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Abstract With the large-scale integration of renewable energy (RE) sources and rapid advancements in smart grid (SG)
technologies, the efficient integration of diverse energy resources to achieve supply-demand balance and maximize cost-
effectiveness has emerged as a research hotspot in the energy sector. This paper addresses the real-time scheduling challenge
in integrated energy systems (IES) within the context of SG, emphasizing pivotal factors such as electric and thermal load
scheduling, energy storage control, dynamic electricity pricing, carbon emission mechanisms, and demand response (DR). To
this end, we propose a comprehensive scheduling model tailored for IES, aiming to minimize the total cost over the dispatch
cycle. Furthermore, an optimal scheduling algorithm based on approximate dynamic programming (ADP) was designed to
solve this model. Numerical experiments reveal that, while ensuring user comfort, the proposed real-time scheduling scheme,
by comprehensively considering the interactions among various system inputs, significantly enhances system flexibility and
economic performance. It effectively tackles the uncertainty of RE, thereby improving energy utilization efficiency.
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1. Introduction

Smart grids (SG) are at the core of the future power system, leveraging advanced information, communication,
and control technologies to supply electricity from power plants to active consumers in a controlled and intelligent
manner [1]. As confirmed by some recent studies [2, 3, 4], SG is combined with an integrated energy systems (IES,
which is a single entity for the integration of distributed energy sources within the local energy system). It enables
efficient, real-time, and flexible dispatch of diverse energy sources, including electricity, cooling, and heating, to
tackle the challenges of growing global energy demand and structural diversification [5, 6]. In reality, it is also
widely adopted in industrial parks, urban areas, and public buildings, driven by numerous smart energy dispatch
models.

Along with the accessibility of SG, coupled with advancements in smart home technologies, and the
implementation of time-varying energy pricing models, the establishment of IES in SG is imminent, both
economically and environmentally speaking. This integration fosters effective energy utilization, and has the
potential to reduce carbon emissions, strengthen energy security and operational flexibility. Extensive works have
researched on modeling and optimizing the dispatch of IES [7, 8].
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Zhou et al. [7] proposed a day-ahead scheduling strategy for an IES in the context of joint energy and ancillary
service markets, which takes into account the uncertainty of energy market prices and renewable energy (RE)
(e.g., wind power and solar power generation, which can be represented by the abbreviations of wind turbine and
photovoltaic, WT and PV). To address these challenges, Wang et al. [8] quantitatively defined the fluctuations and
uncertainty of IES, exemplified by the application of energy storage systems, which is also aimed at mitigating
climate change and enhancing the penetration of RE. Guo et al. [9] developed an economic-environmental
dispatch scheme for IES of industrial energy park using a hybrid approach, with the objective of minimizing
the total operating costs of energy parks and reducing carbon dioxide emissions. With the development of artificial
intelligence (AI), many scholars use AI-assisted methods to study problems, such as [10, 11, 12, 13, 14].

As mentioned, incorporating numerous RE units into the IES within SG, while offering flexibility and
sustainability, can lead to significant power fluctuations due to the intermittency, uncertainty, etc. of RE. Day-
ahead scheduling and real-time scheduling are important parts of the operation and management of the power
system to ensure its safe, stable and efficient operation. For example, to handle the uncertainties of RE resources
and variety load demands, Cheng et al. [15] proposed a multi-time scale dynamic robust optimal scheduling strategy
to minimize the intraday operating cost. To better compensate for the unpredicted disturbances and incorporate the
real-time information, they also introduced a rolling optimization strategy to adjust the real-time power deviation.
The main difference between the two is that the former scheduling cycle is 24h, which provides guidance for the
operation of the power system on the following day. The latter is more delicate in terms of time scale and needs to
be based on the ultra-short-term forecast data of new energy and load, and responds quickly to sudden failures by
adjusting the power generation output, cutting load and other measures [16].

