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Abstract This study introduces an innovative method for ECG signal processing that combines advanced filtering
techniques, multi-objective Bayesian optimization, and a sophisticated deep learning architecture for classification. The
methodology starts with Enhanced Empirical Mode Decomposition (EEMD) to break down the ECG signal into Intrinsic
Mode Functions (IMFs). These IMFs undergo filtration through a series of Chebyshev Type II, Butterworth, Daubechies
Wavelet, and Savitzky-Golay filters. To achieve optimal performance, a Bayesian multi-objective optimization strategy,
augmented by reinforcement learning for dynamic weight adjustment and Gaussian process minimization, is utilized to fine-
tune filter parameters. This process ensures maximum noise reduction while maintaining signal integrity. The optimized
signals are then processed by an advanced deep learning architecture that includes parallel and residual connections,
bidirectional GRU layers, and dense classification layers, enabling precise classification of cardiac conditions. The model’s
performance was rigorously tested across 12 different ECG leads, showing remarkable improvements in classification
accuracy (ACC), sensitivity (SNS), and F1 score. Post-optimization results achieved impressive values of 99.24% for ACC,
99.04% for SNS, and 99.05% for F1 score, demonstrating the significant enhancement in ECG signal analysis and diagnostic
reliability provided by the proposed approach.
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1. Introduction

The accurate classification of cardiac diseases is essential for effective diagnosis, as these conditions have a
profound impact on global health. Cardiovascular diseases (CVDs) represent a significant public health concern
and are among the leading causes of death worldwide [55]. Early detection and continuous monitoring are crucial
for the effective management and successful treatment of these diseases. The electrocardiogram (ECG) is a pivotal
non-invasive diagnostic tool that records the electrical activity of the heart, providing detailed insights into various
cardiac pathologies and aiding in their identification and treatment [48, 49, 47, 56]. However, the reliability and
effectiveness of ECGs can be compromised by noise. Common sources of noise in ECG signals include power
line interference, muscle artifacts from non-cardiac muscles, and baseline wander caused by patient movements or
breathing [57]. These noise elements can obscure the true ECG signal, leading to potential misinterpretation and
misdiagnosis [50].
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Significant research has focused on denoising ECG signals, with advancements in signal processing techniques
aimed at enhancing ECG signal quality while preserving diagnostic information. These methods range from
traditional filtering techniques to advanced approaches utilizing machine learning and deep learning [59]. The
goal is to develop algorithms that can effectively remove noise without distorting the essential cardiac information
[52, 53, 58]. As the field of ECG signal processing progresses, there is a growing emphasis on developing robust
and efficient denoising methods. These methods are critical to ensuring the reliability of ECG-based diagnostics and
monitoring, ultimately contributing to improved cardiovascular health [60, 64]. Continued research and innovation
in this area promise to enhance the accuracy and reliability of ECG analysis, facilitating more effective detection
and management of cardiovascular diseases [54, ?].

In this paper, Section 2 provides a General Proposed Model Overview, outlining the overall framework of our
approach and detailing the datasets employed in our study. In Section 3, we introduce our Proposed Filtration
Model, which includes multiple advanced filtering techniques: enhanced empirical mode decomposition (EEMD),
Chebyshev Type II filters, Butterworth, Daubechies Wavelet, and Savitzky-Golay filters, all designed for efficient
noise reduction. Section 4 delves into the Bayesian Multi-Objective Optimization of Filter Parameters. This section
covers our multi-criteria optimization approach, which uses cross-correlation and mean squared error (MSE)
metrics to refine the filtration model for improved signal quality. Subsections include the optimization process,
efficacy quantification, detailed multi-objective optimization methodology, optimization results, performance
metrics evaluation, and signal visualizations. In Section 5, we present our Proposed Combined Deep Learning
Architecture for Classification. This section describes our deep learning framework, which employs residual and
parallel processing to accurately classify cardiac conditions such as arrhythmia and myocardial infarction. Section
6 provides the Results and Discussion, offering a comprehensive analysis of our model’s performance. It includes
a comparative analysis and visual analysis of performance, highlighting significant improvements in classification
accuracy. Finally, Section 7 concludes the paper with a summary of our findings and suggests potential avenues for
future research in the field of biomedical signal processing.

2. Literature Review

Recent progress in the field of ECG signal denoising has led to the development of various innovative
techniques aimed at improving signal quality and diagnostic accuracy. These advancements span a wide range
of methodologies, from deep learning approaches to advanced signal processing techniques.

In the realm of deep learning, several groundbreaking methods have emerged. Zhang et al. (2023) introduced
a combination of Efficient Channel Attention (ECA-Net) and CycleGAN, demonstrating enhanced denoising
performance [26]. Adversarial deep learning techniques have been explored by Mvuh et al. (2024) [30], while Wang
et al. (2022) utilized conditional generative adversarial networks (CGANs) for ECG denoising [31]. More recently,
Wang et al. (2023) proposed a deep convolutional generative adversarial network (GAN) with LSTM, showing
significant potential in complex denoising scenarios [39]. Hou et al. (2023) developed deep neural networks
utilizing sparse representation algorithms for ECG signal denoising [41]. Additionally, Huang et al. (2023)
introduced a portable detection system using bidirectional LSTM and residual blocks for automatic arrhythmia
detection [44].

Advanced signal decomposition and filtering techniques have also seen significant advancements. Hossain et al.
(2020) developed a variable frequency complex demodulation technique for precise noise reduction [27]. Mir et
al. (2023) proposed a hybrid approach merging variational mode decomposition with empirical wavelet transform
[29]. Singh et al. (2017) introduced a modified empirical mode decomposition (EMD) method [32]. Khatar et al.
(2024) made significant strides in cardiac arrhythmia detection by introducing a model combining deep learning
with a three-stage filter incorporating Chebyshev, Butterworth, and Daubechies wavelets, along with multi-scale
signal analysis [24, 2].

Other notable contributions include the development of an adaptive Kalman filter bank by Hesar et al. (2020)
[36], methods based on stationary wavelet transform by Kumar et al. (2020) [37], and innovative filtering techniques
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using optimization algorithms for improved decomposition by Malghan et al. (2022) [46]. Parah et al. (2023)
introduced iterative filtering combined with lifting wavelet transform for effective noise elimination [45].

