
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0–21.
Published online in International Academic Press (www.IAPress.org)

Integrating LSTM and LOF: A Comprehensive Approach to Anomaly
Detection in Healthcare Data

Heba Mostafa *, Mohamed Abd Allah Makhlouf, Hossam Refaat, Basel Hafiz

Department of Information System, Suez Canal University, Egypt

Abstract The Internet of Medical Things (IoMT) has grown substantially, facilitating extensive time series data
accumulation within healthcare environments. Detecting anomalies within IoMT time series data is critical for identifying
potential health hazards and ensuring patient safety. This study investigates the efficacy of merging Long Short-Term
Memory (LSTM) neural networks with the Local Outlier Factor (LOF) algorithm for anomaly detection in time series data.
LSTM networks are adept at grasping extended dependencies in sequential data, while LOF represents a potent unsupervised
outlier identification technique. We introduce a unique methodology that capitalizes on the strengths of both LSTM and
LOF to heighten anomaly detection accuracy. The proposed technique undergoes assessment via experiments on actual
IoMT datasets including WUSTL-EHMS and Thyroid Diff, demonstrating consistent performance across diverse healthcare
scenarios. A real-time simulation was conducted to assess the feasibility of deploying the framework in practical IoMT
environments. Through comprehensive experimentation and analysis, we show its effectiveness. The results of the proposed
method reveal a promising ability to precisely pinpoint anomalies, offering a valuable resource to healthcare professionals
to quickly identify irregular patient conditions.

Keywords Anomaly detection, Long Short-Term Memory (LSTM), Local Outlier Factor (LOF), Time series data, Internet
of Medical Things (IoMT)

DOI: 10.19139/soic-2310-5070-2206

1. Introduction

1.1. Background

The Internet of Medical Things (IoMT) represents a transformative advancement in healthcare, enabling the
interconnection of medical devices and systems for continuous monitoring, analysis, and sharing of patient health
data. The vast amounts of time-series data obtained from IoMT devices can provide valuable insights into patient
conditions. Anomalies, or outliers, are data points that deviate significantly from expected patterns, often signaling
critical issues such as patient health deterioration, system failures, or cybersecurity threats. Accurate anomaly
detection is vital for proactive measures in healthcare and other domains, including finance, industrial monitoring,
and network security. However, detecting anomalies in IoMT time series data remains a challenge. This literature
review investigates the combination of Long Short-Term Memory (LSTM) and Local Outlier Factor (LOF)
techniques for anomaly detection in time series IoMT data. The proliferation of data across industries has made
anomaly detection a crucial task for ensuring system security, reliability, and efficiency. Anomalies, or outliers, are
data points that deviate significantly from the norm, often signaling critical issues like fraud, network intrusions,
or system failures. Accurate anomaly detection is vital for proactive measures in diverse fields, including finance,
healthcare, industrial monitoring, and cybersecurity (1)(2).

∗Correspondence to: Heba Mostafa (Email: heba.mostafa8989@gmail.com).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press

1

1.2. Challenges in Anomaly Detection

Often based on statistical techniques like the Z-score and ARIMA models and rule-based systems, traditional
anomaly detection methods struggle with modern datasets’ complexity and evolving nature (3). Machine learning,
especially deep learning, offers a promising solution by learning intricate patterns from large datasets. However,
challenges such as imbalanced data and the need for real-time detection remain (1)(2). Deep learning models,
including RNNs and GANs, have shown potential in addressing these challenges. They are applied in various
domains, such as industrial monitoring, finance, healthcare, and network security.

1.3. Deep Learning for Anomaly Detection

LSTM networks, a type of recurrent neural network (RNN), are well-suited for processing sequential data and
detecting anomalies in time series data. Their ability to learn long-term dependencies and retain information over
extended periods makes them particularly effective at identifying deviations from expected patterns (4). LSTM
networks excel at detecting anomalies in time series data by analyzing sequential observations and identifying
deviations from expected patterns. By learning from historical data, LSTM models can predict future values and
flag anomalies that significantly diverge from these predictions. Despite their success, standalone LSTM models
face limitations in high-dimensional datasets, where they may overfit noise or spurious correlations, leading to
false positives. These challenges can be mitigated through techniques such as regularization, data augmentation,
and carefully designed architectures. However, further improvements are needed to enhance their reliability and
interoperability.

1.4. Unsupervised anomaly detection

In addition to neural networks, unsupervised anomaly detection algorithms such as Local Outlier Factor (LOF)
have gained popularity for their ability to identify outliers in high-dimensional data, including time series. LOF
measures the local density deviation of a data point concerning its neighbors, allowing it to detect anomalies based
on deviations in local density patterns (5)(6). Unlike supervised methods, LOF does not require labeled data, which
is advantageous in healthcare environments where anomalies are rare and labels may not always be available.

1.5. Hybrid Approaches: Combining LSTM with LOF

To overcome the limitations of LSTM alone, hybrid models Combining LSTM and LOF offer a promising
approach to anomaly detection in time series data, leveraging the strengths of deep learning for capturing complex
temporal patterns and the robustness of outlier detection algorithms for identifying anomalies. The LOF algorithm,
which identifies anomalies based on local density, can be integrated with LSTM to leverage their strengths. This
combination is particularly effective in detecting both global and local anomalies, enhancing the overall robustness
and accuracy of the detection process. Additionally, integrating LOF provides interpretability by assigning density-
based anomaly scores, aligning with the growing demand for explainable AI in healthcare applications.

