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Abstract Bivariate Gumbel’s exponential distribution is one of the most popular continuous bivariate distributions.
Comprehensive studies have been done on bivariate Gumbel’s exponential model during the past few decades. In this paper,
we have derived a generalized version of bivariate Gumbel’s exponential model through entropy optimization and we call this
model as q-bivariate Gumbel’s exponential model. One of the major properties of the q-bivariate Gumbel’s exponential model
is that its marginal densities are q-exponential distributions. Its survival function, distribution function and density function
can be expressed in terms of q-exponential function, which is the q-analogue of exponential function which posses several
applications in various fields. Different properties and a characterisation theorem of this distribution have been discussed. For
illustrating the use of the proposed model the unknown parameters are estimated using the method of maximum likelihood
estimation. A likelihood ratio test is carried out to test the goodness of fit of q-bivariate Gumbel’s exponential distribution to
verify its compatibility with the existing bivariate Gumbel’s exponential model. In order to interpret the practical applicability
of q-bivariate Gumbel’s exponential model a simulation study and real data application in the field of medicine and finance
have been carried out. From this study, we can conclude that q-bivariate Gumbel’s exponential model shows a better fit than
bivariate Gumbel’s exponential model.
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1. Introduction

The univariate exponential distribution which is well known in the statistical literature has wide variety of
applications in survival analysis, reliability and life testing. In a system consisting of two or more components,
occurrence of dependence among the components is natural. In such cases the conventional practise to assume the
components to be independent of each other seems to be impractical. As a result several bivariate models have
been introduced over the time. A detailed study of bivariate distributions with their applications can be seen in the
book [1]. Due to the great importance of bivariate exponential distributions many authors have introduced various
generalizations of bivariate exponential models. Some of the popular bivariate exponential distributions are those
by [2], [3], [4], [5], [6], [7], [8] and so on.
A family of probability distributions based on non-extensive statistical mechanics, popularly known as q-type
distributions, has great importance in several fields of science and engineering. The basic properties of q-
exponential, q-Gaussian, and q-Weibull were studied by [9]. In [10] a comparison between q-exponential, q-
Weibull, and Weibull distributions to model the frequency distributions of basketball baskets, cyclone victims,
brand-name drugs by retail sales, and highway length were carried out. This type of distributions are widely
used for modeling complex systems such as cosmic rays ([11] ), cyclones ([12]), financial markets ([13]), image
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processing ([14]) etc. The q-type distributions which are obtained by optimizing a particular entropy subject to
suitable constraints have the capability to model data sets with extremely large values. These distributions can be
considered as the generalization of the existing distributions in literature. The shape parameter q which is also
known as the entropic index provides the flexibility to model various data types efficiently.
The concept of information is too broad to be captured completely by a single definition. However, for any
probability distribution, we define a quantity called the entropy, which has many properties that agree with the
intuitive notion of what a measure of information should be. Entropy then becomes the self-information of a
random variable. It is a measure of uncertainty or a measure of information and it was originated in the work of
[15]. Since 1948 a number of research papers have been published which simplify and extend Shannon’s original
work. Entropy is a scientific concept as well as a measurable physical property that is most commonly associated
with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from
classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical
physics, and to the principles of information theory. It has found far-ranging applications in chemistry, physics,
biological systems, cosmology, economics, transmission of information in telecommunication, weather science,
climate change etc. Entropy optimization methods has been successfully applied to practical problems in many
scientific and engineering disciplines. It introduces a unique way of handling information in the form of constraints.
It has found applications in Image Processing ([16]), Indirect Imaging ([17]), Calculation of drug absorption rates
([18]), Density Estimation ([19] etc.
Maximum entropy principle which was first introduced by [20], has been applied with varying degree of success in
fields such as Statistical Distributions, Statistical Inference, Non Parametric Density Estimation, Speech and Signal
Processing, Reliability Theory, Classification and Feature Extraction in Pattern Recognition etc. The principle
states that one should look for a distribution, consistent with available information, which maximizes the entropy.
The maximum-entropy distribution is the broadest one compatible with the given information. When an inference
is made on the basis of incomplete information, it should be drawn from the probability distribution that maximizes
the entropy subject to the constraints on the distribution. The resulting maximum entropy probability distribution
corresponds to a distribution which is consistent with the given partial information, but has maximum uncertainty
or entropy associated with it.
In order to analyze bivariate drought in homogeneous areas of Iran, a maximum entropy copula approach is
created in [21]. [22] discussed about a maximum entropy copula-based frequency analysis (MECFA) which
was developed through integrating maximum entropy, copulas and frequency analysis for assessing bivariate
drought risk. In [23] the parameters of a bivariate Dirichlet distribution are estimated by entropy formalism.
Even-though several univariate q-type distributions have been introduced in the literature, much studies have not
been done in the case of bivariate q-type distributions. [24] introduced generalized version of bivariate Block
and Basu’s exponential distribution using entropy optimization and its application to rainfall data, [25] explained
the application of q-bivariate Marshal-Olkin exponential distribution in constant stress accelerated life test. [26]
discussed the application of bivariate q-Gaussian distribution in modeling trading volume and stock return data.
In this paper we construct a generalization of bivariate Gumbel’s exponential distribution by using the concept of
maximum entropy. To estimate the parameters of the proposed model we used the method of maximum likelihood
estimation. A simulation study and and a real data analysis is carried out for illustrating the applications of q-
bivariate Gumbel’s exponential distribution.
The remaining structure of the paper is given as follows. In Section 2 we describe the construction of q-bivariate
Gumbel’s exponential model using entropy optimization and some basic properties are discussed. In section 3 we
deal with the bivariate quantile function which is helpful in generating random samples from q-bivariate Gumbel’s
exponential model and we discuss the method of maximum likelihood estimation of the unknown parameters of
the model in section 4. A simulation study and real data analysis are presented in Sections 5 and 6 respectively.
Finally we conclude the paper in Section 7.
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2. Generalized Bivariate Gumbel’s Exponential Distribution