Essentially, real-time scheduling poses as a multi-stage sequential optimisation problem, requiring optimal
decisions at each stage based on current states and future predictions. Dynamic programming (DP), a prevalent
approach to tackle this, enabling the construction of scheduling strategies that swiftly adapt to uncertainties and
offer optimal solutions [17]. However, its applicability diminishes with large-scale problems due to the fact that
we have to loop overall the possible states, decisions and outcomes in the state space. Accordingly, approximate
dynamic programming (ADP), by incorporating approximation techniques, can effectively reduce computational
complexity and sacrificing optimality for faster solution speed within an acceptable range [18].

With consideration of the uncertainty of long-term system load growth and short-term power fluctuations,
Sun et al. [19] presented a flexible distribution system expansion planning model. Based on the ADP idea, they
decomposed the original multi-stage optimization problem into successive subproblems to simplify the complex
solution process. Similarly, Korkas et al. [20] developed an intelligent distributed control approach, which utilize
a feedback-based optimization scheme, to get the optimal energy dispatch and operation cost of grid connected
buildings. Pan et al. [21] employed an improved ADP approach to investigate risk-averse real-time dispatch within
integrated power and heat systems.

For the dynamic process of combined-cycle gas turbine, Lin et al. [16] proposed a new real-time optimization
algorithm based on ADP, which was experimentally shown to be superior to other algorithms in terms of economy
and computational efficiency. Liang et al. [22] devised an improved ADP algorithm that account for coupled source-
output and load-demand power balance among multiple adjacent time intervals. Zhao et al. [18] tailored state-space
approximate dynamic programming (SS-ADP) to quickly generate day-ahead functions and solve smart home
energy management problems via the Bellman equation [23]. Pan et al. [24] investigated the real-time dispatch
of IES with thermal and electrical storages, using a hybrid approach combining stochastic dynamic programming
and imitation learning. The approach tackles high dimensions of stochasticity and complexity by utilizing value
function monotonicity, and imitative learning to facilitate off-line pre-learning.

To address the intermittency and uncertainty of RE in SG, we have devised a comprehensive scheduling model
for IES, incorporating strategies such as demand response (DR) [25]. This model not only leverages clean energy
sources like PV and WT but also accounts for factors like carbon dioxide emissions and DR, striving for more
environmentally friendly and cost-effective energy management. Among them, DR serves as a pivotal tool of
demand-side management, guiding users to adjust their energy consumption patterns. This, in turn, fosters synergy
among multi-energy synergy within the IES, enabling a more agile response to fluctuations in energy supply
and demand. The proposed optimal dispatch algorithm in our work dynamically adjusts the operational states of
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various energy equipment, enabling intelligent real-time scheduling that minimizes total costs within the scheduling
horizon. The main contributions of this paper are as follows:

• A novel multi-energy system scheduling model integrating RE utilization, environmental impacts, and DR
mechanisms is proposed, which provides a comprehensive view of IES scheduling.

• Based on the ADP method, an efficient optimal scheduling algorithm capable of intelligent real-time
scheduling is designed. By dynamically adjusting the operating strategies of gas turbine (GT), battery storage
(BS), thermal storage (TS), PV, and WT, the algorithm adapts to the ever-changing energy supply and demand
scenarios.

• Experimental results demonstrate that our proposed method can effectively schedule various energy supply
devices to meet both electrical and thermal load demands, while guaranteeing the comfort of the users, as
well as significantly reducing the the operating cost of IES and improve the energy efficiency.

The rest of this paper is organized as follows. The mathematical model and real-time dispatch framework of IES
are presented in Section 2. In Section 3, we design a new algorithm as well as analysis for the proposed model.
Section 4 conducts case studies. In Section 5, we draw conclusions.

2. Model

This section begins with an overview of the architecture of an IES in SG, which is capable of delivering both thermal
and electrical energy. Subsequently, from a technical point of view, it describes all the constraints associated with
each component included in our model.