1.6. Objectives of the study

The primary objective of this study is to develop and evaluate a hybrid anomaly detection model that combines
the strengths of LSTM and LOF. This model addresses the challenges of high-dimensional, imbalanced datasets,
real-time detection requirements and provides accurate, interpretable results. Specifically, the study aims to:

• Develop a robust LSTM model for capturing temporal dependencies in multivariate time series data.
• Integrate LOF for local anomaly detection, enhancing the model’s ability to detect subtle anomalies and

reduce false positives.
• Evaluate the model’s performance on real-world datasets (e.g., WUSTL-EHMS and Thyroid Diff), focusing

on key metrics such as accuracy, precision, recall, F1-score, and ROC AUC.
• Address common issues such as class imbalance and overfitting through techniques like SMOTE,

regularization, and cross-validation.
• Conduct real-time simulations to assess the framework’s feasibility for practical IoMT deployments.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

2

1.7. Structure of the paper

The remainder of this paper is structured as follows: Section 2 presents the related works. section 3 includes the
detailed methodology, including data preprocessing, model design, and evaluation techniques. Section 4 discusses
the results and compares the performance of the proposed hybrid model against traditional methods. Section 5
concludes the paper with a summary of findings and potential directions for future research.

2. Related Work

Ghubaish et al.(7) developed a real-time Enhanced Healthcare Monitoring System (EHMS) testbed capable of
monitoring patients’ biometrics and gathering network flow metrics. They generated a dataset comprising over
16,000 normal and attacked healthcare data records. They chose four ML methods for attack detection: Random
Forest (RF), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Artificial Neural Networks (ANN).
The results indicate performance improvements ranging from 7% to 25% in certain cases, demonstrating the
robustness of the proposed system in effectively detecting intrusions.

Wagan et al.(8) proposed a novel multi-modal approach called the Duo-Secure IoMT framework, this technique
leverages dynamic Fuzzy C-Means clustering and customized Bidirectional Long Short-Term Memory (Bi-LSTM)
algorithms to detect abnormal pattern uncertainties in the network and perform data evaluation tasks concurrently.
The performance evaluation shows that the proposed model evaluates a) the prediction of heart issues and b) the
identification of network intrusions with an accuracy of 92.95% and multimodal joint accuracy of 89.67% in the
WUSTL EHMS-2020 dataset.

Alani et al.(9) present a deep neural network for detecting attacks on (IoMT) devices. It relies on an explainable
Deep Neural Network (DNN), which analyzes information extracted from the network to detect and block
malicious traffic. This DNN solution is further elucidated through the application of Shapley Additive Explanation
(SHAP), facilitating the identification of how selected features influence the classifier’s decision-making process.
The system was evaluated using the WUSTL EHMS-2020 dataset, demonstrating an accuracy of 97.578% and a
false-positive rate of only 3.12%.

Kilincer et al.(10) developed a cyber-attack and anomaly detection model utilizing recursive feature elimination
(RFE) in conjunction with a multilayer perceptron (MLP). The RFE method employed logistic regression (LR) and
extreme gradient boosting regression (XGBRegressor) kernel functions to select optimal features. Hyperparameter
optimization was conducted to adjust MLP parameters, and performance evaluations were carried out using a
10-fold cross-validation approach. They found by reviewing approximately 80 literature studies that support vector
machines (SVM) and random forest (RF) methods are widely used in the field. Moreover, extreme gradient boosting
(XGBoost), neural networks (NN), and recurrent neural networks (RNN) were identified as particularly effective
compared to other methods.

Tauqeer et al.(11) Three machine learning algorithms, namely Random Forest, Gradient Boosting, and Support
Vector Machine (SVM), are employed for cyberattack detection. These machine-learning models are well-suited
for this task. The proposed models are assessed using the WUSTL-EHMS-2020 dataset, which includes man-in-
the-middle, data injection, and spoofing attacks. The proposed model achieved 96.9% accuracy.

Ravi et al.(12) introduces a deep learning approach for network-based intrusion detection in (IoMT) systems,
utilizing features from network flows and patient biometrics from WUSTL EHMS-2020 dataset. This method
efficiently learns optimal feature representations by integrating information from both network flows and patient
biometrics across multiple hidden layers of deep learning. The proposed model showed a 10-fold cross-validation
accuracy of 95% on network features, 89% on patient biometrics, and 99% on combined features.

Mosaiyebzadeh et al.(13) introduces a deep neural network within the framework of federated learning (DNN-
FL) to identify anomalies in healthcare traffic, which could potentially lead to security threats. The detection
performance of this proposed approach is evaluated using metrics such as accuracy and precision. Validation of the
DNN-FL model is conducted using two datasets: WUSTL-EHMS-2020 and ECU-IoHT. The results demonstrate
an accuracy of 91.40% in detecting attacks within the first dataset and 98.47% within the second.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

3

Lu, W. et al.(14) proposed a hybrid intrusion detection system designed to identify cyberattacks on medical
devices in real time. The system integrates a logistic regression-based detector utilizing network traffic features with
a gradient-boosted tree-based detector leveraging medical sensor features. Evaluation using a publicly available
dataset indicates that the system achieves an accuracy of 95.4% using only 11 features, surpassing the current best
accuracy of 92.98% achieved by artificial neural networks using 40 features.

Dina, A. S. et al.(15) addressed the data imbalance problem in intrusion detection for IoT, by utilizing a
specialized loss function known as focal loss. This function automatically down-weights easy examples and
focuses on hard negatives by facilitating dynamically scaled-gradient updates, thereby training more effective
machine learning models. Their approach is implemented using two well-known deep learning (DL) neural network
architectures.

