
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 15, February 2026, pp 975–990.
Published online in International Academic Press (www.IAPress.org)

Feature Selection via Fuzzy Rough Set Theory for Robust Classification: a
Review and Comparative Study

Zineb Khaldoun*, Hasna Chamlal, Tayeb Ouaderhman

Computer Science and Systems Laboratory (LIS), Faculty of Sciences Ain Chock,
University Hassan II of Casablanca, Morocco

Abstract
Despite a variety of powerful classifiers available in machine learning today, most of them struggle with processing large-
scale real-world datasets. Usually, these datasets contain irrelevant and redundant information that can negatively affect
the model’s performance. To overcome this, feature selection has become a commonly used strategy to improve model
performance by reducing dataset size while retaining essential information. Some feature selection techniques tend to
require more information than what is provided in the given dataset, making them impractical in some cases. Alternatively,
completely data-driven methods may lose critical information, as they can mistake vagueness or imprecision in the dataset
for irrelevant or redundant features. Fuzzy-rough set theory offers a robust paradigm for tackling uncertainties, having been
utilised across various domains, with feature selection being one of its most prominent applications. This paper presents
an extensive review of feature selection methodologies grounded in fuzzy-rough set theory, accompanied by an empirical
evaluation of multiple techniques to evaluate their effectiveness.
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1. Introduction

High-dimensional data presents a significant challenge to machine learning models, as it increases the likelihood of
models overfitting on noise and irrelevant information, thereby misclassifying data and leading to poor performance
[8, 32]. Feature selection [1] attempts to solve these issues by identifying and extracting pertinent attributes (or
features) for model construction. Besides this, the process of feature selection reduces training time, enhances
interpretability, and improves classification accuracy [31]. Moreover, feature selection proves its importance across
diverse fields [9,33], including credit scoring [2], image classification [3], and medical diagnosis [33], by enhancing
data quality and making the decision-making process more precise in these critical domains. A conceptual overview
of a feature selection process is illustrated in Figure 1.

A substantial body of research has documented numerous feature selection methodologies across existing
literature, yet a significant majority fails to adequately accommodate ambiguity and data inconsistency. These
approaches may categorize such data as irrelevant and exclude it, yielding a resultant dataset with diminished
informational potency. Rough Set Theory [5] offers a robust groundwork for handling datasets of disparate
complexities without reliance on supplementary information beyond what the dataset provides. However, one key
restriction of rough set theory is that all data should be discrete, which diminishes its usability over real-valued

∗Correspondence to: Zineb Khaldoun (Email: zineb.khaldoun-etu@etu.univh2c.ma). Department of Mathematics and Informatics, Faculty
of Sciences Ain Chock, University Hassan II of Casablanca, Morocco.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2026 International Academic Press
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data. A widely used approach for overcoming this challenge is the discretization of numerical data, which often
leads to information loss.

Figure 1. Overview of Feature selection

To address the above limitations, Dubois and Prade [6] presented a new framework that integrates fuzzy set
theory and rough set theory into a singular, unified concept known as fuzzy-rough set theory. With such a
hybrid theory, it is possible to work with continuous and discrete simultaneously without the need to discretize
the data, which protects data against the risk of information loss in the process of reducing the dimensionality.
With the incorporation of fuzzy membership functions into rough set definitions, fuzzy-rough set theory becomes
particularly effective in feature selection tasks where data may contain imprecise or vague information. This
theory has garnered substantial attention in the research world attributable to its capacity to process diverse data
types and handle complex, uncertain data effectively. Nonetheless, existing literature exhibits a dearth of in-depth
examinations regarding feature selection methods founded in fuzzy-rough set theory.

This paper presents a comprehensive examination of feature selection methods grounded in fuzzy-rough set
theory, beginning with fundamental theoretical principles and essential definitions. The study concludes with an
experimental evaluation across multiple datasets, assessing both the efficacy and advancements of these methods.
The investigation particularly highlights their practical utility and demonstrated capability to handle complex, real-
world datasets.