In this section we introduce a generalized version of bivariate Gumbel’s exponential distribution which we call
as q-bivariate Gumbel’s exponential distribution (q-BVGED) which attainable through entropy optimization. [15]
introduced an uncertainty measure associated with discrete distributions called entropy. The Shannon’s entropy of
a discrete distribution with cumulative distribution function F(x) and probabilities p′is obtained from F(x) is defined
by,

H(F ) = −C
∑

pi ln(pi) (1)

where C is a constant. The continuous analogue of Shannon’s entropy for a non negative random variable X with
cumulative distribution function (cdf) F (x) and probability density function (pdf) f(x) called differential entropy
is given by,

H(f) = −C

∫ ∞

0

f(x) ln(f(x))dx (2)

It has found several applications in various fields including Investment Analysis ([27]), Data compression ([28]),
Identification of drug targets ([27]), Optimizing data analysis ([29]) etc.
[30] proposed an alternative measure of uncertainty called Cumulative Residual Entropy (CRE) which was obtained
by replacing pdf by survival function F̄ (x) in (2).

η(X) = −
∫ ∞

0

F̄ (x) ln(F̄ (x))dx (3)

Various properties and applications of CRE have been discussed in [31], [32],[33], [34], [35], [36], [37], [38], and
[39].
[40] introduced a generalized version of information measure defined by,

Mq(f) =

∫∞
0

[f(x)]2−qdx− 1

q − 1
; q ̸= 1, q < 2. (4)

Based on this measure of information we introduce a new measure of uncertainty namely Mathai’s Cumulative
Residual Entropy given by,

Mq(f) =

∫∞
0

[F̄ (X)]2−qdx− 1

q − 1
; q ̸= 1, q < 2. (5)

when q → 1, equation(5) reduces to equation (3) and satisfies all properties mentioned in [30].
Consider all possible functions F̄ (X) such that F̄ (X) ≥ 0 for all X, where X is a vector. We maximize Mathai’s
Cumulative Residual Entropy (5) with respect to the constraints

∫∞
0

F̄ (X)dX = a1 (given),
∫∞
0

g(X)F̄ (X)dX =
a2 (given) and g(X) specified. By using method of calculus of variation. We have,

U = F̄ (X)2−q − λ1F̄ (X) + λ2g(X)F̄ (X) (6)

Now the Euler equation becomes,

∂U

∂F̄
= 0 =⇒ (2− q)(F̄ (X))1−q − λ1 + λ2g(X) = 0

=⇒ (F̄ (X))1−q =
λ1 − λ2g(X)

2− q

=⇒ F̄ (X) =

{
λ1

2− q

[
1− λ2

λ1
g(X)

]} 1
1−q

taking c1 =
λ1

2− q
and c2 =

λ2

λ1
we have,

F̄ (x) =

{
c1[1− c2g(X)]

} 1
1−q

, (7)
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where c1 > 0, 1− c2g(X) > 0 since F̄ (X) ≥ 0 for all X.
Consider the case when c1 = 1, c2 = 1− q, with q > 1 we get

F̄ (X) =

[
1− (1− q)g(X)

] 1

1− q
, (8)

Let X = (x1, x2) and g(x1, x2) = αx1 + µx2 + θx1x2, where α, µ and θ are constants such that 0 ≤ x1, x2 < ∞,
α > 0, µ > 0 and 0 ≤ θ ≤ qαµ, 1 < q < 2 equation (8) becomes

F̄ (x1, x2) =

[
1 + (q − 1)(αx1 + µx2 + θx1x2)