Novel filtering and optimization approaches have also been explored. Sarafan et al. (2022) presented an ECG
denoising technique using the Ensemble Kalman Filter [40]. Boda et al. (2021) proposed a hybrid method
combining empirical mode decomposition (EMD) and empirical wavelet transform (EWT) to effectively eliminate
power line interference and baseline wander [42]. Mourad (2022) introduced an ECG denoising approach based
on successive local filtering [43], while Trigano et al. (2023) developed an adaptive trend filtering method for ECG
denoising and delineation [28].

Further advancements include a low-distortion adaptive Savitzky-Golay filter based on discrete curvature
estimation by Huang et al. (2019) [33], an integrated EMD adaptive threshold denoising method by Zhang and
Wei (2020) [34], and an adaptive Fourier decomposition-based ECG denoising method by Wang et al. (2016) [35].

Some researchers have focused on addressing specific challenges in ECG signal processing. Souriau et al. (2022)
applied dynamic time warping for fetal ECG denoising [38], addressing the unique challenges in prenatal cardiac
monitoring. Li et al. (2022) proposed a novel approach combining wavelet transform and adaptive filtering for
motion artifact removal in ECG signals [62]. Zhao et al. (2021) introduced a method using variational mode
decomposition and correlation analysis for ECG denoising in wearable devices [63].

The field of ECG signal processing continues to evolve rapidly, with a growing interest in combining traditional
signal processing techniques with advanced machine learning methods. There is also an increasing focus on real-
time processing and implementation of these algorithms in portable devices. These collective efforts in ECG
denoising research emphasize a strong commitment to enhancing the reliability and accuracy of cardiovascular
disease diagnostics. Advances in signal processing and machine learning not only promise improved diagnostic
capabilities but also pave the way for more sophisticated healthcare technologies.

3. General Proposed Model Overview

This paper introduces an innovative approach to ECG signal processing, which includes three main components:
signal filtration, parameter optimization, and classification. Each component is designed to address specific
challenges and enhance the overall performance of ECG signal analysis.

Figure 1. General process flow of the proposed ECG signal filtration, optimization, and classification model.
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The general process flow of the proposed model is depicted in Figure 1. The process begins with the filtration
stage, where the raw ECG signal undergoes several advanced filtering techniques to reduce noise and preserve
essential signal characteristics. Following this, the Bayesian multi-objective optimization stage fine-tunes the
filter parameters to maximize noise reduction while maintaining signal fidelity. Finally, the optimized signals are
processed through an advanced deep learning architecture for accurate classification of cardiac conditions.

The subsequent sections will detail each of these components: - The Proposed Filtration Model employs
Enhanced Empirical Mode Decomposition (EEMD) followed by a series of filters including Chebyshev
Type II, Butterworth, Daubechies Wavelet, and Savitzky-Golay filters. - The Bayesian multi-objective
optimization approach incorporates reinforcement learning (RL) for dynamic weight adjustment, Gaussian process
minimization, and calculates metrics such as cross-correlation and mean squared error (MSE) to evaluate filter
performance. - The Proposed Combined Architecture consists of feature extraction blocks, sequential processing
layers including bidirectional GRU units, and classification layers with dense and softmax functions to accurately
identify cardiac anomalies.

Each stage is crucial for the overall efficacy of the ECG signal analysis, contributing to improved diagnostic
accuracy and reliability.

3.1. Datasets Employed

To conduct our study on cardiac arrhythmia detection and classification, we leveraged the MIT-BIH Arrhythmia
Database. This database is highly esteemed in the field of electrocardiogram (ECG) research due to its extensive
and meticulously annotated collection of ECG recordings. The database encompasses a wide variety of arrhythmia
types, providing a robust and comprehensive resource that is essential for training and evaluating deep learning
models. The diversity and detailed annotations of the MIT-BIH Arrhythmia Database facilitate the accurate
identification and classification of multiple types of cardiac arrhythmias, thereby significantly contributing to the
reliability and effectiveness of our model [69].

4. Proposed Filtration Model

This paper introduces a comprehensive approach to ECG signal processing by integrating multiple advanced
techniques. Each technique is meticulously chosen for its effectiveness in mitigating specific challenges inherent
to ECG signals, which are typically burdened with noise and artifacts due to their non-linear and non-stationary
nature. The harmonious integration of these techniques is designed to achieve effective denoising while preserving
the crucial characteristics of the ECG signal, thereby enhancing its diagnostic value. Our innovative model design
and the seamless integration of these diverse techniques signify a significant advancement in biomedical signal
processing.

The process flow of our model is depicted in Figure 2. It begins with the input ECG signal undergoing
Enhanced Empirical Mode Decomposition (EEMD) to extract the Intrinsic Mode Functions (IMFs). Each IMF
is subsequently processed through a sequence of filters—Chebyshev Type II, Butterworth, Daubechies Wavelet,
and Savitzky-Golay—to reduce noise while maintaining the integrity of the signal’s features. The filtered IMFs are
then combined to yield a denoised ECG signal ready for diagnostic evaluation. This staged approach is crafted to
tackle various types of noise and artifacts while preserving the signal’s integrity.

In the following sections, we describe each component represented in the diagram and elaborate on their
respective roles in the signal processing chain.

4.1. Empirical Mode Decomposition (EEMD)

Central to our model is the Enhanced Empirical Mode Decomposition (EEMD), which addresses the mode-mixing
issue associated with classical EMD. EEMD is particularly effective for non-linear and non-stationary signals such
as ECGs, decomposing them into Intrinsic Mode Functions (IMFs). Each IMF represents a simple oscillatory mode,
simplifying subsequent signal analysis. EEMD serves as the foundational step in the signal purification process,
breaking down the ECG into manageable components.
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Signal =
N∑

n=1

IMFn + Residue (1)

Here, IMFn denotes the n-th intrinsic mode function, and the residue represents the part of the signal that remains
undecomposed into IMFs. The combination of these IMFs, along with the residue, reconstructs the original ECG
signal, now ready for further refinement.