Al-Hawawreh et al (16) proposed a new privacy-aware framework for storing collected IoMT data in distributed
cloud nodes. This framework facilitates data fusion of heterogeneous IoMT data using differential privacy and deep
learning and enhances attack detection through quantum deep learning while maintaining data privacy.

3. Methodology

This section delves into a detailed exposition of our envisioned model, delineating a meticulous process for
anomaly detection in the context of the Internet of Medical Things (IoMT) datasets. The framework integrates
Long Short-Term Memory (LSTM) networks for capturing temporal dependencies in sequential data with the
Local Outlier Factor (LOF) algorithm, which identifies anomalies based on local density deviations. This hybrid
approach leverages the complementary strengths of these techniques to enhance detection accuracy and robustness.

Algorithm 1 Hybrid LSTM + LOF Anomaly Detection

1: Input: Training Dataset (Xtrain, ytrain), Test Dataset (Xtest)
2: Output: Combined Predictions (ŷcombined)
3: Preprocessing:
a. Encode categorical features using LabelEncoder.
b. Scale numerical features with StandardScaler.
c. Apply PCA (ncomponents = 16).
d. Oversample minority class using SMOTE.
e. Reshape features for LSTM (samples, timesteps, features).
4: Train LSTM Model:
a. Define a sequential model with 2 LSTM layers & dropout layers.
b. Compile the model with rmsprop optimizer and binary crossentropy loss.
c. Train the model for 20 epochs with a batch size of 64.
5: Train LOF Algorithm:
a. Compute residuals from LSTM predictions on training data.
b. Fit LOF using the residuals (nneighbors = 20, novelty=True).
6: Make Predictions:
a. Predict test data anomalies with LSTM (ŷLSTM).
b. Predict test data anomalies with LOF (ŷLOF).
c. Combine predictions using logical OR (ŷcombined = ŷLSTM ∨ ŷLOF).
7: Evaluate Performance:
a. Calculate accuracy, precision, recall, F1-score, and ROC AUC.
8: Return: Combined Predictions (ŷcombined).

Stat., Optim. Inf. Comput. Vol. x, Month 202x

4

Initially, we curate the WUSTL-EHMS-2020 dataset, comprising a comprehensive compilation of normal and
anomalous records, forming the bedrock for our investigative endeavors. To demonstrate the generalizability of
the framework, we include the Thyroid Diff dataset in the evaluation, showcasing consistent performance across
diverse healthcare scenarios.

The key steps of the methodology include data preprocessing, model design, training, and evaluation.
Preprocessing involves label encoding, scaling, dimensionality reduction using PCA, and handling class imbalance
with SMOTE. The LSTM model captures long-term temporal dependencies, while LOF identifies anomalies in the
residuals of LSTM predictions. The final anomaly predictions result from a logical combination of outputs from
both techniques.

Real-time simulation experiments assess the framework’s feasibility for deployment in streaming data
environments, measuring latency and computational efficiency.

Algorithm 1: Hybrid LSTM + LOF Anomaly Detection Framework. This algorithm outlines the step-by-step
process of combining Long-Short-Term Memory (LSTM) networks and the Local Outlier Factor (LOF) algorithm
for detecting anomalies in multivariate time-series datasets. It includes preprocessing, model training, and the
logical combination of predictions from both techniques to achieve robust anomaly detection.

Methodological Stages:

1. Data Preprocessing:
The raw datasets are subjected to a rigorous preprocessing phase that includes:

• Encoding categorical features into numerical values using ”LabelEncoder”.
• Scaling numerical features to ensure a standard distribution with a mean of 0 and standard deviation

of 1 using ”StandardScaler”.
• Dimensionality reduction using ”Principal Component Analysis (PCA)” to retain the most significant

components while reducing redundancy.
• Handling class imbalance through ”Synthetic Minority Oversampling Technique (SMOTE)”,

generating synthetic samples for minority classes to ensure balanced training data.

2. Dimensionality Reduction:
PCA is employed to transform the high-dimensional datasets into a reduced feature space, retaining either
95% variance or a fixed number of components (e.g., 16) for consistency across datasets. This step simplifies
computation and enhances the model’s ability to detect subtle patterns in the data.

3. Model Architecture and Training:
• LSTM Network:

– The model consists of two LSTM layers with 64 and 32 units, respectively, followed by dropout
layers to mitigate overfitting.

– An output-dense layer with a sigmoid activation function is used to classify anomalies.
– The network is trained using the ”rmsprop” optimizer and ”binary crossentropy” loss function over

20 epochs with a batch size of 64.
• LOF Algorithm:

– LOF is trained on residuals from the LSTM predictions, leveraging local density deviations to
identify potential outliers. It operates in novelty detection mode (novelty=True) to ensure effective
handling of unseen data.

4. Combining Predictions: LSTM and LOF predictions are combined using a logical OR operation. An
instance is classified as anomalous if either algorithm identifies it.

5. Performance Evaluation: The framework’s performance is assessed using a comprehensive set of metrics,
including accuracy, precision, recall, F1-score, and ROC AUC. Additionally, cross-dataset validation and
real-time performance simulations are conducted to validate the model’s generalizability and practicality.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

5

Model Architecture: The proposed model architecture is elucidated through a comprehensive visual
representation in Figure 1. The architectural blueprint embodies a seamless integration of preprocessing steps,
model inference, and performance evaluation, encapsulating the essence of our anomaly detection framework.

