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Abstract Analyzing proportional data with excessive zeros and complex relationships presents a significant challenge
in various fields. To address this, we propose a developing semiparametric Zero-Inflated Beta Regression (ZIBE) model
incorporating a P-splines estimator. This model offers a unique combination of flexibility and interpretability, allowing
for the modeling of non-linear relationships and the identification of factors contributing to zero inflation, referred to as
ZIBE.pb. Extensive simulations demonstrate the ZIBE.pb model’s superior model fit and predictive accuracy compared to
existing parametric models and semiparametric advanced models such as ZIBE.ps. The ZIBE.pb achieves competitive results
on metrics such as GD, AIC, BIC, and MSE, as confirmed by Monte Carlo simulation studies and real-world applications.
The ZIBE.pb model has broad applications in various fields, including political science, economics, and social sciences.
To demonstrate its utility, we applied it to the Varieties of Democracy (V-Dem) dataset. In conclusion, the ZIBE.pb model
offers a robust and versatile tool for analyzing proportional data with excessive zeros and complex relationships. Its ability
to capture both linear and nonlinear effects, coupled with its interpretability, makes it a valuable asset for researchers across
various domains.
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1. INTRODUCTION

It is well known that generalized linear models can be used to represent a relationship between a response variable
and a few predictors, provided that the response variable belongs to the exponential family. However, for the
unknown functional relationships between a collection of predictors and a response variable, this approach is not
appropriate. Thus, the semiparametric generalized linear regression models are suitable and powerful extensions
of generalized linear models that can be used to estimate unknown functional relationships between a collection of
predictors and response variables.

Since the beta regression model was first introduced by Ferrari and Cribari-Neto (2004), it has become one of
the common distributions that fall under the generalized linear models and is used in cases for modeling rates
and proportions. This means the beta regression model is used for modeling continuous response variables, y, that
take values in the unit interval (0;1). Many authors have modeled data that assume values in the standard unit
interval (Bayer and Cribari-Neto, 2017; Abonazel et al., 2022; Abonazel and Taha, 2023). The importance of beta
regression is due to its representation of many phenomena in which the data is in the form of proportions and
fractions in the open unit interval (0,1). However, proportions data often deviates from a beta distribution because
proportions data often includes a nonnegligible number of zeros. Previous studies have found that if the trailing
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zero is not considered, misleading results are obtained. Thus, the zero-inflated beta regression model is a suitable
and powerful extension of the beta regression model when it suffers from this problem. More recently, several
works using the zero-inflated beta regression model have been published. For example, (Ospina and Ferrari, 2010,
2012; Baione et al., 2021; Tang et al., 2023; Kaulika and Hajarisman, 2023).

Recently, there has been a noticeable development in semiparametric generalized regression models. For
example, Ibacache-Pulgar and Paula (2011) introduced partially linear Student-t models. Yousof and Gad (2017)
introduces a novel Bayesian semi-parametric logistic regression model, which extends the semi-parametric logistic
regression model (SLoRM) and improves its estimation process. The study compares Bayesian and non-Bayesian
estimation methods for both parametric and semi-parametric logistic regression models, applying them to credit
scoring data. Ibacache-Pulgar et al. (2021) studied semiparametric additive beta regression models and developed
the local influence method for these models. Vasconcelos et al. (2022) proposed three semiparametric regression
models (additive, additive partial, and semiparametric) based on the odd log-logistic generalized inverse Gaussian
distribution. Tapia et al. (2019) studied the semiparametric logistic regression model with influential observations.
Logistic regression often performs poorly when dealing with binary data containing an unexpectedly high
proportion of zeros. This is due to the model’s assumption of a specific outcome distribution that may not accurately
represent the real-world data. Aráujo et al. (2021) investigates the factors influencing the academic performance
of undergraduate business students, measured by the number of failing grades. A semiparametric Zero-Inflated
Negative Binomial (ZINB) regression model was employed to analyze the data, considering various covariates
such as work status, dissatisfaction with affirmative action scholarships, and the difficulty of balancing work and
study. Li and Lu (2022) introduced a semiparametric zero-inflated Bernoulli regression model to overcome this
limitation. Wied (2024) introduces a novel semiparametric distribution regression model with instruments and
monotonicity constraints to address the issue of endogeneity. The model provides a flexible and robust approach to
estimating the entire conditional distribution of an outcome variable. Fendrich et al. (2024) address the challenge
of modeling arsenic contamination in European topsoils, which is often complicated by the presence of censored
data. To tackle this issue, they propose a novel coupled generalized additive models for location, scale and shape
(GAMLSS) and random forest (RF) model. This innovative approach allows for flexible and robust modeling of
the entire distribution of arsenic concentrations, capturing complex relationships with environmental factors. The
study’s findings contribute to a better understanding of arsenic pollution and its potential health risks.