Input: ECG Signal

EEMD Decomposition

IMF1 IMF2 IMF3 IMF4 IMFn

Chebyshev Filter

Butterworth Filter

Daubechies Filter

Savitzky-Golay Filter

Chebyshev Filter

Butterworth Filter
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Savitzky-Golay Filter

Chebyshev Filter
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Combine Filtered IMFs

Output: Filtered Signal

Figure 2. Diagram of the different Filtration Stages in the Proposed Model.

4.2. Chebyshev Type II Filter

After EEMD, the Chebyshev Type II Filter is applied. This filter is chosen for its rapid attenuation beyond the
passband, essential for minimizing distortions within the frequencies of interest. It effectively reduces noise while
maintaining the integrity of the ECG waveform.

H(f) =
1√

1 + ε2T 2
n

(
f
fc

) (2)

In this expression, H(f) represents the filter’s transfer function, where ε is the ripple factor in the stopband, Tn
is the n-th Chebyshev polynomial, and fc is the filter’s cutoff frequency.
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4.3. Butterworth Filter

Concurrently with the Chebyshev filter, the Butterworth Filter, known for its flat frequency response, is employed
to minimize distortion within the passband. This characteristic is crucial for preserving the fidelity of the ECG
signal, ensuring that critical cardiac events are accurately represented.

H(f) =
1√

1 +
(

f
fc

)2n (3)

The transfer function H(f) of the Butterworth filter is shown here, with fc being the cutoff frequency and n the
order of the filter, determining the steepness of the frequency response at the cutoff.

4.4. Daubechies Wavelet Filter

The Daubechies Wavelet Filter is used to capture both the frequency and temporal characteristics of the IMFs,
a vital step in identifying and correcting non-stationary components within the ECG signal. This dual capability
ensures that our model is sensitive to the subtle yet diagnostically significant nuances of the cardiac signal.

Signal =
∑
j

(∑
k

dj,kψj,k(t)

)
+ aJϕ(t) (4)

In this equation, dj,k denotes the wavelet coefficients at scale j and position k, ψj,k(t) are the Daubechies wavelet
functions, and aJ is the scaling coefficient at the coarsest scale J , with ϕ(t) being the associated scaling function.

4.5. Savitzky-Golay Filter

Finally, the Savitzky-Golay Filter is implemented for its ability to smooth the IMFs, reducing noise while
preserving important features such as peaks and troughs, which are crucial for the analysis of ECG signals. This
filter is the final step in our multi-stage signal refinement process.

y′i =

m∑
j=−m

cjyi+j (5)

In the equation above, y′i is the smoothed signal value, yi+j are the input signal values, and cj are the filter
coefficients determined by polynomial regression, with m being the half-width of the filter window.

Each filtration stage intricately refines the ECG signal, progressively reducing noise and enhancing signal quality.
This meticulous process ensures that each Intrinsic Mode Function (IMF) is optimally processed, leveraging the
strengths of Chebyshev Type II, Butterworth, Daubechies Wavelet, and Savitzky-Golay filters. Upon completion
of these stages, the IMFs are reassembled to form a composite signal. This reconstructed signal represents a
significantly denoised version of the original ECG, retaining critical diagnostic features while minimizing artifacts
and noise.

5. Bayesian Multi-Objective Optimization of Filter Parameters

Optimizing filter parameters is pivotal for improving the efficacy of our ECG signal processing model. Our
primary goal is to maximize noise reduction while preserving the essential diagnostic features of ECG signals.
To accomplish this, we employ a Bayesian multi-objective optimization strategy, known for its ability to navigate
complex parameter spaces inherent in signal processing tasks. This method excels in balancing signal fidelity and
noise reduction.
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5.1. Optimization Process

The optimization process is depicted in Figure 3, which illustrates the sequential application of filters to the intrinsic
mode functions (IMFs) extracted from ECG data, culminating in an optimized filtered signal.

Start Optimization

Apply Filters on IMFs with Initial Parameters

Calculate Cross-Correlation Calculate MSE

Evaluate Filter Performance

Select Action (∆α,∆β) with RL Agent

Update Weights (α, β)

Objective Function for Optimization

GP Minimize Optimization

Optimal Parameters Found

Apply Filters with Optimized Parameters

Output Optimized Filtered Signal

Figure 3. Flowchart showing the Bayesian optimization process with RL-based dynamic weight adjustment for filter
parameter tuning in the proposed ECG signal processing model.

5.2. Efficacy Quantification

To quantify the efficacy of the filter application, we compute the cross-correlation and mean squared error
(MSE) between the original and filtered signals. Cross-correlation evaluates the preservation of the signal’s
key characteristics, while MSE measures the deviation from the original signal, indicating the accuracy of the
reconstruction.
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5.3. Multi-Objective Optimization Approach

Our optimization approach aims to balance the maximization of cross-correlation and the minimization of MSE.
We formulate an objective function that incorporates dynamic weights for MSE and cross-correlation, adjusted by
a reinforcement learning (RL) agent. The multi-objective optimization process can be mathematically expressed
as:

minimize f(x, α, β) = − (α · cc(x)− β · MSE(x)) , x ∈ X, (6)

where α and β are the dynamic weights learned by the RL agent, x represents the vector of filter parameters
to be optimized, and X defines the feasible domain for these parameters. The terms cc(x) and MSE(x) denote the
cross-correlation and mean squared error between the original and filtered signals, respectively.

5.4. Reinforcement Learning for Dynamic Weight Adjustment

The RL agent is trained to adjust the weights α and β to optimize the filtering process. The state of the RL
environment includes the current values of MSE and cross-correlation, while the action space consists of possible
adjustments to α and β.

State:
st = [MSEt, cct, αt, βt] (7)

Action:
at = [∆αt,∆βt] (8)

Reward: The reward function encourages the RL agent to maximize cross-correlation and minimize MSE,
defined as:

rt = αt · cct − βt · MSEt (9)

5.5. Optimization Process

The optimization process involves the following steps:

1. Initialize the RL agent with initial weights α0 and β0.
2. At each iteration, the agent observes the current state st and selects an action at to adjust the weights.
3. Apply the updated weights αt+1 and βt+1 to the objective function and compute the new values of MSE and

cross-correlation.
4. The agent receives a reward based on the new state and updates its policy accordingly.
5. The process repeats until convergence or a predefined number of iterations is reached.

