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Abstract In this paper, we study the existence of optimal controls that minimize a given functional. We consider a class
of infinite-dimensional semilinear systems, and a functional that depends on a control function « and the associated solution
of the semilinear equation. The functional is minimized over a set of admissible controls, that is a convex subset of a
nonreflexive control space. Under appropriate assumptions, we derive sufficient conditions for the existence of optimal
controls, for two classes of semilinear systems. Thereby, we provide two examples of partial differential equations to
highlight the obtained results.
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1. Introduction and Problem statement

Optimal control theory is a powerful framework to address various problems in engineering, biology, population
dynamics, or economics. More importantly, optimal control of infinite dimensional semilinear systems enables the
modeling of a wide range of physical problems. Two major questions arise in the study of such problems: Existence
of solutions, and optimality conditions. Thereby, a rich literature has been devoted to both questions. Particulary,
the question of existence of optimal controls has been investigated for various classes of systems. In [2], Ahmed
and Xiang proved the existence of optimal controls for semilinear systems with a linear control term. Meanwhile,
in [14], Li and Yong examined the existence of optimal controls for a class of systems with compact semigroups.
Bradley and Lenhart proved in [7] the existence of an optimal control for a bilinear Kirchhoff plate, with controls
in L°°(Q). In [10], the existence of optimal controls is established over a compact set of L' (0, T).

As for optimality conditions, Bonnans and Casas derived in [6] necessary optimality conditions for elliptic
semilinear systems, while in [5], Barbu studied a class of elliptic and parabolic semilinear systems, using the
generalized maximum principle. In this respect, Raymond and Zidani also derived in [17] optimality conditions for
a class of semilinear parabolic equations. In [14], assumptions on the reachable set were introduced to extend the
maximum principle to abstract infinite dimensional semilinear systems.

In [19], optimality conditions have been derived for semilinear systems with real-valued controls. Thereby, the
results were extended in [20] to semilinear systems with controls taking values in L?((2). In addition, Aronna and
Troltzsch derived in [4] first and second order optimality conditions for Fokker-Planck equations.

The present paper focuses on developing sufficient conditions for the existence of optimal controls. We consider
a new class of abstract semilinear systems, where the control functions belong to a nonreflexive Banach space.
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Unlike the reflexive case, the existence of a minimizer can be a challenging question, and requires appropriate
assumptions on the system, the functional to be minimized, and the set of admissible controls. This is the purpose
of the present work, where we will develop sufficient conditions for the existence of (at least) an optimal control.
To be more specific, let us consider the below system:

{ 2(t) = Az(t) + f(u(t), 2(t))

z(0) = 2

(D

with the following assumptions:

(Al) A:D(A) — Z is the infinitesimal generator of a strongly continuous semigroup 7'(t):>o, Where Z is a
reflexive separable Banach space.
(A2) u e L?(0,t,U) denotes the control, where 1 < p < oo, and the control space U is a nonreflexive Banach

1
space. In what follows, p’ €]1, co[ denotes the conjugate of p, such that , +
(A3) The mapping f : U x Z — Z satisfies:

i. For every z € Z, the mapping f(.,2) : u— f(u,z) is linear continuous. In what follows, f*(.,z)
denotes the adjoint operator of f(., z).
ii. There exists « > 0 such that

||f(u,y)—f(u,z)||z SO‘HUHUHZ/_Z”Z’ VuelU, VyzeZ. 2
Denote 8 = || f(.,0)|| 2 ,z), then || f(u,0)||z < B||ul|v, for every u € U. Hence inequality (2) yields
1f(w, 2)l|z < (allzllz + A)llullv, YuelU, VzeZ 3)

Due to Proposition 2.5.3 in [14], system (1) has a unique mild solution, written as:

2(t) =T(t)z0 + /0 T(t —s)f(u(s), z(s))ds 4)