This review is structured in the following manners: Section 2 provides a comprehensive exposition on the
theoretical base of both fuzzy sets and rough sets and thus lays the ground for the subsequent examination of
fuzzy-rough set theory. Section 3 provides a critical assessment of feature selection approaches grounded in fuzzy-
rough sets. Section 4 presents a comparative experimental analysis aimed at investigating the effectiveness of these
methods. Finally, Section 5 distils the key outcomes of this study into a concise conclusion.

2. Preliminaries

In order to understand the subsequent section, the primary principles and operators of fuzzy set theory, rough set
theory, and the unified framework of fuzzy-rough set theory will be introduced.
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Within the theoretical frameworks examined in this paper, a dataset is represented as tuple ⟨U,A⟩ called
information system [5], where U is the set of objects called the universe and A is the set of features in order
that for every feature c ∈ A, c : U→ Vc. Here, Vc represents the set of possible values that feature c can take.

2.1. Fuzzy Set Theory

Fuzzy set theory is a theoretical framework proposed by Lotfi Zadeh in 1965. Inspired by human reasoning, it
generalizes the classical set theory, by allowing an element to have a membership degree in multiple sets rather
than being restricted to inclusion or exclusion within a single set. It excels at managing imprecision and uncertainty
in data due to its reasoning flexibility. The utility of this theory shows in scenarios where classical set theory proves
insufficient when dealing with complex, nuanced real-world data.

Definition 1 ( [13]). A fuzzy set can be conceptually represented through a collection of ordered pairs:

A = {(x, µA(x)) | x ∈ U}

The function µA(x) is called the membership function for A, mapping each element of the universe U to a
membership degree in the range [0.1].

In order to facilitate the manipulation of fuzzy sets, various operations have been created. The commonly applied
fuzzy set operations are listed in Table 1, as detailed in this work [10].

Operator Definition
Intersection µA∩B(x) = min(µA(x), µB(x))

Union µA∪B(x) = max(µA(x), µB(x))
Complement µA(x) = 1− µA(x)

Table 1. Fuzzy Set Operators

2.2. Fuzzy Relations

A fuzzy relation R may be represented as a fuzzy set over the Cartesian product of the universe U, mapping each
ordered pair (x, y) from U×U to the interval [0, 1]. The membership value R(x, y) assigned to each pair indicates
the degree of association between the elements x and y under the specified relation R.

Let R denote a fuzzy relation on the Cartesian product U×U. In this work [7], R is referred to as a fuzzy
T -similarity relation on U for all x, y ∈ U if R satisfies:

• R is reflexive⇔ R(x, x) = 1

• R is symmetric⇔ R(x, y) = R(y, x)

• R is T -transitive⇔ R(x, z) ≥ T (R(x, y), R(y, z))

In the particular case where triangular norm T = min then R is fuzzy equivalence relation on U . Furthermore, they
defined a fuzzy relation over any subset J ⊆ A by:

RJ =
⋂

ak∈J

Rak
. (1)

Example of Fuzzy Similarity Relation

There are numerous fuzzy similarity relations proposed in the literature. In this article, we adopt a commonly used
definition for numerical attributes. Given a numerical attribute a, the fuzzy similarity relation Ra(xi, xj) between
two instances xi and xj is defined as:
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Ra(xi, xj) = 1− |a(xi)− a(xj)|
max(a)−min(a)

(2)

This relation quantifies the similarity between instances based on their attribute values, where the value of
Ra(xi, xj) lies in the interval [0, 1]; a value of 1 indicates complete similarity, while 0 indicates no similarity.

Example:
Consider an information system that contains two features a1 and a2:

U a1 a2
x1 2.0 10.0
x2 3.5 12.0
x3 4.0 14.0

Using Equation 2, the fuzzy similarity relations for the two features are calculated as:

Ra1
(x1, x2) = 1− 1.5

2.0 = 0.25, Ra2
(x1, x2) = 1− 2.0

4.0 = 0.5
Ra1(x1, x3) = 1− 2.0

2.0 = 0.0, Ra2(x1, x3) = 1− 4.0
4.0 = 0.0

Ra1
(x2, x3) = 1− 0.5

2.0 = 0.75, Ra2
(x2, x3) = 1− 2.0

4.0 = 0.5

These can be represented in matrix form as:

Ra1
=

 1 0.25 0
0.25 1 0.75
0 0.75 1

 Ra2
=

 1 0.5 0
0.5 1 0.5
0 0.5 1


By applying Equation 1, we can calculate the fuzzy similarity relation over the subset {a1, a2}:

R{a1,a2} =

 1 min(0.25, 0.5) = 0.25 min(0.0, 0.0) = 0.0
0.25 1 min(0.75, 0.5) = 0.5
0.0 0.5 1

 =

 1 0.25 0.0
0.25 1 0.5
0.0 0.5 1


This matrix represents the fuzzy similarity between instances x1, x2, x3 based on the combination of features a1

and a2.

2.3. Rough Set Theory

Rough Set Theory, introduced by Zdizisław Pawlak in the 1980s, has been extensively utilized as a methodological
tool by researchers to elicit data dependencies and to effect attribute reduction in datasets independently, devoid
of supplementary information. Particularly created for datasets characterised by discrete features, aiming to
reduce dimensionality by identifying a subset of features termed reduct that provides a minimal yet informative
representation of the original data. We recall some key definitions from [14].

Let ⟨U,A⟩ be an information system. For any subset J ⊆ A, there is an associated equivalence relation IND(J):

IND(J) =
{
(x, y) ∈ U2 | ∀c ∈ J, c(x) = c(y)

}
(3)

IND(J) is known as J-indiscernibility relation, where objects that belong to IND(J) are indistinguishable with
respect to J . This indiscernibility relation generates partitions of the universe U , denoted as U/ IND(J).

Given a subset K of the universe U, where U = {x1, . . . , xn}, the set K can be approximated utilizing the
information contained in set J by generating the J-lower and J-upper approximations of K as follows:

JK = {xk | [xk]J ⊆ K} (4)

and
JK = {xk | [xk]J ∩K ̸= ∅} (5)
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where [xk]J represent the equivalence classes of the J-indiscernibility relation. Objects in JK can be classified
with absolute certainty as elements of set K, whereas objects in JK can be classified as potential elements of set
K within the constraints of knowledge base J [5].

The discovery of dependencies among attributes is one of the central tasks of data analysis. RST offers a
prominent tool employed for this purpose, the dependency function, which quantifies the degree to which a set
of attributes E depends on another set J . The dependency between J and E is expressed as [15]:

γJ(E) =
|POSJ(E)|
|U| (6)

where:

POSJ(E) =
⋃

K∈U/E

JK (7)

Here, | · | denotes the cardinality of a set. The value of γJ(E) is always situated in the interval [0, 1]. A value
nearer to 1 suggests that E is highly dependent on J , while a value closer to 0 suggests a weaker dependence of E
on J .

2.4. Fuzzy-Rough Set Theory

Fuzzy-rough set theory, proposed by Dubois and Prade, extends the traditional framework of rough set theory by
incorporating the concept of a membership function from fuzzy set theory. This integration makes it possible to
utilze the definitions of rough set theory in various types of data such as continued, discrete, and mixed datasets
and not be limited only to discrete data.

Let ⟨U,A⟩ denote a fuzzy decision system, where the attribute set A is composed of a union of conditional
attribute set C and decision attribute set D. A fuzzy decision system is a type of fuzzy information system equipped
with decision attributes.

In this context, the foundational work of Dubois and Prade [6] introduces key definitions related to fuzzy-rough
sets, particularly in describing the lower and upper approximations of a fuzzy set X based on a T -similarity relation
R, as follows:

RBX(x) = inf
y∈U

max {1−RB(x, y), X(y)} (8)

RBX(x) = sup
y∈U

min {RB(x, y), X(y)} (9)

The function RBX(x) measures the degree to which x certainly belongs to the fuzzy set X , based on the knowledge
contained in B, while RBX(x) measures the degree to which x possibly belongs to X , also based on the knowledge
contained in B.