5.6. Optimization Results

Following optimization using the Gaussian process minimization method, we identified the optimal filter
parameters listed in Table 1:

These parameters were determined by maximizing the cross-correlation between the original ECG signal and the
filtered signal while minimizing the mean squared error (MSE) between these two signals. This approach ensures
that the filtered signal retains the essential characteristics of the original signal while effectively eliminating noise.

The application of these optimized parameters within our model has resulted in high-quality denoised ECG
signals, as evidenced by significant improvements in performance metrics such as cross-correlation and MSE.
This optimization has thus contributed to improving the reliability and precision of our model for processing and
analyzing ECG signals, providing a more effective tool for diagnosing cardiac pathologies.
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Parameter Optimal Value
Chebyshev Type II and Butterworth Low Cut Frequency 0.973 Hz
Chebyshev Type II and Butterworth High Cut Frequency 62 Hz
Daubechies Level of Decomposition 7
Savitzky-Golay Window Length 5
Savitzky-Golay Polynomial Order 4

Table 1. Optimal filter parameters for ECG signal processing.

5.7. Performance Metrics Evaluation

To assess the effectiveness of our optimized filter parameters, we compared the performance metrics of the ECG
signal processed with default parameters and with the optimized parameters:

Metric Unoptimized Optimized
Cross-Correlation 0.858 0.969
MSE 0.307 0.057

Table 2. Comparison of ECG signal filtering performance metrics.

The results in 2 show a significant improvement in both cross-correlation and mean squared error (MSE) with
the optimized parameters. The cross-correlation increased from 0.858 in the unoptimized case to 0.964 in the
optimized case, indicating a closer resemblance to the original signal. Similarly, the MSE decreased from 0.307 to
0.063, signifying a more effective reduction in noise without major distortion of the original ECG signal. These
improvements highlight the efficacy of our optimization approach in enhancing the quality of denoised ECG signals
for more accurate diagnostic evaluations.

5.8. Signal Visualizations

A crucial aspect of our study is the visualization of ECG signals, essential for assessing the efficacy of the proposed
Bayesian multi-objective optimization technique. Figures 4a, 4b, and 4c provide a comparative analysis across
different samples, showing the original ECG signal as well as the filtered versions with and without optimization.

As evidenced in these subfigures 4, the filtered signals without optimization exhibit a reduction in noise compared
to the original unfiltered signals. However, the optimized filtered signals show a marked improvement in terms of
signal smoothness and the preservation of characteristic waveforms. This is particularly notable in areas where
the original signals display pronounced peaks and valleys, highlighting the refinement brought about by the multi-
objective optimization process.

These illustrations underscore the proficiency of Bayesian multi-objective optimization in determining the
optimal filter parameters, thereby substantiating the practicality and advantages of our proposed method. Such
enhancements are imperative for the reliability of ECG signal analysis and its subsequent interpretation by
healthcare professionals.

Ultimately, this visual representation not only corroborates the quantitative findings of our multi-objective
optimization framework but also provides intuitive insights into the qualitative improvements in ECG signal
processing.
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(a) Sample 1: Original signal (left), filtered without optimization (middle), filtered with optimization (right).

(b) Sample 2: Original signal (left), filtered without optimization (middle), filtered with optimization (right).

(c) Sample 3: Original signal (left), filtered without optimization (middle), filtered with optimization (right).

Figure 4. Comparative visualization of ECG signals demonstrating the impact of the filtering process with and without
Bayesian multi-objective optimization.

6. Proposed Combined Deep Learning Architecture for Classification

The previously described denoising process readies the ECG signals for the critical task of classification. To achieve
this, we propose an advanced deep learning architecture designed to identify subtle patterns within the cleaned ECG
signals, aiding in the diagnosis of various cardiac conditions, including arrhythmias and myocardial infarction.
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Figure 5. Flowchart showing the proposed combined architecture.

6.1. Architectural Overview

Our proposed architecture, depicted in Figure 5, is composed of multiple interconnected blocks that efficiently and
effectively extract features from the input signals. This architecture utilizes parallel processing paths and residual
connections to enhance feature representation while maintaining signal integrity. After the feature extraction phase,
additional layers further process these features to accurately classify cardiac anomalies.

6.2. Detailed Component Description

The architecture begins with the Input Layer, where the raw ECG signal is initially processed. This layer is crucial
as it sets the stage for the entire classification process.

Next, we have the Feature Extraction Block 1, which employs 32 filters. This block consists of three parallel
paths:

• Path 1: Includes a 1x1 convolution followed by two 3x3 convolutions.
• Path 2: Mirrors Path 1, maintaining a similar structure.
• Path 3: Starts with a max pooling layer, followed by a 1x1 convolution and another max pooling layer.

The outputs from these paths are concatenated, and a residual connection is integrated to combine the original input
with the concatenated output. This integration helps preserve essential signal information and prevents vanishing
gradients. The block concludes with a ReLU activation to add non-linearity.

The second block, Feature Extraction Block 2, utilizes 64 filters and follows a similar structure to Block 1.
This block captures more complex features from the ECG signals, enhancing the model’s ability to detect intricate
patterns.

The third block, Feature Extraction Block 3, employs 128 filters, following the same structural principles as
the previous blocks but with a higher capacity to extract detailed features.

The Flatten Layer then transforms the multi-dimensional feature map into a one-dimensional vector, preparing
it for further processing.

The architecture proceeds with Sequential Processing Layers:

• Bidirectional GRU (128 units): Captures temporal dependencies from both directions of the sequence,
ensuring a comprehensive understanding of the signal’s temporal dynamics.
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• A Dropout layer (0.5): Prevents overfitting by randomly dropping units during training.
• This is followed by another Bidirectional GRU (128 units): To further process the temporal features,

enhancing the model’s ability to detect relevant patterns.

Finally, the model includes Classification Layers:

• A Dense Layer (128 units, ReLU): Adds non-linearity and refines the feature representation.
• Another Dropout layer (0.5): Further enhances generalization by preventing overfitting.
• The Final Dense Layer (Softmax): Outputs a probability distribution across different classes of cardiac

events for classification.

The Output Layer presents the classification results, indicating the detected cardiac conditions based on the
processed ECG signal.