] −1
q−1

; 0 ≤ x1, x2 < ∞. (9)

where α, µ > 0, 0 ≤ θ ≤ qαµ, 1 < q < 2, as q → 1 (9) becomes,

F̄ (x1, x2) = exp{−αx1 − µx2 − θx1x2}; 0 ≤ x1, x2 < ∞, α, µ > 0, 0 ≤ θ ≤ αµ. (10)

which is the survival function of the well known bivariate exponential distribution proposed by, [2]. The obtained
model (9) can be considered as a generalized version of the model (10)
The cumulative distribution function (CDF) of (10) is given by,

F (x1, x2) = 1− exp{−αx1} − exp{−µx2}+ exp{−αx1 − µx2 − θx1x2}; 0 ≤ x1, x2 < ∞ (11)

where α, µ > 0 and 0 ≤ θ ≤ αµ.
The corresponding joint probability density function is given by,

f(x1, x2) =

{
[(µ+ θx1)(α+ θx2)− θ]exp{−αx1 − µx2 − θx1x2}; 0 ≤ x1, x2 < ∞

0 ; otherwise.
(12)

where α, µ > 0 and 0 ≤ θ ≤ αµ, which is the association parameter.
Further in this section we define the q-bivariate Gumbel’s exponential distribution (q-BVGED) and discuss some
of its important properties.

Definition 2.1. Let X=(X1, X2) be a vector random variable following q-BVGED with parameters q, α, µ and θ
then the survival function of X is given by,

F̄ (x1, x2) =

[
1 + (q − 1)(αx1 + µx2 + θx1x2)

] −1
q−1

; 0 ≤ x1, x2 < ∞. (13)

where α, µ > 0, 0 ≤ θ ≤ qαµ, 1 < q < 2.

The plots of the survival function for the q-BVGED for various values of the parameters are depicted in Figure 2.1.
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Figure 2.1 Survival plots for q-BVGED

Definition 2.2. Let X=(X1, X2) be a vector random variable following q-BVGED with parameters q, α, µ and θ
then the cumulative distribution function (CDF) of X is given by,

F (x1, x2) = 1−
[
1 + (q − 1)αx1

] −1
q−1

−
[
1 + (q − 1)µx2

] −1
q−1

+

[
1 + (q − 1)(αx1 + µx2 + θx1x2)

] −1

q − 1
, 0 ≤ x1, x2 < ∞ (14)

where α, µ > 0, 0 ≤ θ ≤ qαµ, 1 < q < 2.
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Definition 2.3. Let X=(X1, X2) be a vector random variable following q-BVGED with parameters q, α, µ, θ then
the joint probability density function (PDF) of X is given by,

f(x1, x2) =



[
q(α+ θx2)(µ+ θx1)− θ(1 + (q − 1)(αx1 + µx2 + θx1x2))

]
[
1 + (q − 1)(αx1 + µx2 + θx1x2)

] −1
q−1−2

; 0 ≤ x1, x2 < ∞

0 ; otherwise

(15)

where α, µ > 0, 0 ≤ θ ≤ qαµ, 1 < q < 2.
The plots of the probability density function of q-BVGED for various values of the parameters are depicted in
Figure 2.2.

Figure 2.2 Probability density plots for q-BVGED

The following theorom deals with the marginal distributions of a q-BVGED.

Theorem 2.1
Let X = (X1, X2) be a bivariate random variable following a q-BVGED with parameter q, α, µ, and θ then
the marginals distributions of X1 and X2 follows q-exponential distributions with parameter (q,α) and (q,µ)
respectively.
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proof: The marginal distribution of X1 is given by,

f(x1) =

∫ ∞

0

f(x1, x2) dx2 (16)

substituting equation (15) in (16) and solving we get,

f(x1) =

α

[
1 + (q − 1)αx1

] −1
q−1−1

; 0 ≤ x1 < ∞ , α > 0 , 1 < q < 2.

0 ; otherwise.

(17)

Similarly we get the marginal distribution of X2 and is given by

f(x2) =

µ

[
1 + (q − 1)µx2

] −1
q−1−1

; 0 ≤ x2 < ∞, µ > 0, 1 < q < 2.

0 ; otherwise.