Zero-inflated beta regression models are powerful tools for analyzing proportional data (between 0 and 1).
However, their inability to capture nonlinear relationships with the response variable presents a limitation. We
propose a novel semiparametric extension that addresses this issue by incorporating penalized smoothing-based
P-splines. This approach combines the interpretability of the zero-inflated beta model with the flexibility of
nonparametric smoothing, allowing for effective estimation of both linear and nonlinear effects on proportions.
This represents a significant advancement in the field, as existing research has primarily focused on separate
applications: zero-inflated models for count data and semiparametric models for continuous data. Our proposed
semiparametric zero-inflated beta regression with P-splines bridges this gap, offering a powerful tool for
researchers in various fields like economics, epidemiology, and social sciences, where data often exhibits complex
relationships.

This article is organized as follows: In Section 2 we give a brief sketch of the zero-inflated beta regression
model. In section 3, we are concerned with the semiparametric zero-inflated beta regression model with a P-spline
estimator for the estimation of parametric and nonparametric components. Simulation studies and results are given
in Section 4 to illustrate the advantages of the proposed models when simpler models are inadequate. Application,
results, and interpretations to a real dataset are presented in Section 5, to explain the flexibility of the introduced
class of regression models. Finally, we offer some conclusions in Section 6.
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2. Zero-Inflated Beta Regression Model

Since the beta distribution denoted by B(µ, ϕ) is a member of the exponential family, thus that the fractions,
yi ∈ (0, 1)(i = 1, ..., n), are generated independently according to beta distribution, in which the response variable
with parameters µ and ϕ has a probability mass function (p.m.f.) given by

fBE(yi;µ, ϕ) =
Γ(ϕ)

Γ(µϕ)Γ[(1− µ)ϕ]
yµϕ−1
i (1− yi)

(1−µ)ϕ−1, yi ∈ (0, 1); i = 1, ..., n (1)

where the Γ(.) is the gamma function. According to equation (1), the mean of yi can be written as

η1i = g(µi) = xT
i β (2)

where xT
i = (xi1, xi2, . . . , xip)

T denotes the observations on p known covariates, µi = g−1(ηi) is a function of β,
ηi is a linear predictor, and g−1 is inverse of g(.) which is a strictly monotonic and twice differentiable link function
and β = (β1, . . . , βp)

T ∈ Rp is a p-dimensional vector of regression coefficients (p < n). Then, from equation (1)
the log-likelihood function based on observed data, yi(i = 1, 2, . . . , n), apart from constant, can be expressed as:

ℓ(β, ϕ) =

n∑
i=1

ℓi(µi, ϕ) = log Γ(ϕ)− log Γ(µiϕ)− log Γ[(1− µi)ϕ] + (µiϕ− 1) log yi + [(1− µi)ϕ− 1] log(1− yi)

(3)
The MLE is the most used method for the estimation of unknown regression parameters of the beta regression

model. Since the equation (3) is nonlinear in β, the solution is obtained using iterative methods. A common such
procedure is the iteratively re-weighted least squares (IRLS) method. Let β(r+1) be the estimated value of MLE of
β with r iterations which may be written as

β(r+1) = β(r) − (I)−1
β(r)S(β)

∣∣
β(r)

Subsequently, the estimated coefficients are defined as

β̂BE = (XT ŴX)−1XT Ŵ ẑ (4)

where
ẑ = log(µ̂i) + (yi − µ̂i)/

√
var(µ̂i) and Ŵ = diag(w1, ..., wn)

A Zero-inflated beta regression model is an alternative way to model fractions data with an excess of zeroes and
can be formulated as follows:

fZIBE(yi;µi, ϕ, π) =

{
π, if yi = Λ

(1− π)fBE(yi;µi, ϕ), if yi ∈ (0, 1)
; Λ = 0, 1 (5)

The mean and variance for the Zero-inflated beta regression model are respectively given by:

E(y) = πΛ + (1− π)µ

and

V ar(y) = (1− π)
µ(1− µ)