6.3. Strategic Use of Architectural Elements

The strategic use of parallel and residual blocks combined with sequential and classification layers allows our
architecture to effectively capture both spatial and temporal features. This comprehensive approach ensures
accurate classification of ECG signals across various cardiac conditions, providing valuable insights for medical
diagnosis and treatment.

By integrating advanced feature extraction techniques and robust classification layers, our proposed architecture
stands out in its ability to deliver precise and reliable diagnostics. This significantly enhances the utility of ECG
signal analysis in clinical settings, potentially leading to better patient outcomes through more accurate and timely
diagnoses.

7. Results and Discussion

The performance of the proposed model was rigorously evaluated for the classification of cardiac arrhythmias
(CA) using 12 different ECG leads. The results, summarized in Table 3, highlight the significant improvements
achieved through the application of the hybrid filter and multi-criteria Bayesian optimization. These enhancements
are evident across all evaluated metrics: classification accuracy (ACC), sensitivity (SNS), and F1 score.

7.1. Comparative Analysis

Table 3 provides a comparative analysis of the model’s performance under three different scenarios: without
filtration, without optimization, and with optimization. The optimized model consistently outperforms the other
configurations across all ECG leads, demonstrating the effectiveness of the proposed approach.

The results clearly indicate the superior performance of the optimized model. Specifically:

• Accuracy (ACC): The model with optimization achieves higher accuracy across all leads compared to the
models without filtration and without optimization. For instance, lead I shows an accuracy improvement from
97.63% (without filtration) and 98.02% (without optimization) to 98.85% (with optimization).

• Sensitivity (SNS): The optimized model demonstrates enhanced sensitivity, indicating a better ability to
correctly identify true positives. Lead II, for example, shows an increase from 97.63% (without filtration)
and 98.03% (without optimization) to 99.04% (with optimization).

• F1-Score (F1): The F1 score, which balances precision and recall, also sees significant improvements with
optimization. Lead V1 improves from 97.55% (without filtration) and 98.12% (without optimization) to
99.05% (with optimization).

7.2. Visual Analysis of Performance

The following figures provide a visual comparative analysis of the model’s performance under three different
scenarios: without filtration, without optimization, and with optimization.
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Table 3. Comparative performance analysis of the proposed model over 12 ECG leads for Cardiac Arrhythmia classification.

Lead Without Filtration Without Optimization With Optimization
ACC (%) SNS (%) F1 (%) ACC (%) SNS (%) F1 (%) ACC (%) SNS (%) F1 (%)

I 97.63 97.40 97.30 98.02 98.04 98.83 98.85 98.17 98.70
II 97.57 97.63 97.44 97.95 98.03 97.70 98.47 99.04 98.98
III 96.99 96.91 97.05 98.45 98.25 98.74 98.63 98.41 98.72
V1 97.86 98.24 97.55 98.01 98.03 98.12 98.61 98.53 99.05
V2 97.82 97.81 97.50 97.89 97.84 97.69 98.65 98.34 98.66
V3 96.94 97.01 96.95 97.83 97.81 98.06 98.18 98.35 98.08
V4 96.92 97.20 97.09 98.04 97.96 98.25 98.19 98.70 98.74
V5 96.63 96.66 96.93 97.24 97.37 97.69 98.20 98.24 98.24
V6 96.84 96.78 96.94 97.09 97.20 97.18 98.23 98.26 98.10
aVL 97.17 97.18 97.30 98.58 99.03 99.01 98.86 99.24 99.17
aVR 96.91 96.96 97.00 97.52 97.93 97.83 98.52 98.65 98.20
aVF 96.74 96.92 96.84 97.41 97.50 97.58 98.08 98.02 98.32

Figure 6. ACC across different ECG leads.

This graph 6 shows the accuracy (ACC) of the model across different ECG leads. It compares three
scenarios: without filtration, without optimization, and with optimization. The results demonstrate that optimization
significantly enhances the accuracy of cardiac arrhythmia classification for each ECG lead.
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Figure 7. SNS across different ECG leads.

This graph 7 illustrates the sensitivity (SNS) of the model for different ECG leads. It compares the model’s
performance without filtration, without optimization, and with optimization. Sensitivity, which measures the
model’s ability to correctly identify true positives, is markedly improved after optimization.

Figure 8. F1 Score across different ECG leads.

This graph 8 presents the F1 score of the model across various ECG leads. The F1 score, which is the harmonic
mean of precision and sensitivity, is compared for three scenarios: without filtration, without optimization, and
with optimization. Optimization leads to a notable increase in the F1 score for each ECG lead.
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Figure 9. Comparative Improvement Percentage across different ECG leads.

This graph 9 shows the percentage improvement in accuracy (ACC), sensitivity (SNS), and F1 score after
optimization compared to the values without filtration. The stacked bars represent the cumulative improvements for
each ECG lead. This graph highlights the significant gains achieved through the proposed filtering and optimization
techniques.

7.3. Ablation Study

To evaluate the individual impact of each component in our proposed method, we performed an ablation study
where we systematically removed each module—Enhanced Empirical Mode Decomposition (EEMD), Chebyshev
Type II filter, Butterworth filter, Daubechies Wavelet filter, and Savitzky-Golay filter—from the signal processing
pipeline. This approach allowed us to observe how the absence of each module affects critical performance metrics:
classification accuracy (ACC), mean squared error (MSE), cross-correlation (CC), and processing time. The results
of these experiments are summarized in Table 4.

Table 4. Ablation Study Results: Impact of Removing Each Module on Performance Metrics and Processing Time

Removed Module ACC (%) MSE CC Time (s)
Without EEMD 86.49 0.1455 0.8118 9.20
Without Chebyshev Type II Filter 92.52 0.0882 0.8910 22.83
Without Butterworth Filter 91.30 0.0842 0.9016 24.35
Without Daubechies Wavelet Filter 91.45 0.0735 0.9207 22.28
Without Savitzky-Golay Filter 94.23 0.0679 0.9405 27.53
Baseline (All Modules) 97.05 0.0617 0.9544 29.39

The ablation results highlight the crucial role each module plays in enhancing the model’s performance, as well
as the balance between computational efficiency and processing time:

• EEMD Removal: Omitting the EEMD module led to a significant drop in ACC to 86.49%, an increase in
MSE to 0.1455, and a decrease in CC to 0.8118. Although the processing time was reduced by approximately
69% (down to 9.20 seconds) due to the computationally intensive nature of EEMD, the substantial decline in
performance metrics indicates that EEMD is essential for effectively handling the ECG signal’s non-linear
and non-stationary characteristics.
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• Chebyshev Type II Filter Removal: Excluding this filter resulted in ACC decreasing to 92.52%, MSE
increasing to 0.0882, and CC dropping to 0.8910. The processing time was reduced by about 22% to 22.83
seconds. This suggests that the Chebyshev Type II filter plays a significant role in attenuating specific
frequency components and enhancing signal fidelity, despite its added computational load.