Furthermore, given B ⊆ C. The fuzzy positive region of D with respect to B is defined as:

POSB(D) =
⋃

X∈U/D

RBX (10)

Building on the definition of the fuzzy positive region, this groundbreaking work [11] defines the fuzzy dependency
function as follows:

γ′
C(D) =

∑
x∈U POSB(D)(x)

|U| (11)

Similar to the dependency function in rough set theory framework, when the value of γ′
C(D) approaches 1, it

indicates a strong dependency between the decision variable D and the feature subset C. Conversely, a value closer
to 0 suggests a weaker dependency.
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2.5. Fuzzy Entropy

Fuzzy entropy, a metric developed by De Luca and Termini drawing upon Shannon’s entropy [16], serves as
a quantitative indicator of the degree of fuzziness within data. Specifically, it reflects the average quantifiable
information resident within data that underpins object classification. According to this work [17], the fuzzy entropy
H is given by:

H = − 1

n

n∑
i=1

(µi log(µi) + (1− µi) log(1− µi)) , (12)

where µi represents the membership function of the fuzzy set, and log denotes the base 10 logarithm.

3. Fuzzy Rough Set for Selecting Features

Fuzzy rough set theory has become widespread in such fields as data mining, pattern recognition, and decision-
making. Especially, this theory has witnessed quite significant development in feature selection, leading to a number
of efficient and handy methodologies, capable of operating noisy and large-scale datasets. Quite a significant
number of feature selection studies, based on the fuzzy rough set theory, has proved that efficient dimensionality
reduction is possible without the loss of information.

3.1. Feature Selection techniques foundationed on Fuzzy Rough Set

Chouchoulas and Shen’s seminal work, as reported [18], pioneered the application of rough set theory for feature
selection. Through the introduction of the QUICKREDUCT algorithm, they devised a computational framework
that harnesses a dependency function to isolate a reduct. Despite its efficacy, QUICKREDUCT is constrained by
its discrete data constrictions and fails to ensure the identification of an optimal minimal subset. Hence, Jensen and
Shen’s [20] Fuzzy Rough Feature Selection (FRFS) algorithm, as illustrated in Algorithm 1, was promulgated to
mitigate these limitations. FRFS uses a fuzzy-rough dependency function and selects relevant features iteratively
based on it. Meaning features are incrementally included only when they increase the dependency measure, thereby
conclusively determining the optimal subset.

Algorithm 1: FRFS [20]
Input: Decision system DS
Output: R: the selected feature subset
(1) R← ∅; γ′

best ← 0; γ′
prev;

(2) do ;
(3) T ← R;
(4) γ′

prev ← γ′
best;

(5) for each a ∈ (C−R) do ;
(6) if γ′

R∪{a}(D) > γ′
T (D) then ;

(7) T ← R ∪ {a};
(8) γ′

best ← γ′
T (D);

(9) R← T ;
(10) until γ′

best = γ′
prev;

(11) return R;

This methodology constituted a substantial improvement in the application of fuzzy rough sets to feature
selection, allowing for the management of datasets comprising both discrete and real-valued attributes.
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Nonetheless, the approach’s efficacy deteriorates as dataset size increase, resulting in escalating processing
durations, thereby compromising its operational efficiency. The primary impediment to this methodology’s
effectiveness is the substantial algorithmic complexity of the Cartesian product of fuzzy equivalence classes within
the algorithm.

In [20], Jensen and Shen introduced the Fuzzy Discernibility Matrix (FDM) algorithm, utilizing the fuzzy
discernibility matrix for feature selection, which employs this criterion to identify reducts through evaluation of
each feature’s role in class differentiation. However, FDM is becoming computationally expensive as datasets
grow bigger. Chen et al. [21] proposed the Sample Pair Selection (SPS) algorithm, which focuses solely on the
essential elements deduced from the fuzzy discernibility matrix, by utilizing discernibility relations to facilate the
identification of reducts by reducing drastically the computational complexity and considering only those elements
that are essential for effective classification.