ϕ+ 1
+ π(1− π)(Λ− µ)2

where π is the probability density at c and represents the probability of observing zero (c = 0) or one (c = 1). If c =
0, fZIBE(yi;µ, ϕ, π) in equation (5) is called a zero-inflated beta distribution, and if c = 1, the fZIBE(yi;µ, ϕ, π)
is called a one-inflated beta distribution. In terms of GLMs, three link functions are used in modeling zero-inflated
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beta regression model, they are as follows:

η1i = g1(µi) = log

(
µi

1− µi

)
= xT

i β

η2i = g2(ϕ) = log(ϕ) = zTi α

η3i = g3(πi) = log

(
πi

1− πi

)
= sTi Ψ

(6)

where β = (β1, . . . , βp)
T ∈ Rp, α = (α1, . . . , αk)

T ∈ Rk and Ψ = (Ψ1, . . . ,Ψq)
T ∈ Rq are vectors of unknown

regression coefficients, which are assumed to be functionally independent and xT
i = (xi1, xi2, . . . , xip)

T , sTi =
(si1, si2, . . . , siq)

T and zTi = (zi1, zi2, . . . , zik)
T are observations on p, q, and k known explanatory variables. Also,

we assume that the link function g1, g2 and g3 are strictly monotonic and twice differentiable. There are several
possible choices for the link function g(.) For instance, one can use the logit specification. Then, from equations (5)
and (6) the penalized log-likelihood function (PLL) for the vector of parametric parameters, δ = (β, α,Ψ), given
the observed sample, is given as Eqs. :

PLL = l(δ) = l1(Ψ)l2(β, α) =

n∑
i=1

li(Ψ) +
∑

i:yi∈(0,1)

li(µi, ϕ) (7)

where

li(Ψ) = 1(Λi) log(πi) + [1− 1(Λi)] log(1− πi),

li(µi, ϕ) = log Γ(ϕi)− log Γ(µiϕi)− log Γ((1− µi)ϕi) + (µiϕi − 1) log(yi) + ((ϕi − 2)y∗i − 1) log(1− y∗∗i )

where y∗i = log
(

1−yi

yi

)
and y∗∗i = log(1− yi) if yi ∈ (0, 1), and y∗i = 0 and y∗∗i = 0 otherwise.

Since equation (7) is nonlinear in δ, the solution is obtained using iterative methods. A common such procedure
is the iteratively re-weighted least squares (IRLS) or expectation-maximization (EM) algorithms. Then, the
maximum likelihood estimator (MLE) is noted as

δ̂MLE = (β̂T , α̂T , Ψ̂T )T

3. Semiparametric Zero-Inflated Beta Regression Model

While the zero-inflated beta regression model is a powerful tool, it can struggle to capture complex, nonlinear
relationships between the explanatory variables and the response variable. To address this limitation, we can extend
the model to a semiparametric zero-inflated beta regression model. This involves introducing a nonparametric
function for a specific continuous explanatory variable, denoted by t in equation (5). This nonparametric function
allows the model to capture the nonlinear effects of t on the response variable (y) in a data-driven manner. This
approach generalizes the zero-inflated beta model by providing more flexibility in modeling complex relationships.

Let Y = (y1, . . . , yn)
T be independent random variables, where Yi ∼ ZIBE(µ, ϕ, π) for i ∈ (1, . . . , n) and

y = (y1, . . . , yn)
T are the corresponding observations of Y. Then, we define the Semi-ZIBE structure based on

equation (5) by the systematic component expressed as

η4i = η1i +m(ti) = xT
i β +m(ti) (8)

The regression structure in equation (5) combined with the systematic component in equation (8) defines the
semiparametric zero-inflated beta regression model because it contains parametric and nonparametric terms. The
η4i in equation (8) utilizes a two-part. The first part, η1i, represents a linear predictor related to the mean through
a link function, g(µi). The selection of the link function, denoted by g(·), plays a crucial role in generalized linear
models (GLMs). Common choices include logit: g(µ) = log

(
1−µ
µ

)
, probit: g(µ) = ϕ−1(µ) and complementary
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log-log: g(µ) = log [− log(µ)]. The second part, m(·), incorporates a smoothing function to capture the nonlinear
effects of the continuous explanatory variable and can be estimated by a P-spline estimator.