(18)

Remark 2.1. The mean value and variance of X1 are given by,

E(X1) =
1

α(2− q)
; q < 2. (19)

Var(X1) =
1

α2(2− q)2(3− 2q)
; q < 3/2. (20)

Remark 2.2. The mean value and variance of X2 are given by,

E(X2) =
1

µ(2− q)
; q < 2. (21)

Var(X2) =
1

µ2(2− q)2(3− 2q)
; q < 3/2. (22)

Among the probability models used in reliability, the exponential and Weibull distributions are the most used ones.
Recently, the q-exponential distribution, proposed by [41], has emerged as an alternative. However, this probability
model presents some features that should be investigated so as to enable its wide use in the reliability context.
According to [42], the q-exponential distribution is obtained by maximizing the Tsallis entropy subject to the
constraint that the first moment is fixed (for more details about these constraints see [42], p.89). As other q-
distributions, it has been applied to a variety of problems in many research areas including the field of complex
systems. [10] bring in their work a summary of its basic properties, like the success of q-distributions in describing
some systems to be in part due to its ability of exhibit heavy-tails and model power law behavior. For instance, [43]
showed that the population of a country is well described by a q-exponential distribution with Probability Density
Function (PDF) presenting a power law behavior [10]. q is the shape parameter in q-exponential distribution.
As compared to the exponential distribution that has just one parameter, the q-exponential distribution has more
flexibility regarding the decay of the PDF. Indeed, the exponential probability distribution is a special case of the q-
exponential when q → 1. Indeed, 1 < q < 2 characterizes a power law behavior for the q-exponential PDF, whereas
a shape parameter between 0 and 1 indicates a stretched exponential behavior for the Weibull PDF([10],[44]
As pointed out by [44] a stretched exponential PDF has a tail that is heavier than the exponential PDF but
lighter than a pure power law PDF. The stretched exponential provides a compromise between exponential and
power law behaviors. Thus, we expect a superior performance of q-exponential over Weibull distribution in the
characterization of data sets with extremely large values. The q-BVGED having q-exponential marginals exhibits
heavy tail behaviours as compared to the BVGED which improves its applicability in different fields.
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Result 2.1. Let X = (X1, X2) be a bivariate random variable following a q-BVGED with parameters q, α, µ,and
θ then E(X1, X2) is given by,

E(X1X2) =
α

µ

[
1

(q − 1)α

]2
B

(
2,

2− q

q − 1

)
2F1

(
1, 2;

q

q − 1
; 1− θ

(q − 1)αµ

)
+

θ

µ2(2− q)

[
1

(q − 1)α

]2
B

(
2,

2− q

q − 1

)
2F1

(
2, 2;

q

q − 1
; 1− θ

(q − 1)αµ

)
(23)

where |1− θ
(q−1)αµ | < 1, 1 < q < 2, α, µ > 0, 0 ≤ θ ≤ qαµ.

The correlation coefficient can be calculated by using, (19), (20), (21), (22) and (23).
In the following theorems we define the conditional properties of a q-BVGED with parameters q, α, µ, and θ.

Theorem 2.2
Let X = (X1, X2) be a bivariate random variable following a q-BVGED with parameters q, α, µ, and θ then the
conditional PDF of X2 given X1 is given by,

f(x2|x1) = [q(α+ θx2)(µ+ θx1)−θ[1 + (q − 1)(αx1 + µx2 + θx1x2)]]×

[1 + (q − 1)(αx1 + µx2 + θx1x2)]
−1
q−1−2

α[1 + (q − 1)αx1]
−1
q−1−1

(24)

and 0 otherwise. Where 1 < q < 2, α, µ > 0, 0 ≤ θ ≤ qαµ.
proof: We have,

f(x2|x1) =
f(x1, x2)

f(x1)
(25)

substituting equation (15) and (17) in (25) we get (24).
Remark 2.3. The conditional mean value and variance of X2 given X1 are given by,

E(X2|X1) =
1 + (q − 1)αx1

µ+ θx1

[
1 +

θ(1 + (q − 1)αx1)

α(2− q)(µ+ θx1)

]
; q < 2

V ar(X2|X1) =
(1 + (q − 1)αx1)

2

(2− q)(µ+ θx1)2

[
q +

2θ(5− 2q)(1 + (q − 1)αx1)

µ(3− 2q)(µ+ θx1)
− θ2(1 + (q − 1)αx1)

2

µ2(µ+ θx1)2

]
; q < 3/2

Similarly we can find the distribution of X1 given X2 also.

Result 2.2. Let X = (X1, X2) be a bivariate random variable following a q-BVGED with parameters
q, α, µ and θ then the conditional survival function is given by,

P (X2 > x2|X1 > x1) =

[
1 +

(q − 1)x2(µ+ θx1)

1 + (q − 1)αx1

] −1
q−1

; 0 ≤ x1, x2 < ∞ (26)

where 1 < q < 2, α, µ > 0, 0 ≤ θ ≤ qαµ.

proof: We have,

P (X2 > x2|X1 > x1) =
P (X1 > x1, X2 > x2)

P (X1 > x1)
(27)

=

[
1 + (q − 1)(αx1 + µx2 + θx1x2)

] −1
q−1

[1 + (q − 1)(αx1)]
−1
q−1

(28)