Figure 1. Architecture of the proposed model for Anomaly detection

Stat., Optim. Inf. Comput. Vol. x, Month 202x

6

3.1. Dataset Description

3.1.1. WUSTL-EHMS-2020 Dataset The primary dataset used in this study is the WUSTL-EHMS-2020 dataset,
developed by researchers at Washington University in St. Louis. It comprises:

• 16,318 records with 44 features.
• Features include:

– 35 network-flow metrics.
– 8 patient biometrics (e.g., SpO2, blood pressure, ECG readings).
– 1 label attribute indicating whether a record represents normal (0) or anomalous (1) data.

• Imbalanced class distribution:

– 87.5% normal records.
– 12.5% anomalous records.

This dataset includes multiple types of cyber-attacks, such as spoofing, data injection, and man-in-the-middle
attacks, generated using real IoMT devices like SpO2 monitors, blood pressure measurement devices, ECG
machines, and thermometers. These features make it an ideal benchmark for evaluating the proposed anomaly
detection framework.

To further validate generalizability, the Thyroid Diff dataset was used, consisting of clinical data with significant
differences in feature distribution. The preprocessing pipeline for this dataset ensured compatibility with the
WUSTL-EHMS dataset through consistent dimensionality reduction and scaling.

3.1.2. Thyroid Diff Dataset To validate the generalizability of the framework, the Thyroid Diff dataset was
incorporated as a secondary dataset. Unlike WUSTL-EHMS, this dataset comprises clinical data with a focus
on thyroid disease diagnosis. It is characterized by the following:

• Number of Records: 7,200 samples.
• Features:

– 21 features, including patient demographics (e.g., age, gender), laboratory test results (e.g., T3, T4,
TSH levels), and diagnostic labels.

– Features include both categorical (e.g., patient gender, referral reason) and numerical (e.g., hormone
levels) data.

• Class Distribution: 85% normal records and 15% anomalous records (diagnosed with thyroid-related
conditions such as hypothyroidism or hyperthyroidism).

3.1.3. Justification of Dataset Selection The use of two diverse datasets ensures a thorough evaluation of the
proposed framework. The WUSTL-EHMS-2020 dataset offers a realistic and comprehensive testbed for IoMT-
specific anomaly detection, while the Thyroid Diff dataset challenges the framework’s adaptability to different
healthcare domains. Together, these datasets validate the framework’s robustness and potential for deployment
across various IoMT scenarios.

3.2. Preprocessing of dataset

Preprocessing is a crucial step that greatly influences the effectiveness and accuracy of the machine learning
models used on the dataset. Several preprocessing techniques were implemented, including label encoding, feature
scaling, dimensionality reduction, and oversampling.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

7

3.2.1. Label Encoding The dataset contains various categorical and numerical features, with the target variable
denoted as ‘Label’, indicating normal or anomalous instances. The columns are a mix of numerical and categorical
data types. Here’s a breakdown:

• Numerical Columns: The dataset has 37 numerical columns, including float64 and int64 data types. These
columns likely represent various metrics like packet sizes, load, loss, rate, vital signs, etc.

• Categorical Columns: There are 7 categorical columns (Dir, Flgs, SrcAddr, DstAddr, Sport, SrcMac,
DstMac), which include IP addresses, MAC addresses, and other textual or symbolic data.

Categorical features were transformed into numerical values using label encoding. This is essential as most
machine learning algorithms require numerical input. This allows these features to be used effectively in machine
learning models. The following equation represents the Label Encoder Process:

EncodedFeaturei = LabelEncoder(CategoricalFeaturei) (1)

Figure 2 Illustrate how the ‘Label Encoder’ transformed categorical columns into numerical data types.

Figure 2. Label Encoder Technique

3.2.2. Feature Scaling Feature scaling is a crucial preprocessing step in machine learning, particularly for models
like LSTM that are sensitive to the scale of input data. According to (17), normalizing the data used for training
and testing neural networks is a widely accepted best practice. This feature-wise normalization helps neural
networks perform more effectively and prevents them from being adversely affected by the varying scales of
different input features.
By standardizing or normalizing features to a common range, feature scaling helps ensure that all features
contribute equally to the model’s predictions, preventing certain features from dominating the learning process.
The input data was standardized using ‘StandardScaler’ to ensure that features with varying magnitudes do not

Stat., Optim. Inf. Comput. Vol. x, Month 202x

8

bias the model. This transformation rescales the features with a mean of zero and a standard deviation of one.
This is achieved by subtracting the mean of each feature from the corresponding values and then dividing by the
standard deviation as follows:

Z =
X − µ

σ
(2)

Where:

• X is the original feature value.
• µ is the Mean of the feature.
• σ is the Standard Deviation of the feature.
• Z is the Scaled value.

Figure 3 Illustrate how the ‘Standard Scaler’ normalized all features to a common range ensuring that all features
contribute equally to the model’s predictions:

Figure 3. Feature Scaling Technique

3.2.3. Dimensionality Reduction To reduce the dimensionality of the dataset and eliminate multicollinearity,
Principal Component Analysis (PCA) was applied. PCA is a powerful dimensionality reduction technique
that transforms a high-dimensional dataset into a lower-dimensional representation while preserving the most
important information, simplifying analysis, and potentially improving model performance. In our model, PCA
was configured to retain 95% of the data variance as mentioned in equation 3(18).

XPCA = PCA(Xscaled, ncomponents = 0.95) (3)

V ar(Retained) ≈ 0.95

How does PCA work?

Stat., Optim. Inf. Comput. Vol. x, Month 202x

9

1. Center the data: Subtract the mean from each feature.
2. Calculate the covariance matrix: Compute the covariance matrix of the centered data.
3. Eigenvalue decomposition: Find the eigenvalues and eigenvectors of the covariance matrix.
4. Select principal components: Choose the eigenvectors corresponding to the largest eigenvalues. These

eigenvectors represent the principal components.
5. Project data onto principal components: Project the original data onto the selected principal components.