P-splines, a type of penalized spline, are piecewise polynomial functions constructed using B-spline basis
functions. These basis functions represent the relationship between the nonparametric explanatory variable and
the response variable (dependent variable) in a segmented fashion. These basis functions are subject to a penalty
term that controls the smoothness of the resulting spline. This penalty term ensures the P-spline avoids excessive
wiggliness and better captures the underlying trend in the data. The smooth function m(·) can be approximated
by a linear combination of B-spline basis functions. These B-spline functions are defined by a set of knots, which
act like control points, influencing the smoothness and shape of the resulting curve. Let K be the number of
knots within a closed interval and d be the degree of the B-spline. Define κk as the location of the kth knot,
k = (−d; . . . ;K + d+ 1). The B-spline basis functions of degree zero, denoted by B0

k, are defined as follows:

B0
k(t) =

{
1, for κk−1 < t ≤ κk;

0, otherwise.
(9)

The B-spline of degree /S, denoted by B
/S
k (t), is defined recursively as:

B
/S
k (t) =

t− κk−1

κk+/S − κk−1
B

/S
k−1(t) +

κk+/S − t

κk+/S − κk−1
B

/S
k+1(t), /S = 1, ..., d (10)

Then the final form of the curve created by a B-spline of degree /S is given by

mBS(t, κ) =

I∑
i=1

τiB
/S
i (t, κ) (11)

The total number of B-spline basis functions used is denoted by I = K + d+ 1 and τi represent the control
points of the B-spline curve (Goepp et al., 2018 ). The semiparametric zero-inflated beta regression model can
estimated by maximizing the penalized likelihood function. Then from equations (6) and (8) we can formulate the
penalized log-likelihood function for the fixed and random effect parameter vectors δ and m respectively, which
take the following form

l(Ω) = l(δ)− 1

2
λJp(m); Jp(m) =

∫ b

a

[
m(2)(t)

]2
dt (12)

where, Ω = (δ,m) ,λ ≥ 0 is smoothing papramter, J(m) is a penalty term, m(2) refers to the second derivatives and
a = t1 < · · · < tn = b. The penalty in equation (12) may be expressed as

Jp(m) =

∫ b

a

[
m(2)(t)

]2
dt = ΥT

/SM/SΥ/S (13)

where M/S is a q/S × q/S positive semidefinite penalty matrix. However, Eilers and Marx (1996) showed that the
integration of the square of the /Sth derivative of m(t) is well by a penalty on finite differences of the coefficients
Υ/S with much less effort, namely ∫ b

a

[
m(2)(t)

]2
dt = ΥT

/SPdΥ/S (14)

where Dd of dimension (n− d)× n and Pd = DT
d ×DT

d . More details of the number of knots and the degrees of
freedom can be found in Eilers and Marx (1996).
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4. Simulations and Results

A Monte Carlo simulation study assessed the performance of parametric and semiparametric zero-inflated Beta
regression models. Model estimation was carried out through penalized log-likelihood optimization using the R
statistical software environment with the GAMLSS package. This research focuses on the semiparametric zero-
inflated Beta regression model. Under the simulated scenario, the response variable, y, was generated from a zero-
inflated Beta distribution characterized by parameters n,µ,σ, and ν. The location parameter, µ, was modeled as
a linear combination of covariates, X = (X1, X2), and a nonparametric function of a continuous variable, t. A
series of simulations were conducted for varying sample sizes (n=150, 300, 450) and replicated 1000 times under
zero-inflated Beta distributions with zero inflation proportions of 15% and 30%. Covariates data, X and t, were
generated according to the specifications outlined in Table 1. Model performance was evaluated using the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), deviance statistic (DVS), and mean squared
error (MSE) under diverse conditions detailed in Table 1.

Table 1. The generated Variables for simulation.

Variable Value
m(t) 0.6 + sin(3πt)

t U(-0.5, 0.6)
X1 U(-0.5, 0.5)
X2 U(-0.5, 0.5)
βj = (β1, β2) (-0.6, 0.6)
σ and ν 0.25

The goodness-of-fit of the nonparametric function, m(t), and the linear coefficients, β, were quantified by average
estimates (AEs), mean squared error (MSE), and root mean squared error (RMSE). Specifically, the MSEs for m(t)
and β were calculated as:

MSEl(m̂(t)) =
1

n

n∑
i=1

[m̂(ti)−m(ti)]
2; MSEl(β̂) =

1

q

q∑
j=1

[β̂j − βj ]
2

where m̂ and β̂r are the estimated values of m and βr , respectively. The study evaluated the performance of several
regression models in handling data with excess zeros (ZI). The models compared included the semiparametric zero-
inflated beta regression with a p-spline estimator (ZIBE.pb), the parametric ZIBE model, and the semiparametric
ZIBE.ps model. A comprehensive simulation study assessed model performance across various sample sizes and
ZI levels using metrics like mean absolute error(MAE), AIC, BIC, DVS, MSE, and RMSE.

