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Geometric weighted least squares estimation
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Abstract Optimal efficiency of least squares (LS) estimation requires that the error variables (residuals) have equal variance
(homoscedasticity). In LS applications with multiple output variables, heteroscedasticity can even cause bias. In weighted LS,
weights are chosen to compensate for differences in variance. The selection of these weights can be challenging, depending
on the specific application. This paper introduces a general method, Geometric Weighted Least Squares (GWLS) estimation,
which estimates weights using the inequality between the geometric and arithmetic means. A simulation study explores the
performance of the method.
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1. Introduction

Least squares is a method that can be applied to a very broad class of statistical models. In models with multiple
output variables (multi-response models), it is particularly important to have equal error variances, as otherwise not
only is efficiency affected, but estimates may also be biased. Weighted least squares provides a general framework
for compensating for heteroscedasticity (see, e.g., [5], ch. 11). Naturally, it works best when the correct error
variances are known. If this is not the case, several techniques may be employed, with a general one being iteratively
reweighted least squares. For SEM models, the inverse of the covariance matrix is a natural candidate as weight
matrix and is used, for example, in GLS estimation of SEM models [1], p. 114. Other approaches to weight selection
investigate higher moments to go beyond normality assumptions, e.g. Browne [2].

The purpose of this article is to introduce a non-iterative method for weight estimation that can be applied to a
wide class of models. It is based on a very simple and elementary idea, yet it appears that it has not been applied and
published before. With perfectly chosen weights, the product of the weight and the corresponding error variance
should be equal across all variables. The well-known inequality between the geometric and arithmetic means
implies that a sum is minimized under the constraint that the product is constant, if all the summands are equal. This
is exactly the condition needed for weight selection. Hence, the method presented here will be called Geometric
Weighted Least Squares (GWLS).

The paper introduces the method and applies it to a simple non-linear latent variable model that shows bias when
estimated naively by unweighted least squares. This particular model is a special case of models that are relevant,
for instance, in educational studies [4].
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2. GWLS

For models with a single outcome variable, unweighted least squares estimation of linear models remains unbiased,
though it may be inefficient. However, for models with multiple outcome variables, even this property no longer
holds. Weighted least squares address this issue but introduce the new challenge of selecting appropriate weights.
A common method is to begin with unweighted least squares (ULS), then calculate estimates of the error variances
from the solution, which can be used as weights in the next iteration.

In this paper, we focus on regression models with multiple outcome variables. For the sake of generality, we use
the following notation for the model:

g(θ,X,Z) = E (1)

Here X is a vector of k observable random variables, Z is a vector of p latent random variables, θ is a vector of
model parameters, and E = (ϵ1, . . . , ϵm) is a vector of m error variables that are assumed to have mean 0. The
model defining vector-valued function g = (g1, . . . , gm) may be non-linear.

When a sample of size n is drawn for this model, one has a n× k matrix of observations, and for given parameter
values, one can calculate the matrix of errors, which I denote, by slight abuse of notation, as E as well.

For the special case without latent variables (i.e. p = 0) and under the assumption that the covariance matrix Σ
of E is non-singular, it can be shown ([5]) that minimizing E′.Σ−1.E gives unbiased estimates of the parameters θ.

Let’s now assume that errors are uncorrelated, i.e. that Σ = diag(σ1, . . . , σm) is diagonal, with σ2
j = E[E2

j ] =
var(Ej). Then the weighted least square problem is to solve

argminθ,Z

m∑
j=1

wjgj(θ,X,Z)2 (2)

with weights that are chosen as wj := σ−2
j . Then, for the correct parameters θ, one has E[gj ] = 0,E[g2j ] = σ2

j .
Thus, the minimum value of the objective function of (2) is m and all the wkgk(θ,X,Z)2 = 1 are equal.

When the error variances are unknown, we propose to use the fact that the correct weights make the summands
in (2) equal. The well-known theorem between the geometric and arithmetic means states that for non-negative
numbers x1, . . . , xm ≥ 0 one has

1

m

m∑
j=1

xj ≥

(
m∏
j=1

xj

) 1
m

(3)

and equality holds iff all the numbers are equal x1 = . . . = xm.
Setting xj = wjg

2
j one gets the method of GWLS, i.e.

argminw,θ,Z

m∑
j=1

wjgj(θ,X,Z)2, subject to
m∏
j=1

wjg
2
j ≥ 1 (4)

The solution to this problem will make the constraint sharp, i.e.,
∏m

j=1 wjg
2
j = 1 and is a self-consistent

approximation of weights and error variances. Therefore, it inherits all theoretical properties of weighted LS with
the correctly chosen weights, at least in the limit of large n and when minimization finds the correct local linear
minimum. The correct solution is one of the minimizers, but, unfortunately, there is no proof of the converse.