Benefits of PCA:

• Dimensionality reduction: Reduces the number of features, simplifying analysis and potentially improving
model performance.

• Feature extraction: Creates new features that are linear combinations of the original features, often capturing
the most important patterns in the data.

• Visualization: Can visualize high-dimensional data in a lower-dimensional space.

Figure 4 transforms a high-dimensional dataset into a lower-dimensional representation using the PCA technique:

Figure 4. Dimensionality reduction visualization (PCA)

3.2.4. SMOTE OverSampling Technique To address the imbalanced nature of our dataset, where anomalies
were underrepresented, we utilized the Synthetic Minority Over-sampling Technique (SMOTE). This technique
mitigates overfitting by generating synthetic samples for the minority class. This helps to balance the class
distribution and improve the performance of machine learning models(19). Equation 4 illustrates how we applied
SMOTE in our model.

(Xresampled, yresampled) = SMOTE(XPCA, y) (4)

How SMOTE works:

1. Identify minority class: Determine the class with fewer samples.
2. Select nearest neighbors: For each minority class instance, find its k nearest neighbors (usually k=5).
3. Generate synthetic samples: For each minority class instance, randomly select one of its k nearest neighbors.

Interpolate between the two points along the line connecting them to create a new synthetic sample.

Figure 5 Shows the class distribution before and after applying SMOTE to balance the classes. This will highlight
how the dataset was imbalanced initially and how SMOTE was used to create a balanced dataset.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

10

Figure 5. SMOTE Oversampling Technique

3.3. Model Design and Training

3.3.1. LSTM Model Architecture A deep learning model was constructed using a Long Short-Term Memory
(LSTM) network suited for temporal data analysis. The network consists of two LSTM layers with dropout for
regularization, followed by a dense layer with a sigmoid activation function. Equation 5(20) represents how we
applied the LSTM technique in our model:

ŷ = Sigmoid(W.LSTM(Xreshaped + b) (5)

Where:

• ŷ is the predicted output (or label). After applying the Sigmoid function, it represents the model’s probability
prediction for a class (usually between 0 and 1).

• Sigmoid() is a non-linear activation function that squashes input values into a range between 0 and 1. It is
often used in binary classification tasks to convert the output into a probability. The formula for the sigmoid
function is: σ(z) = 1

1+e−z .
• Xreshaped represents the input to the LSTM layer, which has been reshaped to match the expected input

dimensions for the LSTM. LSTM models expect a sequence of data as input, typically reshaped to have
dimensions [BatchSize, TimeSteps, Features].

• W This is a weight matrix that connects the LSTM’s output to the final prediction layer. It is applied to
the output of the LSTM (often the last hidden state or a combination of hidden states) to generate a linear
combination of the LSTM’s features.

• b This is the bias term, a constant that is added to the weighted sum of the LSTM output before passing it
through the Sigmoid function. It allows the model to make adjustments independently of the input values.

Summary of the Process: The input data X is reshaped to fit the LSTM input format. The reshaped input is
passed through the LSTM layer, which processes it and produces an output based on the learned sequence patterns.
The output of the LSTM is linearly transformed using a weight matrix W and bias b. Finally, the result is passed
through the Sigmoid function to produce a probability prediction, which indicates the likelihood of the input
belonging to a certain class (e.g., anomaly or normal).

LSTM Layers:

1. First LSTM Layer: This layer has 64 units and uses the input shape parameter to specify the input
data’s dimensions. The return sequences=True setting ensures that the entire sequence of outputs is

Stat., Optim. Inf. Comput. Vol. x, Month 202x

11

returned, allowing for the stacking of LSTM layers. L2 regularization is applied to the weights using
kernel regularizer=l2(0.01), which helps prevent overfitting.

2. Second LSTM Layer: This layer has 32 units and return sequences=False, indicating that only the final
element in the sequence is output. This is typically used as the feature representation for the subsequent
dense layer.

3. Dropout Layers: Dropout is a regularization technique that randomly disables a portion of neurons during
training, preventing overfitting. A dropout rate of 0.3 means 30% of neurons will be deactivated.

4. Dense Layer: The final output layer has 1 unit and uses a sigmoid activation function. This function produces
a probability value between 0 and 1, suitable for binary classification.

Model’s Training:

• optimizer: We used RMSprop optimizers to minimize the binary cross-entropy loss function. These
optimizers adjust the learning rate dynamically during training to ensure efficient learning.

• Epochs: The model was trained for 20 epochs. An epoch is one complete pass through the training data. Too
many epochs can lead to overfitting, while too few can result in underfitting.

• Batch Size: We used batch sizes of 64, which refers to the number of samples processed before the model
updates its weights.

Reshaping the Data for LSTM:
We reshaped the data since LSTM models require 3D input (samples, time steps, features). This Step Is Important
because the LSTM expects data to have a time component, even though we used only 1 time step. This allows the
LSTM to process the features of each sample correctly.
Figure 6 explains the LSTM layers included in our model:

Figure 6. LSTM Layers

3.4. K-Fold Cross Validation

To ensure the robustness of the model, 3-fold cross-validation was performed. The dataset was split into three
subsets, with the model being trained on two and validated on the third, rotating through all combinations. The
model will be trained on two subsets and tested on the third. This process is repeated 3 times, with each subset
being used as the test set once. Two empty lists, accuracy scores, and roc auc scores, are initialized to store the
accuracy and ROC AUC scores for each fold. This process is illustrated in the following equation:

Accuracyfoldi
= Evaluate(fi(Train), T est) (6)

Where:

• Accuracyfoldirefers to the accuracy for the i fold in a k-fold cross-validation process. Accuracy is a
performance metric that indicates the proportion of correctly classified instances in the test set.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

12

• Evaluate()function is responsible for measuring the performance of the trained model fi on the test set.
In this case, the accuracy is calculated, but it could be extended to other metrics like precision, recall, or
F1-score.