In our simulation study, the semiparametric zero-inflated beta regression model with p-spline and automatic knot
selection (ZIBE.pb) consistently outperformed other models. This superiority was evident in terms of AIC, BIC,
DVS, MSE, MAE, and RMSE values, particularly when the percentage of zero-inflation (ZI) increased. While the
parametric ZIBE model also exhibited good performance, the ZIBE.pb model demonstrated a more robust and
accurate estimation, especially in the presence of excess zeroes. Additionally, the semiparametric ZIBEps model,
which incorporates both parametric and nonparametric components, showed competitive results, particularly in
terms of MAE and RMSE.

The ZIBE.pb model consistently outperformed other models, demonstrating superior performance across varying
sample sizes. This robustness underscores its applicability to a wide range of datasets. As the sample size increased,
the performance of all models improved, but the ZIBE.pb model consistently maintained its lead. This suggests
that its effectiveness is not limited to specific sample sizes. Based on the results presented in Tables (2 to 4) and
Figures (1 to 3), the ZIBE.pb model consistently outperformed the other models evaluated including both the
parametric ZIBE model and other semiparametric advanced models such as ZIBE.ps, reinforcing its superiority in
handling excess zeros. Its superior performance, consistency across different sample sizes, and ability to balance
model complexity and prediction accuracy make it a valuable tool for dealing with data containing excess zeros.
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Table 2. Estimated AIC, BIC, DVS, MAE, and RMSE values of all models when n = 150.

Model ZI
%

AIC DVS BIC MSE Est. Parametric part Nonparametric part

β̂1 β̂2 MAE RMSE MAE RMSE
Parametric ZIBE

15%
117.040 103.040 138.115 1.275 -0.390 0.370 0.141 0.176 − −

Semiparametric ZIBEpb -21.807 -50.316 21.107 0.998 -0.610 0.600 0.006 0.007 0.025 0.032
ZIBEps 0.530 -19.470 30.637 1.001 -0.540 0.620 0.049 0.055 0.226 0.259

Parametric ZIBE 156.235 142.235 177.310 1.285 -0.38 0.38 0.141 0.176 − −

Semiparametric ZIBEpb 30% 334.938 6.151 78.271 0.993 -0.61 0.61 0.005 0.006 0.021 0.029
ZIBEps 54.428 34.428 84.534 1.001 -0.53 0.63 0.048 0.055 0.225 0.258

Table 3. Estimated AIC, BIC, DVS, MAE, and RMSE values of all models when n = 300.

Model ZI
%

AIC DVS BIC MSE Est. Parametric part Nonparametric part

β̂1 β̂2 MAE RMSE MAE RMSE
Parametric ZIBE

15%
229.401 215.401 255.327 1.294 -0.71 0.45 0.149 0.184 − −

Semiparametric ZIBEpb -64.366 -95.074 -7.498 0.999 –0.6 0.6 0.014 0.018 0.066 0.081
ZIBEps -16.508 -36.508 20.529 1.002 -0.59 0.59 0.052 0.06 0.242 0.275

Parametric ZIBE 307.091 293.091 333.018 1.310 -0.72 0.45 0.149 0.184 − −

Semiparametric ZIBEpb 30% 52.199 21.288 109.443 0.996 -0.6 0.6 0.014 0.018 0.064 0.081
ZIBEps 93.043 73.043 130.081 1.005 -0.59 0.58 0.052 0.06 0.242 0.276

Table 4. Estimated AIC, BIC, DVS, MAE, and RMSE values of all models when n = 450.

Model ZI
%

AIC DVS BIC MSE Est. Parametric part Nonparametric part

β̂1 β̂2 MAE RMSE MAE RMSE
Parametric ZIBE

15%
351.652 337.652 380.417 1.305 -0.6 0.53 0.153 0.189 − −

Semiparametric ZIBEpb -104.369 -136.38 -38.598 0.999 -0.59 0.6 0.014 0.017 0.062 0.076
ZIBEps -31.714 -51.714 9.378 1.002 -0.53 0.66 0.052 0.06 0.245 0.278

Parametric ZIBE 466.234 452.234 494.999 1.32 -0.61 0.53 0.153 0.189 − −

Semiparametric ZIBEpb 30% 68.518 36.267 134.783 0.999 -0.59 0.61 0.014 0.017 0.063 0.075
ZIBEps 131.742 111.741 172.834 1.003 -0.54 0.66 0.052 0.06 0.244 0.277
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Figure 1. ZI=15%, n=150.