For practical implementations, one should reformulate the constraint as
∑m

j=1 log(wj) + log(g2j ) ≥ 0. Moreover,
it is advisable to start the numerical methods to solve (4) from good initial values, e.g., from a solution of the
unweighted problem. This was done in the simulation studies reported below.

Experiments (reported below) indicate that this estimation technique is not very efficient for smaller samples,
i.e. the variation of estimation errors is relatively large. Inspection shows that estimates that are far off the expected
values are often characterized by large correlations between errors or by correlations between errors and latent
variables. When zero correlations cor(ϵj , ϵj′) = 0, j ̸= j′ are estimated from a sample of size n, it is well known
that the estimates of the correlation have mean 0 and standard deviation of (n− 1)−0.5. Therefore, the terms
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(n− 1)cor(ϵj , ϵj′)2 have variance of 1 just as wjg
2
j and hence these expressions can be added to the objective

function without violating homoscedasticity. The same holds true for the correlations between errors and latent
variables. This leads to an objective function Fc, which gives rise to a modified estimation method, GWLSc (for
controlled GWLS):

Fc :=

m∑
j=1

wjgj(θ,X,Z)2 + Fe + Fl (5)

Fe :=
∑
j<j′

(n− 1)cor(ϵj , ϵj′)2 (6)

Fl :=

m∑
j=1

p∑
s=1

(n− 1)cor(ϵj , Zs)
2 (7)

This objective function is minimized subject to
∏m

j=1 wjg
2
j ≥ 1.

3. A toy model

This section investigates model with two latent variables X,Y that take values in the interval [−1, 1]. Each latent
variable has two indicator variables. Between the latent variables an implicative relation is assumed in the following
form: Negative X gives no information about Y , but for positive values there is linear prediction possible. Using
the unit step function Θ(x) := (x+ |x|)/2 the full model is

x1 = X + u1 + ϵ1 (8)
x2 = c2X + u2 + ϵ2 (9)
y1 = Y + u3 + ϵ3 (10)
y2 = c4Y + u4 + ϵ4 (11)
0 = Θ(X)(Y − aX − u5 + ϵ5) (12)

Data for this model has been simulated with the choices a = 0.9, c2 = 0.7, c4 = 0.4, uj = 0. Furthermore, normal
errors with sd(ϵ1) = 0.3, sd(ϵ2) = 0.4, sd(ϵ3) = 0.1, sd(ϵ4) = 0.2 have been used. Additionally, ϵ5 was uniformly
distributed from [−0.1, 0.1] .

The simulated data have been estimated using uniform LS ULS (i.e. all weights fixed to 1), GWLS and GWLSc
as explained above, and furthermore some iterative versions: ULS1 used the inverse variances of ϵj as estimated by
ULS as weights. ULS2 iterates this by taking estimates from ULS1. Similarly, GLS1, GLS2, GLS3 are iterates, but
these methods don’t assume a diagonal covariance matrix but instead minimize E′Σ−1E where Σ is the estimate
of the error covariance matrix estimated in the previous iteration step. In principle, one may hope that taking this
iteration further will lead to convergence. However, for the model above this behavior was not observed, but some
of these early iterates give rather good estimates, although it is unsatisfactory from a theoretical point of view, that
there is no criterion to choose which iterate is best.

The method has been prototyped in Wolfram Mathematica, but for the sake of accessibility, the code has been
converted to Python and is available at https://myweb.rz.uni-augsburg.de/˜oldenbre/GW5.py.
The following simulations have been run on a MacBook pro with M1 processor, using Python 3.12 with Numpy
2.1.1 and Casadi 3.6.7 (https://web.casadi.org/). For each of the sample sizes n = 100, 200, 500, I
drew 250 simulations. The most interesting and demanding parameter is a and only results for this parameter
are displayed in tables 1–3. The tables give the mean error, the standard deviation of estimation, and the root mean
square error RMSE. The last column reports run-time in seconds (for ULSi and GLSi only the times of the last
iteration step is given). Optimization fails in approx 2% of the cases for ULSi and GLSIi, and in about 5% of the
cases for GWLSc. These cases have been eliminated from the results given in the tables. However, including them
(Casadi gives a result, although with a warning) has almost no impact on the results. Best values for error estimates
and RMSE are typeset in bold.
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Table 1. Simulation results for 250 samples of size n = 100.