Other recent work on fuzzy dependency functions includes the Max-Relevance Max-Significance algorithm
(MRMS) [22], which draws on principles of the Max-Relevance Min-Redundancy algorithm [23]. Notably, the
MRMS algorithm is designed to simultaneously enhance both the relevance and the significance of the extracted
attributes. Zhang et al. [25] introduce the Filter-Wrapper Approach Reduction Algorithm (FWARA), an instance-
based feature selection method. Unlike conventional approaches that operate on the entire dataset, FWARA
employs a two-stage selection process: it first identifies an initial feature subset by computing the fuzzy dependency
function using only representative instances - the most discriminative data points determined through fuzzy
relations; then it performs wrapper-based backward elimination, where a classifier iteratively refines the feature
subset to retain the combination yielding the highest classification accuracy.The MRMS and FWARA algorithms
are formally presented in Algorithms 2 and 3, respectively.

Algorithm 2: MRMS [22]
Input: Decision system DS
Output: R: reduct of the attributes A
(1) R← ∅;
(2) Construct the FEPM MAi for each Ai ∈ C;
(3) Calculate relevance γ{Ai}(D) for each Ai ∈ C;
(4) Select Ai with highest γ{Ai}(D), add to R, and update C← C \ {Ai};
(5) repeat ;
(6) for each Aj ∈ C and Ai ∈ R construct FEPM M{Ai,Aj};
(7) Compute σ{Ai,Aj}(D,Aj) = γ{Ai,Aj}(D)− γAi

(D);
(8) if σ{Ai,Aj}(D,Aj) = 0 for any Ai ∈ R, then remove Aj from C;
(9) From remaining Aj ∈ C, select feature maximizing:

ωγ{Aj}(D) +
(1− ω)

|S|
∑
Ai∈S

σ{Ai,Aj}(D,Aj)

(10) Add selected Aj to S and update C← C \ {Aj};
(11) until C = ∅ or |R| = d desired number of features;
(12) return R;

Numerous fuzzy rough feature selection methods employ upper and lower approximations of a fuzzy set based
on similarity relation. For instance, Wang et al. [24] have developed a parameterized fuzzy relation. Thus, a new
dependency function is formed on which a heuristic algorithm called NFRS is developed. The NFRS algorithm
guarantees the best dependence of a sample’s class with low uncertainty but maintains the inter-feature interactions
which may lead to the under-specified features having important discriminative information.

Building on these foundations, De Luca and Termini [17] extended Shannon entropy towards fuzzy rough sets,
enabling the effective extraction of information from fuzzy sets. Hu et al. [35] presented a fuzzy entropy-based
approach named FEAR to measure the ability of fuzzy relations to distinguish among objects, as illustrated in
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Algorithm 3: FWARA [25]
Input: Decision system DS, one minimal fuzzy granular rule set R∗(A,D), and the representative instance

set U∗.
Output: Reduct B of (U,A ∪D).
(1) Initialize B ← ∅, threshold← −1;
(2) Compute γ∗

A(D);
(3) for each a ∈ A \B, compute γ∗

B∪{a}(D);
(4) Let ai0 be the attribute satisfying:

γ∗
B∪{ai0

}(D) = max
a∈A\B

γ∗
B∪{a}(D)

if γ∗
B∪{ai0}

(D) > threshold, then update:

B ← B ∪ {ai0}, threshold← γ∗
B∪{ai0

}(D)

(5) if threshold < γ∗
A(D), go to Step (3); otherwise, output B and proceed;

(6) Proceed by applying a wrapper-based phase to refine the selected subset B. In this phase, different
combinations of features in B are evaluated using a classifier, and the subset yielding the highest
classification accuracy is retained as the final optimal feature subset.

Algorithm 4. Much later, Pasi Luukka [30] proposed a feature selection technique that employs fuzzy entropy
coupled with a similarity classifier, called the FSFEmSC algorithm. In this approach, feature removal is guided by
their entropy values, assuming that features having the highest entropy contribute the least to class discrimination,
while the most informative features have the lowest entropy values. Additionally, Wang et al. [26] proposed a

Algorithm 4: FEAR [35]
Input: Decision system DS
Output: One reduct red of DS
Step 1: For all a ∈ A, compute the equivalence relation;
Step 2: red← ∅;
Step 3: foreach ai ∈ C \ red do

Hi ← SIG(ai, red, d);

Step 4: Let a such that SIG(a, red, d) = maxi(Hi);
Step 5: if SIG(a, red, d) > 0 then

red← red ∪ {a};
Go to Step 3;

else
return red;

Dynamic Interaction Feature Selection method based on fuzzy entropy (DIFS-FRS), which selects features based
on their relevancy, redundancy, and taking into consideration the interaction between features. Later, an incremental
feature selection algorithm was developed by Dong et al. [28] for dynamic datasets, termed as ASIRA. It can handle
the increases of both the number of samples and features simultaneously. However, this method is still suffering
from its computation burden when datasets expand.