Let U,q be a nonempty and convex set in LP(0,t;;U). In what follows, U,q will be referred to as the set of
admissible controls. The present optimal control problem consists in finding a control u* € U,4 that minimizes the
following functional

ty
J(u) =9 (2(ty)) + / 2(2(t))dt + Z(u) )
0
where z is the solution of (4), associated with v, and ¢, 2 : X — R and % : L?(0,t;;U) — R are continuous

mappings.
Then the present problem is formulated as follows.

min J(u)
{ u € Ugqg (6)

The present study focuses solely on the existence of solutions of problem (6). This is the purpose of Section 2,

where sufficient conditions for the existence of solutions are developed. Then, Section 3 provides two examples
that illustrate the theoretical results.

2. Sufficient conditions of existence
In order to formulate sufficient conditions of existence, we need the following lemmas.
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1026 EXISTENCE OF OPTIMAL CONTROLS FOR SEMILINEAR SYSTEMS...

Lemma 2.1
Let u,v € U,q, and denote z,, and z, the mild solutions of (1) associated with » and v respectively. Then, for every
t e [0, if},

Afﬂt—@fww)—wﬁwdﬁms

l2u(t) — 2o ()] <

1
X exp <Me/0tfat}’ U||LP(07tf7U)> @)
where the constants M > 1 and p € R are such that | T'(¢)|| < Me**, for every nonnegative ¢.

Proof
Let u,v € Ugq. Then equation (4) yields

By inequality (3), one gets

/0 T(t = s)[f (uls), zu(s)) = f(v(s), 20(5))]ds

lzu(t) — 20 ()] z <

Z

+/0 IT(t = s)l[(ellu(s)llvllzus) — zu(s)] z)ds

By the Gronwall lemma, one gets

qu(t) - Zv(t)HZ <

/0 T(t = s)[f (uls), zu(s)) = f(v(s), 20(s))]ds

% eJo 1T (t=s)l|allu(s)|vds

zZ

There exist M > 1 and p € R are such that | T'(¢)|| < Me*t, for every t > 0. Hence

t 1
/0 IT(t = s)llllu(s)lods < Mel*ratf [|ull oo, 09
which yield (7). 0

Lemma 2.2 ([13], p. 250)

Let X be a normed space, Z a separable Banach space, and let L : X — Z be a continuous linear operator. Denote
L* the adjoint operator of L. The operator L is compact if and only if, for every sequence (y,,) in Z* such that
yn — 0 for o(Z*, Z), we have L*y,, — 0 in norm in X*.

Lemma 2.3 ([14], p. 106)
Let (T(t))+>0 be a compact semigroup on a Banach space Z, and let y,, € L?(0,%¢; Z) such that y,, — y weakly in
L?(0,ts; Z). Then

lim sup =0 3

"_)OOOStStf

tAT@—$@M@—MQMs
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N. EL BOUKHARI 1027

2.1. First class of systems
In addition to assumptions (A1)-(A3), we assume that:

(A1.1) U is the continuous dual space of a separable Banach space Uy.
(A1.2) There exists a Hilbert space H such that the embeddings

U— H<—U,

are dense and continuous, and (v, u) i = (v, u)yxu,, for every (v,u) € U x H.
(A1.3) For every z € Z, the adjoint operator of f(., z) satisfies

f(,z2)xely, VreZ*
(A1.4) The semigroup (T'(t));>0 is compact, or the operator f(., z) is compact, for every z € Z.

Then we have the following sufficient conditions.

Proposition 2.4
Let the assumptions (A1.1)-(A1.4) hold. We assume that

* Ugyq closed in LP(0,t; H) and bounded in L?(0,t5; U)
* There exist 7 > 0 and s > 0 such that Z(u) = 7{ul7, t5iH)

Then there exists an optimal control uv*, solution of problem (6).