Method Mean Err. Std. dev. RMSE time
ULS -0.212 0.173 0.273 0.149
ULS1 0.146 0.230 0.272 0.169
ULS2 0.456 0.333 0.565 0.187
GLS1 -0.025 0.269 0.271 0.228
GLS2 0.076 0.317 0.326 0.229
GLS3 0.137 0.330 0.357 0.233
GWLS 0.175 0.626 0.650 0.322
GWLSc -0.023 0.187 0.187 7.13

Table 2. Simulation results for 250 samples of size n = 200.

Method Mean Err. Std. dev. RMSE time
ULS -0.219 0.115 0.247 0.279
ULS1 0.099 0.135 0.164 0.688
ULS2 0.437 0.231 0.484 0.339
GLS1 -0.086 0.154 0.176 0.439
GLS2 0.062 0.187 0.196 0.482
GLS3 0.152 0.232 0.276 0.416
GWLS 0.076 0.548 0.552 0.569
GWLSc -0.045 0.132 0.135 30.04

The results show that GWLS and GWLSc work quite well in this example. However, the best traditional method
in this comparison, GWLS2, scored only slightly lower. Nevertheless, it is unsatisfactory that there is no theoretical
argument explaining why GLS2 is better than GLS3. Among the new methods, GWLS without the penalty for
error correlations needs larger samples to show its potential, while GWLSc also works well with smaller samples.
However, run-time for GWLSc is considerably larger than for the other methods. This is partly due to the fact that
the calculation of the Jacobi matrix by automatic differentiation in the present code is not optimal. The systematic
structure of the Jacobi matrix could be used to provide explicit derivatives. However, implementing this would take
some care and time and would make the code harder to read. Thus, it has not been realized yet.

This toy model is used to evaluate the methods in a transparent situation. The method has also been applied
to more complex models, such as a non-linear variation of Bollen’s model [1], Fig. 8.1, p. 324. In this variation,
the linear equation η2 = ξ1 + β21η1 + γ21ξ2 + ζ2 was replaced with η2 = ξ1 + β21η1 · ξ2 + γ21ξ

3
2 + ζ2. It turned

out that estimates for the parameters β21 and γ21 were significantly improved by GWLSc. The true values in
the simulation were chosen to be 0.5 and 0.8, respectively. ULS1 estimated these values as 0.75 and 0.88, GLS2
estimated them as 0.65 and 0.82, and GWLSc estimated them as 0.59 and 0.78. This provides further evidence that
the method has potential, but of course, many more models need to be investigated.

4. Conclusion

The paper has shown that the inequality between the geometric and arithmetic means can be used to estimate
parameters and weights in a least squares problem in one consistent step. The results are therefore self-consistent:
a priori weights and a posteriori weights are equal. However, the example model shows that the standard deviations
of the estimates are rather large, although there is no apparent bias. The controlled version, which penalizes error
correlations in a consistent way, performs much better in this respect—especially for small sample sizes—but it is
much slower. A practical advice is thus to try the controlled version first. If run-time is excessive try GWLS and
GWLSc on random sub-samples. If they differ little, the faster method can be safely applied to the full data set. In
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Table 3. Simulation results for 250 samples of size n = 500.

Method Mean Err. Std. dev. RMSE time
ULS -0.245 0.074 0.256 0.76
ULS1 0.095 0.082 0.123 1.64
ULS2 0.404 0.110 0.411 1.10
GLS1 -0.095 0.106 0.142 1.38
GLS2 0.067 0.130 0.145 1.35
GLS3 0.165 0.137 0.212 1.17
GWLS 0.003 0.274 0.274 1.94
GWLSc -0.063 0.083 0.100 328.4

the derivation of the objective function above, normality of errors was assumed. In fact, the method is not robust
against violations of this assumptions, e.g. replacing normal errors by uniform errors eliminates the advantage of
GWLS and GWLSc.

There are models motivated from educational studies (see, e.g. [3]) that involve nonlinear relationships between
latent variables and furthermore constraints on some of the parameters. Simulation studies have shown that GWLSc
gives good results in these cases, too, but the publication will be postponed to another publication.

Taken together, this paper presents a method for weight selection that seems to be new, although rather simple.
The method obviously has potential, but further research is needed to explore this in more detail.
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