• fi(Train): fi represents the machine learning model (or function) that is trained on the training data forthe
i fold. During cross-validation, the training data changes for each fold. Train refers to the portion of the
dataset used for training the model in the i fold.

• Test refers to the data used to evaluate the model after it has been trained on the training data. This data was
not seen during training, allowing for an unbiased evaluation of the model’s performance.

Figure 7 illustrates our 3-fold cross-validation method that was performed in our model:

Figure 7. 3-Fold Cross Validation

3.5. Cross-Dataset Validation

To address practical applicability and generalizability of the proposed LSTM + LOF framework, we conducted
a one-directional cross-dataset validation. The model was trained on the WUSTL-EHMS-2020 dataset, which
contains IoMT network traffic and device readings, and tested on the Thyroid Diff dataset, which represents
clinical thyroid data. This experimental setup highlights the robustness of the framework in adapting to datasets
with different distributions and feature spaces. Consistent preprocessing steps were applied to both datasets,
including standardization, dimensionality reduction using PCA, and class balancing with SMOTE. Performance
metrics such as accuracy, precision, recall, F1-score, and ROC AUC were computed to assess the framework’s
effectiveness.

Figure 8: illustrates the cross-dataset validation process used in our study. Arrows indicate the flow of data
and processing steps, ensuring a clear understanding of the methodology.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

13

Figure 8. Cross Dataset Validation

The results of the one-directional cross-dataset validation are presented in Table 1. When the model trained
on WUSTL-EHMS-2020 was applied to Thyroid Diff, it achieved an accuracy of 87.54% and a ROC AUC of
0.880. These results indicate that while the LSTM + LOF framework generalizes well to new datasets with distinct
feature distributions, the performance is somewhat impacted by the differences in data characteristics. Nonetheless,
the high recall (89.37%) highlights the model’s ability to detect anomalies effectively, with a balanced F1-score of
87.24% demonstrating robust overall performance.”

Table 1. Cross-Dataset Validation Performance

Training Dataset WUSTL-EHMS-2020

Testing Dataset Thyroid Diff

Accuracy 87.54%

Precision 85.21%

Recall 89.37%

F1-Score 87.24%

ROC AUC 80.880

3.6. Anomaly Detection with LOF

In addition to LSTM, the Local Outlier Factor (LOF) was employed for anomaly detection. LOF identifies outliers
by comparing the local density of a sample to that of its neighbors. The Local Outlier Factor (LOF) algorithm
identifies outliers by comparing the density of a data point to the density of its neighbors. Outliers are points with a
substantially lower local density than their surrounding points. A data point with a LOF score significantly greater
than 1 is considered an outlier.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

14

How it Works:

1. Generating Residuals from LSTM Predictions: The residuals represent how much the LSTM’s predictions
deviate from the actual values. Large deviations (residuals) indicate potential anomalies. After the LSTM
model predicts values, the residuals are calculated as the difference between the actual and predicted values:

residuals = actual values− predicted values

2. Applying LOF on Residuals: The residuals are passed into the LOF algorithm, which detects outliers based
on their local density compared to neighboring points. Why LOF on Residuals: The residuals are a good
indicator of unusual behavior. By applying LOF, we can detect points where the LSTM’s predictions deviate
significantly from normal behavior, classifying them as anomalies.

The LOF score for a data point p is calculated as follows(5):

1. Compute the k-distance of p: The distance to the k − th nearest neighbor:

k − distance(p) = d(p, kthnearestneighborofp) (7)

2. Compute the reachability distance of p from o:

reach− distk(p, o) = max(k − distance(o), d(p, o)) (8)

3. Compute the local reachability density(LRD) of p:

LRDk(p) = (

∑
o∈Nk(p)

reach− distk(p, o)

|Nk(p)|
) (9)

4. Compute the LOF score of p:

LOFk(p) =

∑
o∈Nk(p)

LRDk(o)

|Nk(p)|.LRDk(p)
(10)

• where Nk(p) is the set of k nearest neighbors of p
• A data point with a LOF score greater than 1 is considered an outlier.

Figure 9 illustrates the LOF algorithm’s process of determining outliers based on local density deviation.

Figure 9. LOF algorithm

Stat., Optim. Inf. Comput. Vol. x, Month 202x

15

3.7. Combining LSTM and LOF Predictions

The predictions from LSTM and LOF were combined using a logical OR operation. This hybrid approach
increases detection accuracy by leveraging the strengths of both methods. The following equation illustrates how
we combined LSTM and LOF predictions:

ŷcombined = ŷLSTM ∨ ŷLOF (11)

3.8. Model Design and Hyperparameter Tuning

The model architecture and parameters were carefully tuned to optimize performance:

1. LSTM Parameters:

• Number of layers: 2 (64 and 32 units).
• Dropout rate: 0.3.
• L2 regularization: 0.01.

2. LOF Parameters:

• Number of neighbors: 20.
• Novelty mode enabled.