2.1. The structure of IES

In SG, given the intermittency and uncertainty, we have devised an IES incorporating diverse energy sources. This
is realized by deploying GT, PV, WT and other energy devices to provide heat and electricity. Figure 1 illustrates
the IES configuration. To enhance the complementarity of various energy sources and improve the flexibility and
reliability of the IES, a multi-level scheduling model is developed. This model integrates DR into an effective
load management strategy, alongside a carbon reduction strategy aimed at optimizing the energy mix, effectively
reducing energy consumption and carbon emissions.

The model aims to optimize the scheduling of electricity and thermal energy, minimize system operational costs
while ensure energy load demands are met, through coordinated dispatching of various energy devices. It provides
real-time scheduling solutions. The objective function is to minimize the total costs incurred within the scheduling
period, encompassing costs associated with grid, BS, TS, PV, WT, GT, EH, DR and carbon emissions.

2.2. Constraints

(1) Energy storage It consists of two types of devices: BS and TS. This model can solves the conflict between
energy supply and demand, and improves the security and stability of the IES by capturing excess energy generated
during peak periods and releasing it during high demand or low peak periods.

Electrical storage For BS-based electrical energy storage, the following constraints are satisfied.

0 ⩽ PBS
ch,t ⩽ aBS

ch,tP
BS
max,ch,∀t ∈ T , (1)

0 ⩽ PBS
dc ⩽ aBS

dc,tP
BS
max,dc,∀t ∈ T , (2)

aBS
dc,t + aBS

ch,t ⩽ 1,∀t ∈ T , (3)

where the battery charging and discharging power is constrained by the upper and lower limits in Eq. (1)-(2), and
cannot be charged and discharged simultaneously, yields Eq. (3).

Correspondingly, Eqs. (4)-(5) show the current energy level EBS,t of BS and its capacity limits at time t.
Specifically, Eq. (4) shows the variation of energy stored in BS, where the amount of electricity stored in the
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Nomenclature

Indices
∆t Time interval
Abbreviations
ADP Approximate dynamic program-

ming
BS Battery storage
TS Thermal storage
PV Photovoltaic power generation
WT Wind turbine power generation
GT Gas turbine
EH Electricity to heat equipment
Binary variables
aBS
ch/dc,t State of charging/discharging at t-

th time slot, 0(off)/1(on)
aTS
ch/dc,t State of absorbing/releasing heat

energy, 0(off)/1(on)
aGT
t Integer variables representing

the operational state of GT,
0(off)/1(on)

u(t) Binary variable of generator, 1 if on
otherwise 0

Variables
PBS
ch/dc,t Charging/discharging power of BS

at time-slot t
EBS

t Energy stored in BS at time-slot t
HTS

ch/dc,t Absorbing/releasing power of TS
ETS

t Energy stored in TS at time-slot t
P

PV/WT
t Output power of the PV pan-

els/wind turbine
P grid
t Purchased amount of power from

grid
PGT
t Output power of gas turbine

HGT
t Generated heat of gas turbine

HEH
t Heat power generated by EH

PEH
t Electricity power used to generated

heat by EH
P IL
t Interrupted electrical load for time

period t
P load
ini,t Initial electrical load in time-slot t

Sets and parameters
εgridt Purchase price of electricity from the grid
LPower(t) Electrical load
LHeat(t) Thermal load
PBS
max,ch/dcMaximum charging/discharging power of