=

[
1 +

(q − 1)x2(µ+ θx1)

1 + (q − 1)αx1

] −1
q−1

; 0 ≤ x1, x2 < ∞ (29)

where 1 < q < 2, α, µ > 0, 0 ≤ θ ≤ qαµ.
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Theorem 2.3
If X = (X1, X2) follows a q-bivariate Gumbel’s exponential distribution with parameters q, α, µ and θ then the
conditional distribution of X2 given X1 > x1 and X1 given X2 > x2 follows a q-exponential distribution.

proof: We have,

P (X2|X1 > x1) =
P (X1 > x1, X2)

P (X1 > x1)

=

∫∞
x1

f(x1, x2) dx1∫∞
x1

f(x1) dx1

. (30)

substituting (15) and (17) in (30) and simplifying we get,

P (X2|X1 > x1) =
(µ+ θx1)[1 + (q − 1)(αx1 + µx2 + θx1x2]

−1
q−1−1

[1 + (q − 1)αx1]
−1
q−1

; 0 ≤ x1, x2 < ∞. (31)

where 1 < q < 2, α, µ > 0, 0 ≤ θ ≤ qαµ. equation (31) can be written as

P (X2|X1 > x1) =
(µ+ θx1)

1 + (q − 1)αx1

[
1 +

(q − 1)x2(µ+ θx1)

1 + (q − 1)αx1

] −1
q−1−1

; 0 ≤ x1, x2 < ∞. (32)

where 1 < q < 2, α, µ > 0, 0 ≤ θ ≤ qαµ.
From equation (32) we can see that the conditional distribution of X2 given X1 > x1 follows a q-exponential
distribution. Similarly we can show that X1 given X2 > x2 also follows a q-exponential distribution.
In the following theorom we discuss a characterization theorom for q-BVGED.

Theorem 2.4
Let X = (X1, X2) be a vector random variable which admits probability density function with respect to Lebesgue
measure in R+

2 then X has a q-BVGED with parameters q, λ1, λ2 and θ with probability density function as given
in (15) if and only if for i=1,2, the conditional densities of Xi given X3−i > t3−i follows q-exponential distribution
with parameters (q, ξi(t3−i)) where ξ′is are non decreasing functions for all t3−i ≥ 0 satisfying ξi(0) = λi.

proof: Assume that X follows a q-BVGED with parameters q, λ1, λ2 and θ with joint density function given in
(15). From (32) we have the conditional distribution of Xi|X3−i > t3−i given by,

f(xi|X3−i > t3−i) =
(λi + θt3−i)

1 + (q − 1)λ3−it3−i

[
1 +

(q − 1)xi(λi + θt3−i)

1 + (q − 1)λ3−it3−i

] −1
q−1−1

. (33)

where ξi(t3−i) =
(λi+θt3−i)

1+(q−1)λ3−it3−i
is a non decreasing function for all t3−i ≥ 0 and satisfies ξi(0) = λi, 1 < q < 2,

λ1, λ2 > 0, 0 ≤ θ ≤ qλ1λ2. Thus the condition of the theorem is satisfied.
In order to prove the converse part we assume that,

f(xi|X3−i > t3−i) = ξi(t3−i) [1 + (q − 1)ξi(t3−i)xi]
−1
q−1−1

. (34)

We have,
P (Xi > ti|X3−i > t3−i) = [1 + (q − 1)ξi(t3−i)ti]

−1
q−1 , (35)

from (35) as t3−i tends to zero,
P (Xi > ti) = [1 + (q − 1)λiti]

−1
q−1 (36)

by the conditions of the theorem lim
t3−i→0

ξi(t3−i) exists and is equal to λi.

From (35) and (36) we get two equations for the expression P (Xi > ti, X3−i > t3−i) given by,

P (X1 > t1, X2 > t2) = [1 + (q − 1)ξ1(t2)t1]
−1
q−1 [1 + (q − 1)λ2t2]

−1
q−1 , (37)

Stat., Optim. Inf. Comput. Vol. 15, March 2026



2188 A BIVARIATE EXPONENTIAL DISTRIBUTION WITH Q-EXPONENTIAL MARGINALS AND ITS APPLICATIONS

and,
P (X1 > t1, X2 > t2) = [1 + (q − 1)ξ2(t1)t2]

−1
q−1 [1 + (q − 1)λ1t1]

−1
q−1 . (38)

equating the equations (37) and (38) yields,

[1 + (q − 1)ξ1(t2)t1] [1 + (q − 1)λ2t2] = [1 + (q − 1)ξ2(t1)t2] [1 + (q − 1)λ1t1]