Proof

Denote J* = ir[1]f J(u), and let (u,), be a sequence in U,4 such that J(u,) — J*. The set U,q is bounded
ucUqgq

in LP(0,t nU ), then, by the Alaoglu-Bourbaki theorem, there exists a subsequence, still denoted (uy,)y, that is
convergent for the weak * topology of L?(0,t; U). Denote u* its limit, then, for every v € L¥(0,¢ +;Uo), we have

<UmU>Lp(o,tf;U)pr’(07tf;U0) - <U*aU)Lp(o,tf;U)pr’(07tf;U0)
By assumption (Al.2), the embedding LP (0,t; H) < L” (0,ts;Up) is continuous. Then, for every v €
LP'(0,t; H), we get

<un7U>LP(O,tf;H)><LP'(O,tf;H) - <U*vv)LP(o,tf;H)pr’(o,tf;H)

It follows that w,, — u* weakly in L”(0,t;; H). Moreover, U, is convex and strongly closed in L”(0,t;; H). Thus
Uya is weakly closed in L?(0,t; H). Therefore, u* € Uygq.

Let z,, and z* be the mild solutions of (1), associated with u,, and u* respectively. Denote y = sup |[un || Lr (0,¢,:0)-
Then inequality (7) yields

lzn(t) = 2" (Dl z < [|Lt(un — u”)||z exp <M€ptf0"f}”u> ©)

where the linear operator L, : LP(0,T;U) — Z is defined as:

Liu = /0 T(t —s)f(u(s),z*(s))ds. (10)

Assumption (A1.4) leads to two cases, which are discussed below.

Case 1: We assume that the operator f(., z) is compact, for every z € Z.

Let us prove that L, is compact. Given that Z is reflexive, Z can be identified with its bidual Z**. It follows that L,
is the adjoint operator of Ly : Z* — L (0,T;Uy), given by:

Loy — Jo(o, 2*(8))T*(t — s)y if0<s<t,
=19 0 otherwise,
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1028 EXISTENCE OF OPTIMAL CONTROLS FOR SEMILINEAR SYSTEMS...

for every y € Z*, where operator fo(.,2*(s)) : Z* — Uy is written as:

fol(,2%(s)) ry = (., 2"(8)y

By assumption (A1.3), operator fo(.,2*(s)) is well defined. Additionally, the adjoint operator of fy(.,2*(s)) is
f(.,z*(s)). By the compactness of f(.,z*(s)), it follows that fy(., z*(s)) is compact too. Let (y,, ) be a sequence
in Z* such that y,,, — 0 weakly in Z*. To prove the compactness of Ly, it suffices to show that Lyy,,, — 0 strongly
in LP/(O, T; Up), which is separable.
Let s € [0, t]. By the compactness of fy(., 2*(s)), operator fo(.,z*(s))T*(t — s) is also compact. Hence

lim || fo(., 2" ()T (¢t — $)ymllv, =0, Vs € [0,1].

m—r o0

It follows that lim ||(Loym)(s)||v, = 0, for almost every s € [0,¢;]. Using appropriate bounds, the dominated
m—r o0
convergence theorem yields
ngnooll(Loym)HLP/(O,T;Uo) = 0.

Hence L is compact, which proves the compactness of L = L;. Now, by applying Lemma 2.2 to Ly and L, the
weak * convergence (u,, — u*) — 0 leads to

L¢(uy, —u*) — 0 strongly in Z.
Then inequality (9) yields, for every ¢ € [0,t/],
im z0(t) — 2*(8)] 7 = 0.
By the continuity of ¢ and 2, one gets

G (1) = lim F(zalty),  2(°(0) = lim Dz (1)),

n—oo
Hence, the dominated convergence theorem yields

ty ty
/ 2(z*(t))dt = lim 2 (z,(t))dt.
0 n—oo 0
Finally, %Z(u,) = r||un||SL,,(07tf; - BY the lower semicontinuity of norms, the weak convergence u, — u* in
L?(0,tr; H) yields
Z(u*) < liminfZ(uy).

n—r oo
Therefore J(v*) < liminf.J(u, ). Hence u* is a minimizer of J over Uq.
n—oo

Case 2: We assume that the semigroup (7'(t))¢>0 is compact.
Inequality (9) can be written as:

/O T(t — 5)f (tn(s) — u*(s), 2*(s)

lzn(t) — ()2 < ’

1
X exp <Meﬂtfat;’ u) (11)
z
Let f(u, — u*, 2z*) denote the mapping

s flun(s) —u*(s), 2%(s)).