Figure 2. ZI=15%, n=300.

Figure 3. ZI=30%, n=450.

5. Empirical Application

To validate the proposed estimator’s efficacy, this section employs the comprehensive Varieties of Democracy
(V-Dem) dataset. There is a group of researchers who used this data, such as Vaccaro (2021), Treisman (2023)
and Ademi and Kimya (2024). Our empirical analysis focuses on a selected group of African countries: Mali,
Niger, and Burkina Faso to investigate the intricate relationship between political institutions and women’s
representation in parliament. Leveraging the V-Dem dataset, we examine the influence of specific political variables

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 DEVELOPING A SEMIPARAMETRIC ZERO-INFLATED BETA REGRESSION MODEL USING P-SPLINES

on the proportion of women in national legislatures over a historical period spanning from 1950 to 2015. This
research offers a novel perspective by applying a semiparametric ZIBE model with P-splines to analyze the
relationship between political institutions and women’s representation. By classifying variables, we selected the
optimal model, providing a more nuanced understanding of the complex relationships involved. The dataset
comprises 134 observations, with one response variable (Prop-fem): A measure of the proportion of women
in government, typically in parliament or other legislative bodies, and three explanatory variables (x1 to x3).
These explanatory variables are as follows: Civil Liberties: A measure of the extent to which individuals can
enjoy fundamental freedoms like speech, assembly, and religion without government interference. Corruption:
An indicator of the perceived level of corruption within a country’s government and public institutions. Quota:
A binary variable indicating whether or not a country has implemented a quota system to enhance women’s
representation in government. By analyzing the interplay between these political variables and the proportion of
women in parliament, we aim to shed light on the critical factors influencing women’s political participation in the
selected African countries. The descriptive statistics of the data variables in this study are given in Table 5.

Table 5. Descriptive statistics for the variables

Variable names Description sample size Mean SD
y Prop-fem

134
0.047 0.052

x1 Civil liberties 0.560 0.219
x2 Corruption 0.565 0.195
x3 Quota Binary: 1 = quota exists, 0 = quota does not exist).

Figure 4. Histograms of the response variables.

The histogram reveals a concerning lack of representation for women in parliaments, with a significant number
of countries having no women in their legislative bodies. This underscores the need for policies and initiatives to
promote gender equality in politics. As shown in Figure 4, the proportion of zeros in the dependent variable was
equal to 36.6%, meaning that 36.6% of the countries or regions represented in the data have no women in their
parliaments. This is a significant finding that highlights the underrepresentation of women in political leadership.

Figure 5 presents a correlation matrix illustrating the relationships among four variables: proportion of women
in government (Prop-fem), corruption, civil liberties, and quota. The heatmap indicates strong positive correlations
between Prop-fem and civil liberties (0.75), suggesting that countries with higher proportions of women in
government tend to have stronger civil liberties. Additionally, there is a moderate positive correlation between
Prop-fem and corruption (0.32), implying that countries with more women in government might also have higher
levels of corruption. Also, there is a moderate positive correlation between Prop-fem and quotas (0.52),this suggests
that countries with higher levels of women’s representation in parliament are more likely to use electoral quotas.
Interestingly, the correlation between quota and corruption is negative (-0.04), suggesting that implementing quotas
for women in government might not necessarily reduce corruption. Furthermore, the correlation between quotas
and civil liberties is positive (.34), indicating that quotas might not always promote stronger civil liberties.

Table 6 presents the results of a zero-inflated beta regression model, which analyzes the relationship between y
and the predictors x1, x2, and x3. The model reveals a linear relationship between y and both x1 and x3. However,

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MUHAMMAD M. SELIEM, MOHAMED R. ABONAZEL AND SAYED M. EL-SAYED 9

Figure 5. Correlation Matrix.

Table 6. Checking the relationships between the response and explanatory variables

Variables Estimate P-value R-square Expected Relation
x1 2.7170 0.000 0.19 Linear
x2 0.3581 0.472 0.004 Nonlinear
x3 0.93274 0.000 0.16 Linear

the relationship with x2 is nonlinear, possibly quadratic or logarithmic. This finding is further supported by the low
R2 values for x2 in Figure 6, suggesting that these variables have limited explanatory power. Based on these results,
we recommend including x1 and x3 as parametric terms in the final model, while treating x2 as a nonparametric
variable.