BS
EBS

max /min Upper/lower limit of power stored in BS
ηBS Energy loss factor of BS
ηBS
ch/dc Chagrining/discharging efficiency of BS
εBS/TS Operation cost coefficient of BS/TS
HTS

max,ch/dcMaximum absorbing/releasing power of
TS

ETS
max /min Upper/lower limit of energy stored in TS

ηTS Energy loss factor of TS
ηTS
ch/dc Absorbing/releasing efficiency of TS
ηpv Power generation efficiency of PV
Spv The area of PV
Ipv(t) Uncertain solar radiation parameter
T out
t Outdoor temperature of building at time

slot t (°C)
ηGT
e Electrical efficiency of gas turbine
λ Heat value of natural gas
ηGT
h Heat efficiency of gas turbine
PGT
max /min Maximum/Minimum output generated

power of GT
P

RD/RU
min Maximum ramp-down/ramp-up power of

generator
εGT Operation cost coefficient of GT
εPV/WT Operation cost coefficient of PV/Wind

turbine
P PV/WT
max,t Maximum generate power of PV/Wind

turbine
P grid
max Maximum purchased amount of power

from grid
ηEH Electricity to heat efficiency
εEH Opeartion cost of EH
kGT/grid Carbon emission of GT/grid
εCO2 Unit cost of carbon emission
εDR Unit penalties for DR
P IL
max Maximum interruptable electricity load

P load
max Maximum initial electricity load

current moment is related to the previous moment, which includes: the first term, the actual power after charging
and discharging at t-th time slot; and the second term, the remaining stored power at t− 1. The capacity of BS
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Figure 1. IES structure diagram.

cannot exceed its minimum/maximum in Eq. (5).

EBS
t =

(
ηBS
ch,tP

BS
ch,t −

PBS
dc,t

ηBS
dc

)
∆t+ (1− ηBS)EBS

t−1,∀t ∈ T , (4)

EBS
min ⩽ EBS

t ⩽ EBS
max,∀t ∈ T . (5)

Therefore, the operating cost of BS is derived as follows:

CBS
t = εBS

(
PBS
ch,t + PBS

dc,t

)
∆t, ∀t ∈ T . (6)

Thermal storage Similar to BS, TS is used to capture surplus heat energy over a period of time and releases it
into the system when required.

0 ⩽ HTS
ch,t ⩽ aTS

ch,tH
TS
max,ch,∀t ∈ T , (7)

0 ⩽ HTS
dc,t ⩽ aTS

dc,tH
TS
max,dc,∀t ∈ T , (8)

aTS
ch,t + aTS

dc,t ⩽ 1,∀t ∈ T . (9)

The absorbing/releasing heat of TS is constrained by its lower and upper bounds in Eqs. (7)-(8), and it also cannot
absorb and release heat simultaneously, yields Eq. (9).

ETS
t =

(
ηTS
c HTS

c,t −
HTS

d,t

ηTS
d

)
∆t+

(
1− ηTS

)
ETS

t−1,∀t ∈ T , (10)

ETS
min ⩽ ETS,t ⩽ ETS

max,∀t ∈ T . (11)

The existing energy capacity of storage in Eq. (10), is dependent on prior energy level of the storage ETS
t−1, the

absorbing heat with efficiency ηTS
ch and the releasing heat ηTS

dc . To protect the equipment, the storage capacity of TS
must strictly follow Eq. (11).
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Thus, the operating cost of TS is:

CTS
t = εTS

(
PTS
ch,t + PTS

dc,t

)
∆t,∀t ∈ T . (12)

(2) Renewable energy It provides clean energy for IES operation. We consider two types of RE generation
equipments: WT and PV. Due to the limitations of the devices, the following constraints are imposed on the output
power.

0 ≤ PPV
t ≤ PPV

max,∀t ∈ T , (13)
0 ≤ PWT

t ≤ PWT
max ,∀t ∈ T , (14)

where PPV
t and PWT

t are the generated power of PV and WT, respectively. Therefore, the cost of generating RES
include the above two components, i.e.

CRES
t = εPVPPV

t + εWTPWT
t ,∀t ∈ T . (15)

(3) Grid Our model is capable of exchanging power with the grid to meet demand. Specifically, the power
purchased from the grid satisfies the constraint in Eq. (16). It is noteworthy that electricity prices, denoted by εgridt ,
vary over time as shown in Table 1. Eq. (17) is the cost of purchasing electricity.