λ2t2 + [1 + (q − 1)λ2t2] ξ1(t2)t1 = λ1t1 + [1 + (q − 1)λ1t1] ξ2(t1)t2

([1 + (q − 1)λ2t2] ξ1(t2)− λ1) t1 = ([1 + (q − 1)λ1t1] ξ2(t1)− λ2) t2 (39)

to solve (39), we write it in the form,

([1 + (q − 1)λ2t2] ξ1(t2)− λ1) t
−1
2 = ([1 + (q − 1)λ1t1] ξ2(t1)− λ2) t

−1
1 . (40)

The equation (40) holds for all t1, t2 ≥ 0 implies,

([1 + (q − 1)λ3−it3−i] ξi(t3−i)− λi) t
−1
3−i = θ; i = 1, 2. (41)

where θ is a constant. Thus we get,

ξi(t3−i) =
λi + θt3−i

[1 + (q − 1)λ3−it3−i]
. (42)

we have ξi(t3−i) is non decreasing and ξi(0) = λi > 0 hence θ ≥ 0. Using (42) in (37) we get the required form of
q-BVGED.
The quantile function corresponding to a particular distribution efficiently describes the statistical properties of a
random variable. They can be considered as an alternative to distribution function and can be applied in different
forms of statistical analysis. One may refer to [45], [46] for details regarding the advantages, flexibility to modelling
and generating methods of quantile functions. Works have been done in literature which extends the concept of
quantile function to higher dimensions such as [47], [48], [49], [50] etc. In the following section we define the
bivariate quantile function of a q-BVGED.

3. Bivariate Quantile Function of q-BVGED

Let X = (X1, X2) be non negative vector random variable having absolutely continuous probability density
function, distribution function and survival function. [50] provided the definition of bivariate quantile function
in terms of quantile functions of P (X1 > x1) and P (X2 > x2|X1 > x1) such that the joint survival function is
given by,

F̄ (x1, x2) = P (X1 > x1)P (X2 > x2|X1 > x1). (43)

Definition 3.1. The bivariate quantile function of (X1, X2) is given by the pair,(Q1(u1), Q21(u2|u1)), where Q1 is
given by,

Q1(u1) = inf{x1|F1(x1) ≥ u1}, 0 ≤ u1 ≤ 1, (44)

and
Q21(u2|u1)) = inf{x2|P (X2 ≤ x2|X1 > Q1(u1) > u2}, 0 ≤ u2 ≤ 1. (45)

The bivariate quantile function of a vector random variable X = (X1, X2) following a q-BVGED with parameters
q, α, µ and θ is given by the pair (Q1(u1), Q21(u2|u1)) where,

Q1(u1) =
(1− u1)

−q+1 − 1

α(q − 1)
, 1 < q < 2, 0 ≤ u1 ≤ 1, α > 0, (46)

and

Q21(u2|u1)) =
α[(1− u2)

−q+1 − 1](1− u1)
−q+1

α(q − 1)µ+ θ[(1− u1)−q+1 − 1]
, (47)
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where 1 < q < 2, 0 ≤ ui ≤ 1, i = 1, 2, α > 0, µ > 0, 0 ≤ θ ≤ qαµ.
An important advantage of quantile functions is that they can be used to generate random variables from a particular
distribution. One may refer to [51], [52], [53] etc. for further details. Extending the applicability of quantile
functions to higher dimensions enables the simulation of multivariate random variables much more easier. In our
present study we have used bivariate quantile function for generating random samples from q-BVGED.
The following section explains the method used for estimating the parameters of a q-BVGED.We have employed
the method of maximum likelihood estimation for estimating the parameters of a q-BVGED.

4. Maximum Likelihood Estimation

Let (x1i, x2i), i = 1, 2, ...n denote a random sample of size n taken from the q-BVGED with parameters q, α, µ
and θ. Then the likelihood function is given by,

L(X1, X2|q, α, µ, θ) =
n∏

i=1

{
[1 + (q − 1)(αx1i + µx2i + θx1ix2i)]

−1
q−1−2

q(α+ θx2i)(µ+ θx1i)

− θ[1 + (q − 1)(αx1i + µx2i + θx1ix2i)]
−1
q−1−1

}
(48)

The log likelihood function is given by,

lnL =

n∑
i=1

ln

{
[1 + (q − 1)(αx1i + µx2i + θx1ix2i)]

−1
q−1−2

q(α+ θx2i)(µ+ θx1i)

−θ[1 + (q − 1)(αx1i + µx2i + θx1ix2i)]
−1
q−1−1

}
(49)

The maximum likelihood estimates are obtained by differentiating (49) with respect to each of the parameters and
solving the resulting system of equations. Thus the MLE’s (q̂, α̂, µ̂, θ̂) of the parameters are obtained by solving,
∂lnL
∂q = 0, ∂lnL

∂α = 0, ∂lnL
∂µ = 0, ∂lnL

∂θ = 0 respectively. The first derivatives of the log-likelihood function w.r.t.
parameters are nonlinear, and analytical solutions are very difficult to be obtained. A constrained optimization
method can be applied to tackle this problem. This optimization problem can be carried out using constrOptim() or
optim() function in R software.