Table 7 presents the DVS, AIC, BIC, and MSE statistics for the fitted models. The ZIBE.pb model consistently
outperforms the others based on these metrics, indicating a superior fit to the data. Additionally, the R2 statistics
further confirm the ZIBE.pb model’s efficacy, demonstrating a higher proportion of the data’s variability explained
by this model compared to the alternatives.

Table 7. Fitted Regressions Model with Model selection measures

Model Systematic Components DVS AIC BIC MSE R²
Parametric Model

ZIBE µi = exp(β0 + β1x1 + β2x2 + β3x3) -192 -176 -153 1.12 0.44
Proposed-Semiparametric models

ZIBE.pb µi = exp(β0 + β1x1 + β2x3) + pb(x2) -457 -404 -328 0.98 0.92
ZIBE.ps µi = exp(β0 + β1x1 + β2x3) + ps(x2) -363 -324 -267 1.02 0.84

Figure 7 refers to the radar plot that compares the performance of three models (ZIBE, ZIBE.pb, ZIBE.ps)
across three metrics (BICwt, RMSE,AICwt). Each point on the radar represents a model’s performance for
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Figure 6. Scatter Plots of Explanatory variables vs. Response variables.

Figure 7. Comparison of Models Performance Indices.

a specific metric. In this plot, values closer to the outer edge indicate better performance. The ZIBE.pb model
emerges as the superior model, positioned closest to the outer edge for all metrics. Conversely, the ZIBE.ps falls
behind, particularly in RMSE where it’s significantly closer to the center. ZIBE exhibits a balanced performance
across the metrics, lacking any major weaknesses. In conclusion, the ZIBE.pb model demonstrates the best overall
performance based on the evaluated criteria. The provided likelihood ratio tests (LRTs) compare the fit of models.
In each test, the null model is simpler than the alternative model, with fewer degrees of freedom. Hypotheses based
on the LRT results as follows:

Hypothesis 1:

• Null Hypothesis (H0): The parametric ZIBE model is sufficient.
• Alternative Hypothesis (H1): At least one semiparametric model (ZIBE.pb or ZIBE.ps) is superior.

Hypothesis 2:

• Null Hypothesis (H0): There is no difference between ZIBE.pb and ZIBE.ps.
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• Alternative Hypothesis (H1): The semiparametric ZIBE.pb model is significantly better.

Table 8. LR tests

Test Models Hypothesis Statistic (w) P-value
Test 1 ZIBE vs ZIBE.pb Hypothesis 1 265.04 < 0.0001
Test 2 ZIBE vs ZIBE.ps 170.46 < 0.0001

Test 3 ZIBE.ps vs ZIBE.pb Hypothesis 2 94.581 < 0.0001

The likelihood ratio tests (LRTs) in Table 8 strongly support the use of the semiparametric ZIBE regression
model with a penalized spline estimator, pb(·). This suggests that pb(·) captures crucial nonlinear relationships in
the data, leading to a more accurate representation of the underlying data patterns compared to simpler models like
ZIBE and ZIBE.ps. Furthermore, all three LRTs reported in Table 8 show a highly significant rejection of the null
hypothesis (p− value < 0.0001), indicating that simpler models are insufficient. Tests 1 and 2 demonstrate that
both ZIBE.pb and ZIBE.ps outperform the basic ZIBE model. However, Test 3 further highlights the superiority of
ZIBE.pb, suggesting that the pb(·) term is crucial for accurately capturing the underlying data patterns.

Table 9. MLEs, SEs, and p-values for the fitted ZIBE.pb Model

Variables Parameter Estimate SE P-value
Mu link function: logit

Intercept β0 -4.6031 0.07674 < 0.0001
quotaTRUE β1 0.83517 0.04703 < 0.0001
civil liberties β2 2.15389 0.08848 < 0.0001
pb(corruption) β3 0.55147 0.03615 < 0.0001

Sigma link function: logit
Intercept α0 -2.4229 0.4936 < 0.0001
quotaTRUE α1 -4.7279 0.2482 < 0.0001
civil liberties α2 3.0542 0.5793 < 0.0001
pb(corruption) α3 -2.7139 0.5713 < 0.0001

Nu link function: log
Intercept Ψ0 5.3118 0.2297 < 0.0001
quotaTRUE Ψ1 -26.9885 20818.47 0.9
pb(corruption) Ψ2 -11.2625 1.0553 < 0.0001