Then f(u, —u*, z*) € LP(0,ts; Z). Let us prove that f(u, —u*,2*) — 0 weakly in L”(0,t; Z). To this end, let
y € L¥'(0,t7; Z*). By assumption (A1.3), f*(.,2*(s))y(s) € Up, a.e. on [0,¢¢]. Then

(f(un(s) = u™(5),27(5)): 4()) zx 2= = (un(s) = u*(s), [* (., 27 (5))y(s)) v s
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In addition, by inequality (3), we have
1f 2" (N lzzu) = 17 2 ()l 2w 2+
< a2 (s)]| + 8.

Hence
177(5 2" () (s) v, < (allz"(s)llz + B) [ly(s)]
which implies f*(., 2*)y € L” (0, ts; Up). Thereby

Z*

(f (un —u™,2%), y>LP(O,tf;Z)xLP’(O,tf;Z*) = (un —u”, (., Z*)y>LP(07tf;U)><LP’(07tf;U0)-
The weak * convergence u,, — u* yields

nhjgo@n —u, f(, Z*)y>LP(o,tf;U)xLP’(o,tf;Uo) =0.

Consequently
nlinéo T Z*)’y>LP(0,tf;Z)xLP’(O,tf;Z*) =0,
Yy € L (0,t5; Z%),

which means that f(u, —u*,2*) — 0 weakly in LP(0,%¢s; Z). Now, the semigroup (T'(t)):>0 is compact, then
Lemma 2.3 yields
=0.

lim sup
n%OOOStStf

/O Tt — 8) (un(s) — u*(s), 2" (s))ds

By inequality 11, it follows that (z,) converges uniformly to z* in C'([0, t]; Z). Finally, using similar arguments
to Case 1, we obtain J(u*) < lim infJ(u,, ). Therefore, u* minimizes .J over Uyg. O
n—oo

Proposition 2.5
Let assumptions (A1.1)-(A1.4) hold. We assume that

* Uyqisclosedin LP(0,ts; H).
e There exist » > 0 and s > 0 such that Z(u) = r|\u||i,,(07tf;H).

Then the optimal control problem (6) has at least a solution.

Proof

Let (uy,)n be a sequence in U,y such that J(u,) — J* = é_I[l]f J(u). Since r, s > 0, and
u ad

R (un) = 7"||un||SLP(O,tf,H) < J(un),

then sequence (uy,),, is bounded in L?(0,t¢, H). Thereby, there exists a subsequence still denoted (uy, )., such that
u, — u* weakly in LP(0,ts, H). In addition, U,q is convex and closed in L”(0,ts, H), hence weakly closed in
L?(0,ty, H), which yields u* € U,q4. Thereby, for every v € L (0, ty, H), we have

(un’U>LP(O,tf,U)><LP/(O,tf,Uo) = <un7U)LP(O,tf,H)XLP/(O,tf,H)
*
— (u 1v>LP(O,tf,H)><LP'(O,tf,H)

Using the density of the embedding
LP (0, tf, H) — LP (0, tf, Uo),

and by the Moore-Osgood theorem for interchanging limits, one gets
(Un, U>Lp(o,tf,U)va’(o,tf,Uo) = (u”, “>Lp(o,tf,U)pr’(o,tf,U0)>
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1030 EXISTENCE OF OPTIMAL CONTROLS FOR SEMILINEAR SYSTEMS...

for every v € L¥ (0,7, Up), which yields u,, = u* weakly * in LP(0, ¢z, Up).
Let 2, and z* be the mild solutions of (1), associated with u,, and u* respectively. By similar arguments to the
proof of Proposition 2.4, we prove that, for every ¢ € [0,t¢],

Tim [20(t) — 2* (1) 2 = 0.