0 ≤ P grid
t ≤ P grid

max ,∀t ∈ T , (16)

Cgrid
t = εgridt P grid

t ,∀t ∈ T . (17)

Table 1. Grid TOU price.

Periods Specific time Purchase(CNY)
Valley 1-7, 24 0.4
Flat 8, 12-18 0.5
Peak 9-11, 19-23 0.7

(4) Gas turbine During the GT process, substantial amounts of high-temperature waste heat is generated, which
is converted into hot water or steam for heating through the circulating medium within the flue gas heat exchanger.
It is often used as a peaking device to further relieve the IES of heat, power stress and peaking needs.

aGT
t PGT

min ≤ PGT
t ≤ aGT

t PGT
max,∀t ∈ T , (18)

aGT
t PRD

min ≤ PGT
t − PGT

t−1 ≤ aGT
t PRU

max,∀t ∈ T , (19)

HGT
t =

PGT
t

ηGT
e

ηGT
h ,∀t ∈ T , (20)

CGT
t =

εGT

ηGT
e λ

PGT
t ,∀t ∈ T , (21)

where aGT
t is a binary variable showing the status of GT (on–off). Eq. (18) implies the range of fluctuations in GT

generation PGT
t at time period t. The symbols PRU

max and PRD
min in Eq. (19) are upper and lower allowable rates of

the GT climbing. Correspondingly, the heat generated by GT in the power generation process is given by Eq. (20),
where ηGT

e is the power generation efficiency of GT and ηGT
h is the heat generation efficiency. Therefore, the cost

of GT is in Eq. (21).
(5) Electricity-to-heat To cater to the demand for heat energy supply from end-users on the demand side, flexible

electric-to-heat devices, such as electric heaters and electric boilers, are indispensable.
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6 REAL-TIME SCHEDULING OPTIMIZATION OF INTEGRATED ENERGY SYSTEMS

0 ≤ PEH
t ≤ PEH

max,∀t ∈ T , (22)
HEH

t = ηEHPEH
t ,∀t ∈ T , (23)

CEH
t = εEHPEH

t ,∀t ∈ T , (24)

where the symbol ηEH is the electric-heat ratio of EH. The electric-heat conversion relationship is in Eq. (23) , and
its cost is in Eq. (24).

(6) Carbon emission mechanism It encompasses both the grid and GT carbon emissions, with the aim of
incentivizing energy producers and consumers to reduce the use of fossil fuels and increase the adoption of RE.

CCO2
t = εCO2

(
kGTP

GT
t + kgridP

grid
b,t

)
,∀t ∈ T , (25)

where kGT/grid is CO2 emissions per unit of electricity generated in the GT/grid, and P
grid
b,t denote the amount of

electrical power purchased by IES from the main grid at t-th time slot.
(7) Demand response During peak periods of electricity consumption, users would stop power consumption

according to the relevant incentive policies of SG to alleviate the pressure of power supply during peak periods and
reduce their own energy consumption costs. The relevant constraints for interruptible loads (IL) can be described
as follows:

0 ⩽ P IL
t ⩽ P IL

max,∀t ∈ T , (26)

0 ≤ P load
t = P load

ini,t − P IL
t ≤ P load

max,∀t ∈ T , (27)

CDR
t = εDRP IL

t ,∀t ∈ T , (28)

where P load
T and P load

ini,t imply the total actual (after DR) and initial (before DR) power loads in the period t,
respectively. Eqs. (26) and (27) ensure that end-users have limited IL in per unit time and needs to meet certain
load demand.

(8) Energy balance The balance between supply and demand of multiple energies needs to be satisfied while
reducing the operating cost of IES. The following are the constraints on the balance of supply and demand for
electricity and heat that should be met by IES.

Power balance The left term is the total power supply, and the right is the total demand.