5. Simulation Study

Random samples were generated from q-bivariate Gumbel’s exponential distribution using bivariate quantile
functions. We considered random samples of sizes n=200, 400, 800 and the procedure was replicated 1000 times.
Maximum likelihood estimates were computed using the optim() function in R. The results are given in table 1 and
2. We can see that the bias and MSE decreases as the sample size increases.

6. Real Data Analysis

6.1. Medical Data

The data set that we consider addresses the recurrence time of infections of 38 kidney patients using a portable
dialysis machine which was taken from [54]. For each patient, two times to recurrence of an infection at the site
of insertion of the catheter placements (in days), (T1, T2) are recorded. Our objective here is to check whether the
proposed bivariate exponential model is appropriate for the data. The data is given in table 3.
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Table 1. ML estimates, bias and MSE’s for the parameter values (q,α, µ, θ)=(1.5,1.3,1.5,0.9)

n q̂ Abs. Bias MSE α̂ Abs. Bias MSE
200 1.48623 0.01377 0.00019 1.29310 0.00690 0.00005
400 1.49031 0.00969 0.00009 1.29356 0.00644 0.00004
800 1.49313 0.00687 0.00005 1.29632 0.00368 0.00001

n µ̂ Abs. Bias MSE θ̂ Abs. Bias MSE
200 1.46808 0.03192 0.00102 0.96533 0.06533 0.00427
400 1.4733 0.02669 0.00071 0.95141 0.051411 0.00264
800 1.47685 0.02315 0.00054 0.94901 0.04901 0.00240

Table 2. ML estimates, bias and MSE’s for the parameter values (q,α, µ, θ)=(1.3,1.5,1.4,0.6)

n q̂ Abs. Bias MSE α̂ Abs. Bias MSE
200 1.28801 0.01199 0.00014 1.49325 0.00675 0.00005
400 1.29293 0.00707 0.00005 1.49475 0.00525 0.00003
800 1.29596 0.00404 0.00002 1.49803 0.001965 0.00000

n µ̂ Abs. Bias MSE θ̂ Abs. Bias MSE
200 1.38192 0.01808 0.00033 0.63685 0.03685 0.00136
400 1.38848 0.01152 0.00013 0.62428 0.02428 0.00059
800 1.39224 0.00776 0.00006 0.62195 0.02195 0.00048

Table 3. Recurrence times of infections of 38 kidney patients

Patient T1 T2 Patient T1 T2

1 8 16 20 15 108
2 23 13 21 152 562
3 22 28 22 402 24
4 447 318 23 13 66
5 30 12 24 39 46
6 24 245 25 12 40
7 7 9 26 113 201
8 511 30 27 132 156
9 53 196 28 34 30
10 15 154 29 2 25
11 17 333 30 130 26
12 141 8 31 27 58
13 96 38 32 5 43
14 149 70 33 152 30
15 536 25 34 190 5
16 17 4 35 119 8
17 185 177 36 54 16
18 292 114 37 6 78
19 22 159 38 63 8

We have plotted the boxplot and scaled TTT plot for X1 and X2 and is given in figure 6.1.1 and 6.1.2 respectively.
According to [55] a scaled TTT transform plot provides an idea regarding the empirical hazard function. It is
stated that the scaled TTT transform is concave (convex) if the hazard rate is increasing (decreasing). From the
figure it is clear that both X1 and X2 has a decreasing hazard function. It is evident that q-BVGED, which has
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decreasing hazard function for the marginals, provides better fit than the BVGED model which has only constant
hazard function for the marginals.

figure 6.1.1 Box plot and scaled TTT transform for X1

figure 6.1.2 Box plot and scaled TTT transform for X2

We fitted the data for q-BVGED. The maximum likelihood estimates, log likelihood value and the AIC, BIC,
and HQIC values are shown in table 4. We have compared the results with the bivariate Gumbel’s exponential
distribution (BVGED), bivariate distribution with weighted exponential marginals proposed by [56](BWE) and
bivariate generalized exponential distribution introduced by [57](BGE) we can see that the q-BVGED is a better fit
to the data with low AIC, BIC and HQIC values.
We have used the bivariate version of Kolmogrov-Smirnov test given in [58] for testing the goodness of fit. The
values of the K.S. statistic are D1 = 0.1503, D2 = 0.1287, D3 = 0.0494, D4 = 0.0261 and D5 = 0.02402 and thus
D∗=0.1503 (max(D1, D2, D3, D4, D5)). The above value is less than the value 0.2103 at 25th percentile thus we
can conclude that q-BVGED is appropriate for the given data.
We have also performed the Kolmogrov-Smirnov(K-S) test for the marginal distributions. The K-S distance
between the empirical distribution function and fitted distribution function of X1 and X2 with their corresponding
p values (in bracket) are 0.1127 (0.7191) and 0.11079 (0.7394) respectively. Thus we can conclude that q-BVGED
fits the marginal distribution of the data well.
A likelihood ratio test can be used to compare the fit of a distribution having additional parameters with some of
its sub-models with respect to a particular data set. Here we use likelihood ratio test to evaluate the performance of
q-BVGED with respect to BVGED.
We have, under the null hypothesis,