Consequently
G(="(t5)) = lim F(enlty),
ty ty
/ 2(z*(t))dt = lim Q(z,(t))dt,
0 n—oo 0
Z(u*) < lminfZ(uy),
n—oo
which yields J(u*) < liminfJ(uy,). 0

n—oo

2.2. Second class of systems

Now, in addition to (A1)-(A3), we assume that:

(A2.1) U is the continuous dual space of a Banach space Uy, and the embedding Uy — U is continuous.
(A2.2) The semigroup (T'(t));>o is compact, or the operator f(.,z) is compact, for every z € Z.

Then we have the following result.

Proposition 2.6
We assume that

* U,a is a closed and bounded subset of L?(0,¢; Up).
 The mapping u — Z(u) is convex and continuous on L?(0,t; U).

Then there exists an optimal control u*, solution of (6).

Proof

Let (uy), be a a sequence in U,y such that J(u,) — J* = ir%]f J(u). Considering the canonical embedding
ueUqq

Uy — Ug* = U*, U,q is a bounded subset of LP(0,t, U*). It follows that (u,), is bounded in L?(0,ts,U*).
Thereby, there exists a subsequence, denoted (u,,) as well, such that u,, = u* weakly * in L?(0,¢;; U*). Namely

<Um U>LP(O,tf;U*)><L1’/ (0,t5;U) - <Um U>Lp(o,tf;U*)pr'(o,tf;U)v

for every v € LP (0, ; U). It follows that

<u7l7U>LP(O,tf;Ug)><LP/(O,tf;U) - <unvU>Lv(o,tf;Uo)va’(o,tf;U)a Vv e LP (0,t5;,U),

which means that u,, — u* weakly in LP(0,ts; Up). Now, U,q is convex and closed in LP(0,ts; Up), then U,q is
weakly closed in L?(0, tr; Up). Therefore, u* € Uygq.

Let 2, and z* be the mild solutions of (1), associated with wu, and w* respectively, and denote p =
sup [[un || z#(0,¢,;v)- Then

Aiﬁ—ﬁﬂw@%WW%f®»

mmw—famz<]

1
X exp <Me|p|tfat}’/ u) . (1
z

Two cases arise from assumption (A2.2), and are discussed hereafter.
Case 1: We assume that f(., z) is compact.

Stat., Optim. Inf. Comput. Vol. 15, February 2026
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We consider the following linear operator
Ay LP(0,t5;Up) — Z

U /OT(t—s)f(u(s),z*(s)) 12)

Ay is well defined, since the embedding Uy < U is continuous, and its adjoint A} : Z* — L¥'(0, ty; U) is given
by:
. | oerT*(t - s)y if0<s<t,
(Ary)(s) = { 0 otherwise,

where ¢} : Z* — U denotes the adjoint operator of

ps: Uy — Z
v = fv,2%(s))

It is clear that ¢, is the restriction of f(.,2*(s)) on Uy. By the continuity of the embedding Uy < U, and the
compactness of f(.,z*(s)), it follows that ¢, is compact. Subsequently, operator ¢*T™*(t — s) is compact, for every
s € [0,1].

Now, let (¥, )m be a sequence in Z* such that y,,, — 0 weakly. The compactness of @*T*(¢ — s) yields

lim [|@:T*(t — s)ym|lv =0, Vs € [0,1].
m—o0

Then, lim [[(Afym)(s)|lv =0a.e.on [0,ty].
m—00
Using appropriate bounds, and applying the dominated convergence theorem, one gets

Jim A7 ym) Lo 0.1,:0) = 0

Applying Lemma 2.2 to operator A, it follows that A; is compact.
Thereby, the weak convergence u,, — u* in LP(0,ts; Up) leads to lim ||As(u, — u*)||z = 0. Then, from inequality
n— oo
(11), it results that:
lim ||z, (t) — 2*(t)||z = 0, vt € [0,tg].