The following table summarizes the hyperparameter tuning results:

Table 2. HyperParameter tuning values

Parameter Range Evaluated Best Value

LSTM Layers 1, 2, 3 2

LSTM Units 32, 64, 128 64, 32

Dropout Rate 0.2, 0.3, 0.4, 0.5 0.3

L2 Regularization 0.01, 0.001, 0.0001 0.01

LOF Neighbors 10, 20, 30, 50 20

Listing 1: Pseudo-Code for Hybrid LSTM + LOF Framework. This pseudo-code provides an implementation-
level description of the proposed hybrid anomaly detection framework. It demonstrates the integration of LSTM
networks for capturing temporal patterns and LOF for identifying density-based anomalies, along with the
preprocessing and evaluation steps.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

16

1 # INPUT: TrainingDataset(X_train, y_train),
TestDataset(X_test)

2 # OUTPUT: CombinedAnomalyPredictions(y_pred_combined)
3 # Step 1: Preprocessing
4 X_scaled= StandardScaler().fit_transform(X_train)
5 X_pca= PCA(n_components=16).fit_transform(X_scaled)
6 X_reshaped= np.expand_dims(X_pca, axis=1)
7 # Step 2: Train LSTM Model
8 model= Sequential([
9 LSTM(64, input_shape=(1, 16), return_sequences=

True, kernel_regularizer=l2(0.01)),
10 Dropout(0.3),
11 LSTM(32,return_sequences=False,kernel_regularizer=l2

(0.01)),
12 Dropout(0.3),
13 Dense(1, activation=’sigmoid’)])
14 model.compile(optimizer=’rmsprop’, loss=’

binary_crossentropy’)
15 model.fit(X_reshaped, y_train, epochs=20, batch_size

=64)
16 # Step 3: Train LOF
17 residuals= calculate_residuals(model, X_reshaped)
18 lof = LocalOutlierFactor(n_neighbors=20, novelty=True

)
19 lof.fit(residuals)
20 # Step 4: Make Predictions
21 y_pred_l

Listing 1: Pseudo-Code for Hybrid LSTM + LOF Anomaly Detection

4. Model Evaluation

4.1. Metrics

The model’s performance was evaluated using several metrics, including accuracy, ROC AUC, and the confusion
matrix. These metrics provide insights into the overall effectiveness and the specific areas where the model excels
or needs improvement.
Table 3 summarizes the model’s performance across different metrics for each fold:

Table 3. Evaluation Metrics

Fold Accuracy Precision Recall F1-Score AUC ROC

Fold1 0.9874 0.9756 1.0 0.9877 0.9873

Fold2 0.9874 0.9756 1.0 0.9877 0.9873

Fold3 0.9874 0.9756 1.0 0.9877 0.9873

Mean 0.9874 0.9756 1.0 0.9877 0.9873

Std Dev 0.0 0.0 0.0 0.0 0.0

Stat., Optim. Inf. Comput. Vol. x, Month 202x

17

• Accuracy, Precision, Recall, F1-Score, and AUC-ROC are identical across all folds, as indicated by the
mean and standard deviation.

• Standard Deviation is 0 for all metrics, meaning there was no variation in performance across the folds.
• Mean Accuracy of 0.9874 indicates that, on average, the model correctly classified 98.74% of instances.
• Mean Precision of 0.9756 suggests that when the model predicts a positive class, it is correct 97.56% of the

time.
• Mean Recall of 1.0 means the model identified all positive instances correctly, with no false negatives.
• Mean F1-Score of 0.9877 balances precision and recall, showing strong performance in both metrics.

4.2. Real-Time Performance Evaluation

To assess the feasibility of deploying the proposed LSTM + LOF framework in real-world scenarios, we conducted
a real-time simulation using the test dataset processed in sequential batches. Each batch contained 100 samples,
simulating a streaming data environment where predictions need to be made in near real-time. The latency, defined
as the processing time per batch, was measured for each batch, and the average processing time was calculated.
The results of the simulation demonstrated that the model achieved an average processing time of 1.0406 seconds
per batch, with significant variability across batches due to model initialization and data preprocessing overhead
in the first few iterations. For example, the initial batch required 37.27 seconds, primarily due to warm-up effects,
while subsequent batches were processed significantly faster, with a median processing time of approximately 0.30
seconds per batch. These results indicate that the model is suitable for near real-time applications, particularly in
scenarios where latency requirements allow for sub-second to low-second response times.
The real-time performance evaluation confirms that the LSTM + LOF hybrid approach can be deployed effectively
in IoMT environments, such as continuous patient monitoring systems or anomaly detection in medical devices,
where timely detection of anomalies is critical. Further optimizations, such as model pruning or distributed
deployment, could enhance processing efficiency for larger-scale data streams.

Table 4 summarizes the real-time performance metrics of the proposed LSTM + LOF framework during a
simulation of streaming data processing, highlighting its suitability for near real-time anomaly detection in IoMT
environments.

Table 4. Real-Time Performance Metrics

Batch Size 100 samples

Total Batches 57

Average Processing Time 1.0406 seconds

Initial Batch Latency 37.27 seconds

Median Batch Latency 0.30 seconds

Minimum Batch Latency 0.17 seconds

4.3. Final Testing

Finally, the model was retrained on the entire dataset using the optimal configuration determined during cross-
validation. The final model was tested on an unseen test set to validate its effectiveness.