Most recently, Zhao et al. [29] devised a consistency approximation framework through their CAIFS algorithm to
augment incremental feature selection. This framework is leveraged to accelerate computational efficiency through
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a tri-accelerator mechanism, which involves two major steps: identifying the most informative samples, followed by
feature evaluation using the significance measure. Hence, this approach not only improves the model performance
but also reduces the time complexity challenges encountered in large-scale and high-dimensional datasets.

3.2. Summary

The development of fuzzy rough set-based feature selection has provided powerful tools for handling
dimensionality reduction, primarily underpinned by the discernibility matrix, dependency degree, and fuzzy
entropy theoretical frameworks.

• Discernibility matrix-based approaches aim to reduce the dimensionality of datasets by removing those
attributes that fail to discern between decision classes.

• Dependency degree-based strategies determines the importance of each feature, based on quantifying the
dependency between attributes and decision attributes.

• Fuzzy entropy-based methodologies, which are based on the principle of information entropy for the
purpose of refine feature selection by quantifying the information gained from fuzzy sets.

A summary of the categorization, advantages, and limitations of the fuzzy rough set-based feature selection
methods reviewed in this paper is presented in Table 2.

4. Experimental Evaluation

In this section, we compare the performance of several fuzzy rough set-based algorithms in terms of subset
optimality and classification accuracy. The experiments were conducted on a system equipped with an Intel(R)
Core(TM) i7-8650U processor (4.20 GHz), 16 GB of RAM, and running the Windows 11 operating system. All
algorithms were implemented and executed using Python version 3.12.7.

4.1. Experimental Analysis

The performance of four methods—FRFS, FEAR, FWARA, and MRMS—is evaluated. The experiments mainly
focus on selecting the best feature subset using these methods and comparing them in terms of computational
time, the cardinality of the selected feature subsets, and the classification performance of the selected subsets. To
accomplish this, six datasets were downloaded from the UCI Machine Learning Repository [34] and OpenML [46].
The datasets are briefly described in Table 3. Prior to analysis, a simple preprocessing step was applied where any
missing values were replaced by the mean of the respective feature, as all datasets are numeric.

Performance assessment was conducted using 5-fold cross-validation with an 80%− 20% train-test split per
fold, where for each fold, the feature selection methods were applied to the training partition, and the selected
features were evaluated using both a K-Nearest Neighbors (KNN, K = 3) classifier and a Support Vector Machine
(SVM) classifier on the test partition.

4.2. Experimental Results

To compare the effectiveness of the chosen fuzzy-rough-set feature methods, we analyzed their performance across
six diverse datasets, where an assessment of the algorithms was conducted in terms of classification accuracy, size
of the selected feature subset, dimensionality reduction rate, and execution time. Tables 4 and 5 present the average
classification accuracies and the cardinalities of the selected feature subsets obtained by each method using SVM
and 3NN, respectively.

Figure 3 provides a visual overview of the feature reduction capability of each method. It can be observed that
the majority of methods significantly reduce the number of features while preserving or even improving accuracy.
Additionally, Table 6 reports the average running time for each method per fold, revealing that FRFS and FWARA
are computationally more efficient than FEAR and MRMS on most datasets.
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Table 2. Summary of Fuzzy Rough Set-Based Feature Selection Methods

Method Category Advantages Limitations

FRFS [20] Dependency-based Handles mixed data; selects
only features improving
dependency

High computational cost due
to Cartesian product of fuzzy
equivalence classes; less effi-
cient on large datasets

FDM [20] Discernibility-based Identifies reducts using
class-distinguishing features

