure, still denoted u, in U = M(I). Moreover, we have

∥u∥M(I) =

∫
I

|u(x)|dx ≤ sup
x∈I

|u(x)| = ∥u∥C(I)

It follows that the embedding U0 ↪→ U is continuous. Hence assumption (A2.1) holds. Additionally, the operator

f(., z) : µ 7→

 0∫
I

z1(x)dµ


is compact, since µ 7→

∫
I

z1(x)dµ is a continuous linear form. It follows that assumption (A2.2) holds too.

Finally, Uad is a closed and bounded subset of L2(0, tf ;U0), and R : u 7→ a2∥u∥M(I) is convex and continuous
on L2(0, tf ;U0). Therefore, by Proposition 2.6, the optimal control problem (6) has a solution u∗, that minimizes
functional (18) over the set (19).

4. Conclusion

In this paper, we have investigated an optimal control problem, governed by an important class of semilinear
systems. The problem consists in minimizing an abstract functional, over a given set of admissible controls in
a nonreflexive Banach space. By introducing specific assumptions, and discussing two classes of systems, the
question of existence of optimal controls has been addressed. Then two examples of partial differential equations
have been provided to demonstrate the applicability of the obtained results. This work may be extended to larger
classes of nonlinear systems. This is under consideration for future research papers.
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