n—oo

Therefore
G("(t5)) = Tim Gz (1)),

2(2*(t)) = lim 2(2,(t)), a.e.on [0,/].
n—oo
By the dominated convergence theorem, we get

ty

/ ! 2t = lim | D(z(1))dt.
0

n—oo 0

Finally, u — Z(u) is convex and continuous on L”(0,ts;Up). Then Z is lower semicontinuous for the weak
topology of LP(0,ts;Uy). Then the weak convergence u,, — u* in LP(0,t; Up) leads to Z(u*) < liminfZ(uy,).
n—roo

Consequently, J(u*) < lim infJ(u,,), hence v* is an optimal control.
n—oo

Case 2: We assume that (7'(t));>0 is compact.
Let us define the following linear operator

fl(-aZ*) : LP(O,tf; UO) Lp (()7tf; Z) (13)

N
u = f(u(.),z*(.))
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Since the embedding Uy < U is continuous, then there exists a constant v > 0 such that ||v||y < 7||v||v,, for every
v € Up. If u(s) € Up, then inequality (3) implies

1f (u(s), 2 ()l z < v(el[2"(s)]l 2 + B)lu(s)lvs

which yields
1 (), 2 (Dlleeo,es32) < v@llzlleqosiz) + BllullLeo.es:v0),

for every u € LP(0,ts;Up). It follows that operator fi(.,2*), given by (13), is continuous. Hence f(.,z") is
continuous for the weak topology. Thereby, the weak convergence u,, — u* — 0in LP(0,ts; Up) yields

fl(‘>Z*)(un - U*) = f(un —’U,*,Z*) —0

weakly in LP(0,¢y; Z). By Lemma 2.3 and the compacity of (7'(¢));>0, we obtain

/0 T(t — s)f(un(s) —u*(s),z"(s))ds|| = 0.

lim sup
TL*}OOOStStf

Thereby, by inequality (11), (z,,),, converges uniformly to z* in C([0,ts]; Z).
By similar arguments to Case 1, one gets J(u*) < lim inf.J(u,, ), which proves that u* is a minimizer of functional
n—oo

JonUpg. ]

3. Examples

In this section, the previous results will be applied to two examples of semilinear partial differential equations, a
heat equation, and a wave equation.

Example 1

On I = [0, 1], we consider the below heat equation, with Neumann boundary conditions.

= Az(z,t) + u(z,t)B(2)(x,t), inl x[0,tf]
g 0,¢ az(l,t) —0, on [0, /] (14)
z(x 0) = Zo( ) on [
where 2o € L?(I) and B : L?(I) — L?(I) is a Lipschitz operator. The control function w is such that u(.,t) €
o
e (SQZ — L2(I), () = 2(., 1), u(t) = u(., ), and

A = A with D(A) = {z e H2(I) : %(0) = %(1) - o}.

The control space is U = L>(I), and u € L?(0,t; L>°(I)). We define the mapping f : U X Z — Z as:
f(u, 2)(z) = u(z)(B(2))(x), ae.onl.

Then assumptions (A1)-(A3) are satisfied. In addition, A is the generator of the below compact semigroup

oo

T(t)(z) = Z e~ (z,en)2(1)en

n=0

Stat., Optim. Inf. Comput. Vol. 15, February 2026
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where eo(z) = 1, e, (x) = V2 cos(nmz), if n > 1 (See Chapter VI, Example 8.9 in [12] for further details).
We consider the below functional:

ty
J(u) = QQ/Z(:C,tf)zdl'+a1/ /z(x,t)zdxdt (15)
I 0o JI
where ag, a; > 0. Let the set of admissible controls be
Uga = {u € L*(0,t5; L>(I)) : m < u(x,t) < M ae.onT x [0,1]} (16)
such that m < M. By the boundedness of I, the embeddings
L®(I) < L*(I) — L(I)

are continuous. The density of the above embeddings follows from the density of C..(I) in L?(I) and L' (). Then
assumptions (A1.1) and (A1.2) hold, for U = L>°(I), H = L*(I), and Uy = L'(I). In addition, the adjoint of
f(., z) is given by:

(f*(2)y) (@) = y(2)(B(2))(x), Vy e L*(I).
Then f*(.,2)y € L*(I) = Uy, for every z € L*(I). Hence assumption (A1.3) holds. Finally, (A1.4) is satisfied
since the semigroup (7°(t)):>o is compact.
Now, The set Uy,q, given by (16), is closed in L%(0,ts; L%(I)) and bounded in L?(0,t¢s; L°°(I)). Considering
functional (15), we have Z(u) = 0. Therefore, by virtue of Proposition 2.4, there exists an optimal control «* that
minimizes (15) over U,gq.

Example 2

On I = [0, 1], we consider the following wave equation.

%(m,t) = Ay(z,t) + /Iy(ac,t)du(t)7 in I x [0,tf]
y(0,t) = y(1,t) = 0, on [0, ] a7
y(x,0) = yo(z), %(CE,O) =y (x) onl

where yo € HY(I), y1 € L*(I), and u(t) € M(I), where M(I) is the space of real-valued Radon measures over
I. Hence the control space is set to be U = M(I). It follows that U is the dual space of Uy = C(I), the space of

continuous functions on /.
y(., 1) 0 1d
Z(t)=<8y > A=< )
) A 0

We set Z = H}(I) x L*(I), and
with D(A) = [H2(I) N HL(I)] x H(I). Besides, we define the mapping f : M(I) x Z — Z as:
0
flu,z) = /Zl(oj)du
I

Then equation (17) has the form of system (1). Z is endowed with the norm [|2[|3 = [[z1[[3 ;) + llz2l|72(py. for
0
every z = (21, 22) € Z. In addition, we have

1)z < / Zl(w)du‘ < Il lalle
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Since z1(0) = 0 then, applying the Cauchy-Schwarz inequality yields, for every x € I,

| e s( / zi(£)2d€>2§||le;(z)-
0 0

21llcy = suplzi(z)| < (21l mp2)-
xel

21(2)] =

Then

It follows that
1f (1, )z < Ml menllzall o
< pllmm izl z-

Therefore, the mapping f satisfies assumption (A3).

Operator A is the infinitesimal generator of a continuous semigroup (7'(t));>o (For further details, see Example
2.41in [9]).

We consider the following functional:

ty ty
J(u) :‘10/ /y(x,t)dedt+a1/ /@(x,t)dedt—F@HuHMm (18)
o JrI o Jr Ot

where ag,a; > 0 and as > 0. The set of admissible controls is defined as follows.
Uaa = {u € L*(0,t;;C(I)) : |u(z,t)] < MonT x [0,4s]} (19)

Every u € Uy = C(I) can be identified with a measure, still denoted u, in U = M(I). Moreover, we have

sy = | fut@)lde < suplutz)] = e
I xel
It follows that the embedding Uy < U is continuous. Hence assumption (A2.1) holds. Additionally, the operator

0
flo2)p— /Izl<x)d/4

is compact, since p — / z1(x)dp is a continuous linear form. It follows that assumption (A2.2) holds too.
I

Finally, U,q is a closed and bounded subset of L?(0,ts;Up), and Z : u — az||u| p(r) is convex and continuous
on L%(0,ts; Up). Therefore, by Proposition 2.6, the optimal control problem (6) has a solution «*, that minimizes
functional (18) over the set (19).

4. Conclusion

In this paper, we have investigated an optimal control problem, governed by an important class of semilinear
systems. The problem consists in minimizing an abstract functional, over a given set of admissible controls in
a nonreflexive Banach space. By introducing specific assumptions, and discussing two classes of systems, the
question of existence of optimal controls has been addressed. Then two examples of partial differential equations
have been provided to demonstrate the applicability of the obtained results. This work may be extended to larger
classes of nonlinear systems. This is under consideration for future research papers.
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