Table 9 lists the MLEs, SEs, and p-values of the parameters for the fitted semiparametric ZIBE regression model
with penalized B-splines on the response variable. The results highlight the significant influence of both linear and
nonlinear predictors. Specifically, ”quotaTRUE” and ”civil liberties” were found to have positive impacts on both
the mean and dispersion parameters (p− values < 0.0001), suggesting that increasing these variables is associated
with higher values of the response variable and greater variability. Additionally, the penalized B-spline term for
”pb(corruption)” captured a significant nonlinear relationship with the response variable, indicating that the effect
of ”pb(corruption)” is not simply linear. These findings underscore the importance of employing flexible modeling
techniques to accurately capture complex relationships in the data. The graph in Figure 8, known as a moment
bucket plot, is used to assess the distribution of residuals from a statistical model. It plots the transformed moment
skewness against the transformed moment excess kurtosis. The normal region is a shaded area where residuals
are expected to fall if the model is well-specified and errors are normally distributed. In this specific case, the
residuals from the ZIBE.pb model is generally within the normal region, suggesting a good model fit and normally
distributed errors. However, a few points near the edge might require further investigation.

The graph in Figure 9(a), known as a detrended transformed Owen’s plot, is used to assess the distribution of
residuals from a statistical model. It plots the detrended transformed Owen’s residuals against the ordered quantile
residuals. The shaded area represents confidence intervals, and a horizontal line indicates the expected value under
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Figure 8. Moment Bucket Plot for Residual Diagnostics.

Figure 9. (a) Owen’s plot. (b) Q-statistics plot for Residual Diagnostics.

normality. In this specific case, most residuals fall within the confidence intervals, suggesting a good model fit
and normally distributed errors. However, a few points near the edges might require further investigation. The
Q-statistics plot is a diagnostic tool used to assess the normality of residuals in a centile estimation analysis as
shown in Figure 9(b). By visualizing the distribution of residuals across different Z-statistic ranges, the plot helps
identify potential deviations from normality. However, to draw definitive conclusions, additional information about
the sample size, the meaning of color-coded dots, and the specific context of the analysis is needed.

Figure 10 contains four diagnostic plots used to assess residual distribution. Plots (a), (b), and (c), which are
normal probability plots, suggest normality of residuals. Plot (d), a residual vs. index plot, shows no clear pattern,
indicating random distribution. Overall, the plots indicate normally distributed residuals, suggesting a well-fitted
model. Further, the worm plot presented in Panel (a) indicates that there is no evidence of inadequacies in the model
since all the residuals fall in the ‘acceptance’ region inside the two elliptic curves. This study has investigated
the complex relationship between political institutions and women’s representation in parliament within selected
African countries. By employing a semiparametric Zero-Inflated Beta Regression (ZIBE) model, we have identified
significant nonlinear and linear relationships between civil liberties, corruption, and women’s representation. Our
findings demonstrate that increasing civil liberties can lead to a more equitable political landscape. Additionally,
higher levels of corruption may be associated with greater female participation in government. While quota systems
alone may not directly influence women’s representation, they can create a more conducive environment for
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Figure 10. (a) Worm plot. (b-c) Residual Diagnostics. (d) Residuals vs. Order data.

female political participation. The semiparametric modeling approach used in this study provides a more flexible
and robust analysis than traditional parametric methods. Our results offer valuable insights for policymakers and
researchers seeking to promote gender equality and enhance women’s political participation.

6. Conclusion

This study introduces a semiparametric zero-inflated beta regression model that incorporates P-splines to predict a
dependent variable influenced by a non-parametric independent variable. The model effectively handles data with
zero-inflation levels of 15% and 30%. Comprehensive comparisons using AIC, BIC, deviance, MSE, and RMSE
metrics consistently demonstrate the superiority of the proposed model over alternative models, whether parametric
models such as ZIBE or semiparametric advanced models such as ZIBE.ps. Visualizations further support these
findings, showing closer alignment to the true function across various conditions. Simulation results reinforce the
model’s robustness and superior performance. The developing semiparametric zero-inflated beta regression model
with P-splines represents a substantial advancement in modeling proportional data characterized by excessive zeros
and intricate relationships. By adeptly capturing both linear and nonlinear patterns, this model surpasses existing
approaches in terms of model fit and predictive power. Rigorous evaluation using AIC, BIC, DVC, MAE, and
RMSE consistently affirmed the superiority of the proposed model. Its flexibility renders it an invaluable tool for
researchers across diverse fields confronted with zero-inflated data. Future research should explore extensions to
accommodate intricate data structures, such as correlated observations or time-varying covariates, to expand the
model’s applicability.
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