PGT
t + P PV

t + PWT
t + P

grid
t + PBS

dc,t = P load
t + PBS

ch,t + P EH
t ,∀t ∈ T . (29)

Heat balance Similar to Eq. (29), the left equation is the total heat supply and the right is the heat demand.

HEH
t +HGT

t +HTS
dc,t = HTS

ch,t +H load
t ,∀t ∈ T . (30)

2.3. Objective funtion

For the IES, there hope to meet various energy requirements with as little cost as possible. Therefore, the objective
function is to minimize the total cost within one cycle (set |T | = 24 hours):

F = min
X

∑
t∈T

Ct, (31)

where Ct is the objective function in time t ∈ T and denote as

Ct = CBS
t + CTS

t + CRES
t + C

grid
t + CGT

t + CEH
t + CCO2

t + CDR
t .
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3. Algorithm and analysis

(1) IES state It comprises external uncertain information Wt and the resource state Rt at each time t ∈ T , i.e.
St = {Wt, Rt}.

The symbol Wt is used to portray exogenous uncertainty information at the moment t, as shown in Eq. (32). In
this context, electrical, and heat loads, maximum PV/WT output, and real-time prices are assumed to be stochastic,
with their actual values unknown to IES in advance. The resource state Rt is the energy stored in TS and BS at
time period t as shown in Eq. (33).

Wt =
{
ε

grid
t , P load

ini,t , H
load
t , PPV

max,t, P
WT
max,t

}
, (32)

Rt =
{
ETS

t , EBS
t

}
. (33)

(2) Decision variable At time-slot t, the IES operator makes decisions based on the realized stochastic factors
at the current stage and their future uncertainties. The real-time dispatch decision Xt is defined as,

Xt =
{
P

grid
t , P PV

t , PWT
t , PGT

t , PBS
ch,t, P

BS
dc,t, P

EH
t , HGT

t , HTS
ch,t, H

TS
dc,t, a

BS
ch,t, a

BS
dc,t, a

TS
ch,t, a

TS
dc,t, a

GT
t , P IL

t

}
.

(3) State transition Once the status of IES and scheduling decisions are known, the state transition can be
defined as follows:

EBS(t) = (1− ηBS)E
BS(t− 1) +

(
ηBS,cP

BS
c (t)− PBS

d (t)

ηBS,d

)
∆t, ∀t ∈ T ,

ETS(t) = (1− ηTS)E
TS(t− 1) +

(
ηTS,cH

TS
c (t)− HTS

d (t)

ηTS,d

)
∆t, ∀t ∈ T .

Therefore, the optimal policy at time-slot t can be determined by solving the following equation,

Xt = argmin
Xt

Ct. (34)

Based on the ADP algorithm, we proposed a new algorithm which focus on the optimal strategy for the current
moment to solve the IES model. The procedures of real-time IES dispatch are shown in Figure 2. After recognizing
the state information of the IES, the algorithm reacts to any realization of exogenous information and obtains
near-optimal real-time scheduling by solving Eq. (34) step by step.

The detailed algorithm is described in Algorithm 1. It iterates with an hourly time step, initializing at t := 1 and
then proceeding through the iterative process. In each iteration, it takes in the current state at that moment and solves
a cost minimization problem to obtain scheduling decisions based on the current external and state information.
Following this, the system state is updated according to the obtained decisions, and the process iterates until the
completion of the 24-hour. Finally, the optimal solution calculated over the entire cycle is output. Compared with
other algorithms, our algorithm does not need additional prediction information to obtain the best scheduling policy
at each moment, so it is more suitable for real-time scheduling scenarios both computationally and operationally.

4. Case study

The test system of the IES consists of a variety of generation and storage components such as BS, TS, PV, WT,
EH and grid. The test system configuration is presented in Table 2, and the electrical and heat loads are designed
to reflect typical daily variations in IES. Figure 3 illustrates the 24-hour variation trends of electric and heat loads.
In daily life, the price of electricity purchased from the grid varies over time, and the real-time electricity price are
set in Table 1.
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Figure 2. Optimal real-time dispatch flow diagram.