Computationally expensive
for large-scale data

SPS [21] Discernibility-based Reduces complexity by
selecting only essential
discernibility elements

May ignore weak but useful
features

MRMS [22] Dependency-based Balances relevance and
significance; controls
redundancy

Can be sensitive to the choice
of the membership function

FWARA [25] Dependency-based Efficient two-stage process;
high accuracy with reduced
subsets

The performance is
classifier-dependent and
unsuitable for large-scale
data

NFRS [24] Parameterized
Dependency

Reduces uncertainty while
preserving interactions

Risk of selecting under-
specified features

FEAR [35] Fuzzy entropy-
based

Measures discrimination
ability via fuzzy entropy

Performance decreases with
dataset size due to entropy
dilution

FSFEmSC [30] Fuzzy entropy-
based

Simple and effective
entropy-based filter with
similarity classifier

Assumes high-entropy fea-
tures are non-informative,
which may not always hold

DIFS-FRS [26] Fuzzy entropy-
based

Considers feature relevance,
redundancy, and interaction

Computationally demanding
as feature space grows

ASIRA [28] Discernability-based Handles dynamic datasets
with increasing size

High computational cost in
large-scale dynamic environ-
ments

CAIFS [29] Dependency-based Fast and consistent selec-
tion via tri-accelerator mech-
anism

Relies heavily on sample
quality and significance
thresholds

The comparative evaluation of the methods highlights several performance trends where it can be observed
from the results that FRFS consistently improves SVM accuracy (up to +4.8% over baseline), especially in low-
dimensional settings. However, it fails to generate valid subsets for the high-dimensional Prostate dataset. In the
other hand the FEAR shows superior performance with 3NN, yielding up to +3.9% accuracy gain, demonstrating
the advantage of its entropy-driven criteria in neighborhood-based classification. For the filter-wrapper FWARA
method, it can be seen that it achieves the most substantial dimensionality reduction (approximately 82% fewer
features on average).However, FWARA’s performance varies across classifiers, which can be explained by the
method’s dependency on the classifier used. In contrast, MRMS is compatible with all the datasets that were
studied and ensures consistent accuracy improvements for both classifiers (SVM: +3.1%, 3NN: +2.9%).
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Table 3. Characteristics of the datasets used in the study

Dataset Objects Features Number of Classes Source

Sonar 207 60 2 UCI
Glass 214 9 6 UCI
Ionosphere 230 34 2 UCI
WDBC 569 30 2 UCI
Colon 62 2000 2 OpenML
Prostate 149 12600 2 OpenML

Table 4. Comparison of feature selection methods across datasets using SVM classifier

Dataset Original Accuracy FRFS FEAR FWARA MRMS

|R| Accuracy |R| Accuracy |R| Accuracy |R| Accuracy

Sonar 75.05 45 79.83 38 75.53 18 79.20 49 75.49
Glass 60.78 9 60.78 6 61.72 9 60.78 8 63.59
Ionosphere 88.29 30 86.90 30 88.31 26 90.66 9 86.03
WDBC 94.90 22 95.60 25 96.48 22 96.60 14 95.60
Colon 66.02 22 98.37 4 62.95 5 77.06 14 95.60
Prostate 86.23 - - 18 55.90 - - 20 90.23

Table 5. Comparison of feature selection methods across datasets using 3NN classifier

Dataset Original Accuracy FRFS FEAR FWARA MRMS

|R| Accuracy |R| Accuracy |R| Accuracy |R| Accuracy

Sonar 81.72 24 82.20 38 82.23 18 76.45 50 80.82
Glass 65.43 7 67.79 7 68.76 9 65.43 8 74.31
Ionosphere 84.89 8 88.89 12 88.33 26 86.74 7 88.02
WDBC 91.91 24 92.26 28 99.36 22 95.67 26 92.79
Colon 72.82 17 75.51 12 64.36 5 92.17 10 81.92
Prostate 76.33 - - 42 53.00 - - 20 87.14

Table 6. Average running time (seconds) of finding one reduct (per fold)