λ = −2 ln

(
likelihood under the null hypothesis

likelihood in the whole parameter space

)
∼ χ2

(d) (50)
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Table 4. Parameter estimates, Log likelihood, AIC,BIC and HQIC values for the recurrence time data

Distribution Estimates Log Likelihood AIC BIC HQIC

q-BVGED

q̂=1.41517

-422.95 853.9 860.4503 856.2306α̂=0.0146
µ̂=0.01698
θ̂=0.00007

BVGED

α̂=0.00895

-426.8473 859.6946 864.6074 861.4425µ̂=0.01092
θ̂=2.43x10−11

BWE

λ̂1=0.0.00897

-426.6662 859.3324 864.2452 861.0803λ̂2=0.01096
λ̂12=3.5868

BGE

α̂=1.1409

-425.3271 856.6542 861.567 858.4021λ̂1=0.00938
λ̂2=0.01155

where, χ2
(d) follows a chi-square distribution having d degrees of freedom, d denotes the number of additional

parameters in the extended model. Applying this result and using standard statistical tables, critical values for the
test statistic can be obtained.
Here our null hypothesis is,
H0 : q → 1 against H1 : q ̸= 1, and our test statistic gives the value,

λ = −2 ln(−426.8473 + 422.95) = 7.7946 (51)

which follows a chi-square distribution with 1 degrees of freedom. The likelihood ratio test yields a p-value given
by 0.00524. Thus we reject the null hypothesis and we can conclude that the q-BVGED model is better compared
to the BVGED model for the data.

6.2. Finance Data

Here we consider a financial data set to demonstrate the applicability of q-BVGED in financial domain. The data
set consists of the daily adjusted closing stock prices of Apple (AAPL) and Microsoft (MSFT) for the time period
1 February 2024 to 1 February 2025. The observations are scaled (divided by 1000) to ensure numerical stability.
The data was extracted from https://finance.yahoo.com/.
We fitted the data for q-BVGED. The maximum likelihood estimates, log likelihood value and the AIC, BIC,
and HQIC values are shown in table 5. We have compared the results with the bivariate Gumbel’s exponential
distribution (BVGED), bivariate distribution with weighted exponential marginals proposed by [56](BWE) and
bivariate generalized exponential distribution introduced by [57](BGE) we can see that the q-BVGED is a better fit
to the data with low AIC, BIC and HQIC values.
The likelihood ratio test has also been carried out and the test yields a p-value of 0. Thus we reject the null
hypothesis and we can conclude that the q-BVGED model is better compared to the BVGED model for the data.
We have used the bivariate version of Kolmogrov-Smirnov test given in [58] for testing the goodness of fit. The
values of the K.S. statistic are D1 = 0.0705, D2 = 0.004, D3 = 0.0026, D4 = 0.0462 and D5 = 0.0027 and thus
D∗= 0.0705 (max(D1, D2, D3, D4, D5)). The above value is less than the value 0.0792 at 25th percentile thus we
can conclude that q-BVGED is appropriate for the given data.
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Table 5. Parameter estimates, Log likelihood, AIC,BIC and HQIC values for the stock price data

Distribution Estimates Log Likelihood AIC BIC HQIC

q-BVGED

q̂=1.3232

-4623.591 9255.182 9269.284 9260.857α̂=0.04047
µ̂=0.02340396

θ̂=0.0447

BVGED

α̂=0.0101

-5779.489 11564.98 11575.55 11569.23µ̂=0.0101
θ̂= 0.5

BWE

λ̂1=0.0026

-13455.46 26916.92 26927.5 26921.18λ̂2=0.0047
λ̂12=0.0146

BGE

α̂=3.9703

-13087.88 26181.76 26192.34 26186.02λ̂1=0.0043
λ̂2=0.01155

7. Conclusion

In this paper we have proposed a generalization of bivariate Gumbel’s exponential distribution whose marginals
are q-exponential distributions. We derived various properties of the proposed distribution. The parameters were
estimated using the method of MLE and was illustrated using two real data sets and we observed that for both the
data sets q-BVGED model provides a better fit than the bivariate Gumbel’s exponential model.
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