Under varying environmental conditions, the maximum power generation capacities of PV and WT systems
differ significantly. The maximum power output for the PV system (PPV

max,t) is determined based on the irradiance
levels during peak sunlight hours, typically occurring between 12:00 and 14:00. For this scenario, it is assumed that
the PV system operates at a peak capacity of 700 kilowatts (kW) on sunny days. Similarly, the maximum output
of WT (PWT

max,t) is based on optimal wind speeds, which are assumed to be 12 m/s, corresponding to a maximum
generation of 600 kW.

The case study is actually implemented on VsCode 1.85.2 using Python 3.9 and CPLEX 22.1.1. The whole
experiment is implemented on a PC with an Intel(R) Core(TM) i5-9300H CPU at 2.40GHz and 8 GB RAM.

4.1. Results analysis of energy dispatch

This section provides a comprehensive analysis of the energy dispatch results for a single day scenario, focusing
on electrical and thermal energy conservation, state transitions of BS and TS, and detailed cost analysis of energy
devices.

4.1.1. Electrical energy conservation Given the uncertainty of renewable energy (RE) and the scheduling
capability of residential hubs, a key requirement for the IES is to keep a balance between supply and demand while
ensuring user “comfort” (i.e., meeting normal demand). From Figure 4, the total electrical demand is satisfied by
the combined output of the PV, WT, BS, GT and grid at each time t.

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Algorithm 1 Optimal Real-time Dispatch
Input: Initial system state S1, maximum time horizon T .
Output: Dispatch result X = {X1, . . . , XT }.

1: X ← ∅.
2: for t = 1 to T do
3: Step 1: State Formation
4: Identify the external uncertain information Wt in Eq. (32).
5: Measure the current resource state Rt = {EBS

t , ETS
t } in Eq. (33).

6: Obtain IES state St ← {Wt, Rt}.
7: Step 2: Solve Optimal Decision
8: Xt ← argminXt∈Πt (Ct(St)).
9: Compute the cost function Ct(St, Xt).

10: Step 3: Update Resource State
11: EBS

t+1 ←
(
ηBS
ch,tP

BS
ch,t −

PBS
dc,t

ηBS
dc

)
∆t+ (1− ηBS)EBS

t .

12: ETS
t+1 ←

(
ηTS
c HTS

c,t −
HTS

d,t

ηTS
d

)
∆t+ (1− ηTS)ETS

t .
13: Step 4: Update Decision
14: X ← X ∪ {Xt}.
15: end for
16: Output the complete set of dispatch decisions X = {X1, . . . , XT }.

Figure 3. 24-hour variation of electric and heat load of PV and WT.

From Figure 5, it’s obviously that the RES is the main power supply unit, accounting for 40%, followed by the
grid 37%, GT 22% and BS 1%. For the electricity demand, in addition to the 67% of normal electricity demand,
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10 REAL-TIME SCHEDULING OPTIMIZATION OF INTEGRATED ENERGY SYSTEMS

Table 2. The configuration of the test system.

Parameter Value Parameter Value

PBS
max,ch 400 (kW) PBS

max,dc 400 (kW)

EBS
max 1000 (kWh) EBS

min 400 (kWh)

ηBS
ch 0.96 ηBS

dc 0.96

ηBS 0.05 εBS 0.01 (CNY/kWh)

HTS
max,ch 600 (kW) HTS

max,dc 600 (kW)

ETS
max 1000 (kWh) ETS

min 400 (kWh)

ηTS
ch 0.98 ηTS

dc 0.98

ηTS 0.05 εTS 0.05 (CNY/kWh)

εPV
max 0.1 (CNY/kWh) εWT

max 0.1 (CNY/kWh)