Dataset FRFS FEAR FWARA MRMS

Sonar 14.37 28.04 15.84 9.55
Glass 0.06 4.44 12.16 3.19
Ionosphere 7.10 29.62 18.13 37.62
WDBC 12.27 76.31 19.32 62.90
Colon 14.87 76.28 15.41 41.31
Prostate - 1361.28 - 692.44

These results demonstrate that the optimal method depends on dataset characteristics. Methods like FRFS and
FWARA tend to be more compatible with smaller datasets, while FEAR and MRMS generally serve as reliable
default choices for diverse datasets. However, although FEAR is designed to handle larger datasets, its performance
tends to decline as the significance calculated by fuzzy entropy becomes less distinct when the dataset size
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(a) SVM

(b) 3NN

Figure 2. Accuracy improvement after feature selection: performance comparison using SVM and 3NN classifiers.

increases, leading to a potential loss of discriminatory power. with FRFS/FEAR preferred for accuracy-focused
applications on small datasets, FWARA for maximal reduction when validated, and MRMS as a reliable default
choice for diverse datasets.

4.3. Statistical significance test

To evaluate whether the performance differences among the four feature selection methods (FRFS, FEAR,
FWARA, MRMS) are statistically significant, we conducted the non-parametric Friedman test, followed by the
computation of Kendall’s coefficient of concordance (W) to assess the level of agreement in the rankings. The test
was applied using both SVM and 3NN classifiers. The results are presented in Table 7.

Table 7. Comparative Friedman test results for SVM and 3NN classifiers

Classifier Kendall’s W χ2 (Q) df p-value

SVM 0.071 1.063 3 0.786
3NN 0.104 1.560 3 0.669

As shown in Table 7, for the SVM classifier, the Friedman test yields a test statistic of χ2 = 1.063 with 3 degrees
of freedom and a p-value of 0.786. Similarly, for the 3NN classifier, the test yields χ2 = 1.560 with a p-value of
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SVM Classifier Results

(a) FRFS Method (b) FEAR Method

(c) FWARA Method (d) MRMS Method

3NN Classifier Results

(e) FRFS Method (f) FEAR Method

(g) FWARA Method (h) MRMS Method

Figure 3. Feature reduction results of all methods for SVM and 3NN classifiers.

Stat., Optim. Inf. Comput. Vol. 15, February 2026



988 FEATURE SELECTION VIA FUZZY ROUGH SET...

(a) SVM (b) 3NN

Figure 4. Comparative performance of feature selection methods using SVM (a) and 3NN (b) classifiers.

0.669. Both p-values are well above the commonly used significance threshold of 0.05, indicating that there is no
statistically significant difference in the classification accuracies across the four feature selection methods.

Furthermore, the Kendall’s W values are 0.071 for SVM and 0.104 for 3NN, which suggest a very weak level
of agreement in the ranking of methods across datasets. This further supports the notion that the methods perform
inconsistently across datasets and classifiers, and no single method consistently outperforms the others.

(a) SVM Rankings (b) 3NN Rankings

Figure 5. Diagrams comparing average ranks of feature selection methods for SVM (a) and 3NN (b) classifiers.

These findings suggest that while the methods may differ in certain datasets, their overall performance is
statistically comparable, and the choice of method may need to be guided by dataset-specific characteristics rather
than global performance superiority.

5. Conclusion

While numerous techniques for fuzzy rough feature selection have been developed, ongoing research into fuzzy
rough sets remains crucial to address the evolving challenges posed by real-world applications. This paper reviews
some of these methods, highlighting their significance, potential, and the advancements that this field has witnessed.
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The inherent complexity of real-world problems necessitates continuous refinement and advancement in fuzzy
rough set theory (FRST) and its associated feature selection methodologies. Despite being a relatively new
field, FRST has already demonstrated impressive capabilities, particularly in its ability to process diverse data
types—discrete, continuous, or mixed—without requiring additional information. By relying solely on the intrinsic
structure of the data, FRST proves its strength in extracting meaningful information with minimal representation
of knowledge in data, making it a highly effective tool for dimensionality reduction. Its capacity to preserve
information in the data and improve the quality of data underscores its potential as a robust and versatile approach
to feature selection, paving the way for further exploration and innovation in this domain.
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