• Butterworth Filter Removal: When the Butterworth filter was removed, ACC declined to 91.30%, MSE
rose to 0.0842, and CC decreased to 0.9016. The processing time saw a reduction of around 17%, totaling
24.35 seconds. These results emphasize the importance of the Butterworth filter in minimizing signal
distortions and contributing to overall classification accuracy.

• Daubechies Wavelet Filter Removal: Eliminating the Daubechies Wavelet filter led to ACC dropping to
91.45%, an MSE of 0.0735, and CC decreasing to 0.9207. The processing time was reduced by approximately
24% to 22.28 seconds. Despite the gain in computational efficiency, the performance loss underscores the
filter’s vital role in capturing the ECG signal’s non-stationary features.

• Savitzky-Golay Filter Removal: Removing the Savitzky-Golay filter resulted in a slight decrease in ACC
to 94.23%, an increase in MSE to 0.0679, and a reduction in CC to 0.9405. The processing time decreased
marginally by about 6% to 27.53 seconds. While this filter adds minimal computational overhead, its
contribution to smoothing the signal and improving classification performance is notable.

Overall, the inclusion of all modules yields the best performance, with an ACC of 97.05%, MSE of 0.0617, and
CC of 0.9544. The ablation study clearly demonstrates that each component significantly enhances the denoising
and classification capabilities of the model. Although some modules contribute to increased processing time, their
impact on improving signal quality and accuracy justifies their inclusion in the pipeline.

7.4. Comparative Analysis with State-of-the-Art Methods

To evaluate the effectiveness of our proposed method in ECG signal denoising and arrhythmia classification,
we compared it with several recent state-of-the-art techniques. Table 5 presents a summary of these methods,
highlighting the denoising strategies, classification models used, and their respective accuracies. Each method
employs different approaches, resulting in varying performance levels. Our method achieved a classification
accuracy of 99.17%, surpassing other techniques. It is important to note that we could not find sufficient references
for a direct comparison that integrates both denoising and classification. Consequently, the comparison here is
based on arrhythmia classification using the MIT-BIH Arrhythmia Database—the same dataset utilized in our
study.

Table 5. Comparison of our proposed method with state-of-the-art techniques for ECG denoising and classification,
showcasing the superior accuracy achieved by our model.

Reference Denoising Method Dataset Classification Model Accuracy (%)
Murawwat et al. (2022)
[66]

Multivariate Empirical Mode
Decomposition (MEMD)

MIT-BIH Arrhythmia
Database

Artificial Neural Network
(ANN)

89.8

Zeng et al. (2023) [68] Tunable Q-factor Wavelet Trans-
form (TQWT) + Complete Ensem-
ble Empirical Mode Decomposi-
tion (CEEMD)

MIT-BIH Arrhythmia
Database

CNN + LSTM 97.20

Xia et al. (2023) [67] Denoising Autoencoder MIT-BIH Arrhythmia
Database

Transformer + CNN 97.93

Singh et al. (2022) [65] Attention-based Convolutional
Denoising Autoencoder (ACDAE)

MIT-BIH Arrhythmia
Database

Convolutional Neural Net-
work (CNN)

98.88

Our proposed method Hybrid Filter: EEMD,
Chebyshev Type II,
Butterworth, Daubechies
Wavelet, Savitzky-Golay Filters

MIT-BIH Arrhythmia
Database

Residual and Parallel
Deep Learning
Architecture

99.17

As shown in Table 5, our method achieves the highest classification accuracy among the compared techniques.
This superior performance underscores the effectiveness of our hybrid filtering approach, which combines multiple
filters to enhance denoising, along with our advanced deep learning architecture. The integration of these
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components contributes to more accurate and reliable arrhythmia classification. These results demonstrate the
potential of our method to improve diagnostic accuracy in clinical settings.

7.5. Dataset-Specific Performance and Limitations

Our optimized hybrid filter exhibited substantial enhancements in signal quality and classification performance
across several datasets:

• MIT-BIH Arrhythmia Database [69] and PTB Diagnostic ECG Database [70]: The filter significantly
improved the ECG signals in these datasets, which are known for their standard noise profiles. This
demonstrates the filter’s effectiveness in handling typical noise characteristics found in clinical ECG
recordings.

• QT Database: Applied to the QT Database [71], the filter performed effectively across all 12 ECG leads. We
observed an average improvement of 1.56% in classification accuracy when comparing the original signals
to the filtered ones, and an additional improvement of 1.79% between the filtered and optimized signals.
These results underscore the efficacy of our filtering and optimization processes in enhancing ECG signal
classification.

• MIMIC-III Waveform Database: Conversely, the filter’s performance was less satisfactory on the MIMIC-
III Waveform Database [72], which contains ECG signals with a high degree of non-stationary noise. This
dataset includes recordings from intensive care units, where signals are frequently contaminated by artifacts
due to patient movements, interference from medical devices, and ongoing medical interventions. The abrupt
and unpredictable variations in noise present significant challenges for our current filtering method.

The primary limitation of our denoising approach, particularly evident with datasets like MIMIC-III, is:

• Challenges with Highly Non-Stationary Noise: While EEMD is designed to handle non-stationary signals,
it may struggle with noise that is extremely erratic or complex, as seen in the MIMIC-III dataset. The rapid
and unpredictable changes in noise patterns can impede the model’s ability to effectively decompose and
filter out the noise components.