P grid
max 1000 (kWh) PGT

max 1000 (kWh)

PRU
max 300 (kW) PRD

min -300 (kW)

ηGT
h 0.3 ηGT

e 0.5

λ 8 (kWh/m3) εGT 2.7 (CNY/m3)

PEH
max 1000 (kWh) ηEH 0.8

εEH 0.08 (CNY/kWh) εCO2 0.1 (CNY/m3)

kGT 0.4 (kWh/m3) kgrid 0.5 (kWh/m3)

P IL
max 8 00 (kWh) P load

max 1500 (kWh)

εDR 0.2 (CNY/kWh)

31% of the electricity is used for heating, and only 2% of the electricity is storaged to BS. Considering the cost of
energy storage equipment and energy loss, it is not cost-effective to equip mini-grids with BS devices, which can
save the construction, operation and maintenance costs of the small-scale power grids.

4.1.2. Thermal energy conservation Figure 6 illustrates the 24-hour variation in thermal generation and
consumption, and it’s obvious that the IES can keep the balance under the model by adjusting TS, EH and GT.
From Figure 7, it can be seen that the EH is the main heat supply unit accounting for 64%, followed by GT 33%
and TS 3%. In the IES, the TS has a minimal impact on maintaining the balance between supply and demand.
Considering the system configuration cost and operation cost of TS, it suggests that there is no need TS for the
small-scale IES.

4.2. Demand response

In practical scenarios, IES cannot meet the demand indefinitely, due to the inherent functional limitations of the
device. When the demand are out of the system’s reach, then a demand response mechanism is needed to balance
supply and demand. From Figure 8, it’s obvious that the model can control normal operation within the system
capacity range (1500kWh), which can ensure the safe operation of the IES.
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Figure 4. Electricity balance of optimal dispatch: 24-hour variation of electrical energy generation and consumption.

(a) (b)

Figure 5. Electricity energy composition proportion.
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Figure 6. Thermal balance of optimal dispatch: 24-hour variation of thermal energy generation and consumption.

(a) (b)

Figure 7. Thermal energy composition proportion.

4.3. Cost analysis

The cost analysis for energy dispatch is presented in Table 3, which summarizes the operational costs for various
energy devices, including electricity purchased from grid and released by BS, TS, PV, WT, GT and EH, and the

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Figure 8. Energy dispatch of demand response.

penalty cost of DR. The results indicate that purchasing electricity from the grid incurs the highest cost, while
discharging stored energy from BS and TS systems provides a cost-saving mechanism, particularly during peak
demand periods.

Table 3. Cost analysis of energy devices for a single day scenario.

Energy device Operational cost (CNY/kWh)
BS 9.9307
TS 49.3131
PV 507.0000
WT 836.8000
Grid 7241.7259
GT 4851.0682
EH 820.0801

CO2 901.5834
DR 2624.2466

5. Conclusion

The intermittency and uncertainty of the RES is a challenge to keep the stability of the IES. Real-time scheduling
requires decisions to be made in a short period of time to respond to unexpected events. For these problem,
this paper proposes a thermal-electric storage IES model, considering the DR mechanism and carbon emission
mechanism, and employs an real-time programming to address the real-time dispatch problem of IES.

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Dispatch results demonstrate the effectiveness of utilizing RE (e.g., PV and WT) in conjunction with energy
generation system GT and EH, and energy storage system (BS and TS) to maintain energy balance and minimize
the total operation costs. By combining the grid, GT and EH, IES can fully and safely utilize RE and maintain the
energy balance. Under the DR mechanism, IES can safely and stably operation under its capacity. The results also
show that the storage system are little useful in IES. Considering the economic befits, it may be better to not use
storage system in small scale IES.

With the AI development, there are many researches study the combination of AI and ADP to solve the multi-
stage stochastic decision problem. These can be used to further solve the real-time scheduling problem of IES.
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