8. Conclusion

This paper presented an advanced ECG signal processing model that combines multi-objective Bayesian
optimization with sophisticated filtration and deep learning techniques to enhance classification accuracy. The
integration of Enhanced Empirical Mode Decomposition (EEMD) with a sequence of advanced filters—Chebyshev
Type II, Butterworth, Daubechies Wavelet, and Savitzky-Golay—proved highly effective in reducing noise while
preserving critical signal characteristics. The multi-objective Bayesian optimization strategy, augmented with
reinforcement learning for dynamic weight adjustment and Gaussian process minimization, fine-tuned the filter
parameters to achieve optimal performance. This approach significantly improved noise reduction and signal
fidelity, as evidenced by enhanced cross-correlation and reduced mean squared error metrics.

Subsequently, the optimized signals were processed through a robust combined deep learning architecture, which
included feature extraction blocks, sequential processing layers with bidirectional GRUs, and dense classification
layers. This architecture demonstrated superior performance in classifying cardiac conditions such as arrhythmias,
with notable improvements in accuracy, sensitivity, and F1 score across various ECG leads. Specifically, the highest
post-optimization values achieved were 99.24% for accuracy, 99.04% for sensitivity, and 99.05% for F1 score.

Our comprehensive approach highlights the potential of combining advanced signal processing techniques with
state-of-the-art optimization and deep learning methods to significantly enhance ECG signal analysis. The results
validate the effectiveness of our proposed model in providing reliable and accurate diagnostic tools, thereby
contributing to improved patient outcomes in cardiology. This work marks a substantial advancement in the pursuit
of high-quality cardiac diagnostics, laying the groundwork for more sophisticated and reliable ECG analysis in
clinical practice.
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Future research may explore further enhancements by integrating additional machine learning techniques and
expanding the dataset to include a broader range of cardiac conditions. Such advancements will continue to refine
and improve the accuracy and reliability of ECG signal processing and classification.
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16. M. Y. Balık, K. Gökçe, S. Atmaca, E. Aslanger, A. Güler, and İ. Öksüz, Interpretable Deep Learning for Myocardial Infarction
Detection from ECG Signals, In Proceedings of the 2023 31st Signal Processing and Communications Applications Conference
(SIU), pp. 1–4, 2023, IEEE.

17. Z. Wang and T. Oates, Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural
Networks, In Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, vol. 1, 2015, AAAI.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

https://physionet.org/content/mitdb/1.0.0/


18 BAYESIAN METHODS FOR MULTI-OBJECTIVE OPTIMIZATION OF HYBRID NUMERICAL FILTERS

18. Z. Wang, W. Yan, and T. Oates, Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline, In
Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585, 2017, IEEE.

19. I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
20. P. S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering,

Medicine and Finance, CRC Press, 2017.
21. W. T. Freeman and E. H. Adelson, The Design and Use of Steerable Filters, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 13, no. 9, pp. 891–906, 1991.
22. K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 770–778, 2016.
23. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going Deeper with

Convolutions, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.
24. Z. Khatar, D. Bentaleb, and O. Bouattane, Advanced Detection of Cardiac Arrhythmias Using a Three-Stage CBD Filter and a

Multi-Scale Approach in a Combined Deep Learning Model, Biomedical Signal Processing and Control, vol. 88, p. 105551, 2024,
Elsevier.

25. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng,
and H. E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic
Signals, Circulation, vol. 101, no. 23, pp. e215–e220, 2000, American Heart Association.

26. C. Zhang, M. Jiang, Y. Li, L. Xia, Z. Wang, Y. Wu, Y. Wang, and H. Zhang, An Efficient ECG Denoising Method by Fusing ECA-Net
and CycleGAN, Mathematical Biosciences and Engineering, vol. 20, no. 2, pp. 2023–2041, 2023, American Institute of Mathematical
Sciences.

27. B. Hossain, M.-B. Hossain, S. K. Bashar, J. Lázaro, N. Reljin, Y. Noh, and K. H. Chon, A Robust ECG Denoising Technique Using
Variable Frequency Complex Demodulation, Computer Methods and Programs in Biomedicine, vol. 195, p. 105856, 2020, Elsevier.

28. T. Trigano, S. Talala, and D. Luengo, Adaptive Trend Filtering for ECG Denoising and Delineation, IEEE Journal of Biomedical
and Health Informatics, vol. 27, no. 1, pp. 371–380, 2023, IEEE.

29. H. Y. Mir and O. Singh, Power-Line Interference and Baseline Wander Elimination in ECG Using VMD and EWT, Computer
Methods in Biomechanics and Biomedical Engineering, vol. 26, no. 5, pp. 583–594, 2023, Taylor & Francis.

30. F. L. Mvuh, C. O. V. Ko’a Ebode, and B. Bodo, Multichannel High Noise Level ECG Denoising Based on Adversarial Deep
Learning, Scientific Reports, vol. 14, no. 1, p. 801, 2024, Nature Publishing Group.

31. X. Wang, B. Chen, M. Zeng, Y. Wang, H. Liu, R. Liu, L. Tian, and X.-S. Lu, An ECG Signal Denoising Method Using Conditional
Generative Adversarial Net, IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 4, pp. 1753–1762, 2022, IEEE.

32. P. Singh, S. Shahnawazuddin, and G. Pradhan, Significance of Modified Empirical Mode Decomposition for ECG Denoising, In
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3039–
3042, 2017, IEEE.

33. H. Huang, S. Hu, and Y. Sun, A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky–Golay Filter for ECG
Denoising, Sensors, vol. 19, no. 7, p. 1617, 2019, MDPI.

34. M. Zhang and W. Guo, An Integrated EMD Adaptive Threshold Denoising Method for Reduction of Noise in ECG, PLoS ONE, vol.
15, no. 7, p. e0235330, 2020, Public Library of Science.

35. Z. Wang, T. Rades, F. Wan, C. M. Wong, and L. Zhang, Adaptive Fourier Decomposition Based ECG Denoising, Computers in
Biology and Medicine, vol. 77, pp. 195–205, 2016, Elsevier.

36. H. D. Hesar and M. Mohebbi, An Adaptive Kalman Filter Bank for ECG Denoising, IEEE Journal of Biomedical and Health
Informatics, vol. 24, no. 9, pp. 2575–2584, 2020, IEEE.

37. A. Kumar, H. Tomar, V. K. Mehla, R. Komaragiri, and M. Kumar, Stationary Wavelet Transform Based ECG Signal Denoising
Method, ISA Transactions, vol. 107, pp. 247–260, 2020, Elsevier.

38. R. Souriau, J. Fontecave-Jallon, and B. Rivet, Fetal ECG Denoising Using Dynamic Time Warping Template Subtraction, In
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1626–
1629, 2022, IEEE.

39. H. Wang, Y. Ma, A. Zhang, D. Lin, Y. Qi, and J. Li, Deep Convolutional Generative Adversarial Network with LSTM for ECG
Denoising, Computational and Mathematical Methods in Medicine, vol. 2023, p. 6737102, 2023, Hindawi.

40. S. Sarafan, H. Vuong, D. Jilani, S. Malhotra, M. P. H. Lau, M. Vishwanath, T. Ghirmai, and H. Cao, A Novel ECG Denoising Scheme
Using the Ensemble Kalman Filter, In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 4627–4630, 2022, IEEE.

41. Y. Hou, R. Liu, M. Shu, X. Xie, and C. Chen, Deep Neural Network Denoising Model Based on Sparse Representation Algorithm
for ECG Signal, IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–11, 2023, IEEE.

42. S. Boda, M. Mahadevappa, and P. Dutta, A Hybrid Method for Removal of Power Line Interference and Baseline Wander in ECG
Signals Using EMD and EWT, Biomedical Signal Processing and Control, vol. 66, p. 102466, 2021, Elsevier.

43. N. Mourad, ECG Denoising Based on Successive Local Filtering, Biomedical Signal Processing and Control, vol. 71, p. 103431,
2022, Elsevier.

44. Z. Huang, S. Yang, Q. Zou, X. Gao, and B. Chen, A Portable Household Detection System Based on the Combination of Bidirectional
LSTM and Residual Block for Automatical Arrhythmia Detection, Biomedical Engineering / Biomedizinische Technik, vol. 68, no.
1, pp. 35–46, 2023, De Gruyter.

45. S. A. Parah, H. Aljuaid, and B. A. Malik, An Iterative Filtering Based ECG Denoising Using Lifting Wavelet Transform Technique,
Electronics, vol. 12, no. 2, p. 387, 2023, MDPI.

46. P. G. Malghan and M. K. Hota, Grasshopper Optimization Algorithm Based Improved Variational Mode Decomposition Technique
for Muscle Artifact Removal in ECG Using Dynamic Time Warping, Biomedical Signal Processing and Control, vol. 71, p. 103437,
2022, Elsevier.

47. A. Timmis, N. Townsend, C. P. Gale, A. Torbica, M. Lettino, S. E. Petersen, E. A. Mossialos, A. P. Maggioni, D. Kazakiewicz, H.
T. May, et al., European Society of Cardiology: Cardiovascular Disease Statistics 2019, European Heart Journal, vol. 41, no. 1, pp.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



Z. KHATAR AND D. BENTALEB 19

12–85, 2020, Oxford University Press.
48. O. Gaidai, Y. Cao, and S. Loginov, Global Cardiovascular Diseases Death Rate Prediction, Current Problems in Cardiology, vol.

48, no. 5, p. 101622, 2023, Elsevier.
49. D. R. Labarthe, Epidemiology and Prevention of Cardiovascular Diseases: A Global Challenge, Jones & Bartlett Publishers, 2010.
50. S. Chatterjee, R. S. Thakur, R. N. Yadav, L. Gupta, and D. K. Raghuvanshi, Review of Noise Removal Techniques in ECG Signals,

IET Signal Processing, vol. 14, no. 9, pp. 569–590, 2020, Wiley Online Library.
51. H. Limaye and V. V. Deshmukh, ECG Noise Sources and Various Noise Removal Techniques: A Survey, International Journal of

Application or Innovation in Engineering & Management, vol. 5, no. 2, pp. 86–92, 2016.
52. K. Yu, L. Feng, Y. Chen, M. Wu, Y. Zhang, P. Zhu, W. Chen, Q. Wu, and J. Hao, Accurate Wavelet Thresholding Method for ECG

Signals, Computers in Biology and Medicine, vol. 169, p. 107835, 2024, Elsevier.
53. F. L. Mvuh, C. O. V. Ko’a Ebode, and B. Bodo, Multichannel High Noise Level ECG Denoising Based on Adversarial Deep

Learning, Scientific Reports, vol. 14, no. 1, p. 801, 2024, Nature Publishing Group.
54. S. Velusamy, G. Thangavel, and M. Z. U. Rahman, Comprehensive Survey on ECG Signal Denoising, Feature Extraction and

Classification Methods for Heart Disease Diagnosis, In AIP Conference Proceedings, vol. 2512, no. 1, 2024, AIP Publishing.
55. G. A. Roth, G. A. Mensah, C. O. Johnson, G. Addolorato, E. Ammirati, L. M. Baddour, N. C. Barengo, A. Z. Beaton, E. J. Benjamin,

C. P. Benziger, et al., Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study,
Journal of the American College of Cardiology, vol. 76, no. 25, pp. 2982–3021, 2020, Elsevier.

56. P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. Van Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis,
et al., Recommendations for the Standardization and Interpretation of the Electrocardiogram: Part I, Journal of the American
College of Cardiology, vol. 49, no. 10, pp. 1109–1127, 2007, Elsevier.

57. S. Luo and P. Johnston, A Review of Electrocardiogram Filtering, Journal of Electrocardiology, vol. 43, no. 6, pp. 486–496, 2010,
Elsevier.

58. Z. Khatar, D. Bentaleb, and M. El Mansouri, Integrating Advanced Combined Numerical Filters for ECG Denoising and
Cardiovascular Disease Classification Using Deep Learning, In Proceedings of the International Conference on Digital Technologies
and Applications, pp. 539–547, 2024, Springer.

59. Y. Liu, L. Yao, and Y. Xu, Deep Learning for Smart Grid: A Comprehensive Survey, IEEE Access, vol. 7, pp. 23535–23556, 2018,
IEEE.

60. S. Hong, Y. Zhou, J. Shang, C. Xiao, and J. Sun, Opportunities and Challenges of Deep Learning Methods for Electrocardiogram
Data: A Systematic Review, Computers in Biology and Medicine, vol. 122, p. 103801, 2020, Elsevier.
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