Figure 10: Final Model Performance, Include a ROC curve and a confusion matrix from the final model
evaluation.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

18

(a) Confusion Matrix from the final model evaluation (b) ROC Curve from the final model evaluation

Figure 10. Comparison of Confusion Matrix and ROC Curve

4.4. Comparative Analysis

The performance evaluation of the LSTM-LOF anomaly detection approach involves a comprehensive comparison
with established baseline methods, encompassing traditional statistical techniques and standalone LSTM
networks. Through rigorous experimental analysis and evaluation, the effectiveness and superiority of the
proposed methodology in detecting anomalies within time series data become evident.
In direct juxtaposition with conventional statistical methodologies, the LSTM-LOF approach showcases a marked
enhancement in anomaly detection accuracy. By leveraging the combined strengths of LSTM for temporal pattern
recognition and LOF for anomaly identification based on residual errors, the proposed approach surpasses the
limitations of traditional statistical methods, which may struggle to capture the nuanced complexities inherent in
time series data.

Moreover, in contrast to standalone LSTM networks, the LSTM-LOF fusion strategy emerges as a formidable
contender, demonstrating a significant performance advantage in discerning anomalies within the dataset.
Although standalone LSTM models excel in capturing temporal dependencies, incorporating the LOF algorithm
enhances anomaly detection capabilities, offering a more robust and nuanced approach to identifying deviations
from expected patterns.

The empirical results obtained from the comparative analysis in table 5 unequivocally affirm the superior
anomaly detection accuracy achieved by the LSTM-LOF approach over the baseline methods. This validation
underscores the efficacy and relevance of integrating advanced deep learning techniques with outlier detection
algorithms, culminating in a refined and sophisticated anomaly detection framework that excels in discerning
subtle irregularities within time series data.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

19

Table 5. Comparative evaluation highlights the transformative impact of the LSTM-LOF

Reference Dataset Technique Accuracy

(Khalil, 2022) EEG Signals CNN 77.78%

(Wang, 2022) Computed Tomography KNN, LR, NB 81%

(Singh, 2022) TON-IoT, KDD LSTM/HLSTM 99.31%

(Wibowo, 2022) Covid-19 SVM, LR, RF 88.43%

(Haque, 2022) Diabetes, Parkinson DeepCad, DNN 95.5%

(Kaur, 2022) TCIA Cukoo, Naive Bayes 98.61%

(Wagan, 2023) WUSTL-EHMS Fuzzy C-means, Bi-LSTM 92%, 89.67%

Our research WUSTL-EHMS LSTM, LOF 98.74%

Table 6 presents the performance metrics of the proposed LSTM + LOF framework compared to baseline
methods, including standalone LSTM, autoencoder, and random forest. The hybrid LSTM + LOF achieves the
highest accuracy, F1 score and ROC AUC, demonstrating its effectiveness in capturing temporal dependencies
and identifying subtle anomalies. Although slightly higher in run-time and memory usage than standalone models,
this trade-off is justified by its superior precision and perfect recall, highlighting its robustness and reliability in
anomaly detection.
In conclusion, the comparative evaluation highlights the transformative impact of the LSTM-LOF approach on
anomaly detection, setting a new standard for precision and efficacy in identifying anomalies within complex
temporal datasets. By outperforming established baseline methods in key metrics, the proposed methodology
validates its superiority. It underscores its potential to revolutionize anomaly detection practices and fortify
cybersecurity measures in an era of escalating data complexity and interconnected systems.

Table 6. Comparative Performance Metrics for Standalone LSTM, AutoEncoder Random Forest Techniques

Model Standalone LSTM Autoencoder Random Forest LSTM + LOF

Accuracy 98.2% 91.5% 94.1% 98.74%

Precision 97.3% 88.9% 90.6% 97.56%

Recall 99.5% 92.7% 93.4% 100%

F1-Score 98.4% 90.7% 91.9% 98.77%

ROC-AUC 0.984 0.915 0.946 0.9873

Memory (MB) 233.49 238.61 242.57 252.12

Stat., Optim. Inf. Comput. Vol. x, Month 202x

20

5. Conclusion

This paper introduces a pioneering methodology for detecting anomalies in time series data by synergistically
leveraging long-short-term memory (LSTM) networks and the Local Outlier Factor (LOF) algorithm. By
amalgamating these two powerful techniques, the model effectively captures the intricate temporal patterns
inherent in the data while discerning anomalies based on residual errors.

The experimental evaluation conducted on the WUSTL-EHMS dataset validates the efficacy of the proposed
approach, showcasing its robustness and accuracy in anomaly detection tasks. The fusion of LSTM and LOF
offers a holistic solution that identifies contextual anomalies, elucidated by the LSTM network’s understanding of
temporal sequences, and density-based anomalies, pinpointed by the LOF algorithm’s assessment of data point
densities.

The key strength of this method lies in its versatility and adaptability to diverse and intricate real-world
datasets. By seamlessly integrating the predictive capabilities of LSTM with the outlier detection proficiency of
LOF, this approach proves to be well-suited for handling complex time series data where anomalies may manifest
in multifaceted ways. Looking ahead, the potential for further advances in anomaly detection remains promising.

Future research endeavors could explore the integration of alternative neural network architectures and
outlier detection methodologies to enhance the performance and scalability of anomaly detection systems. By
continually refining and expanding on the existing framework, the field of anomaly detection will benefit from
increased precision and efficacy in safeguarding critical systems and data integrity.

In summary, the fusion of LSTM networks and the LOF algorithm presents a compelling avenue to advance
anomaly detection capabilities in time series data analysis. The proposed approach demonstrates superior
performance on benchmark datasets and lays the foundation for continued innovation in anomaly detection
methodologies, with the ultimate goal of fortifying cybersecurity measures and ensuring the integrity of
data-driven systems in an increasingly interconnected world.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Computing Surveys (CSUR),
vol. 41, no. 3, pp. 1–58, 2009.

[2] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty detection,” Signal
Processing, vol. 99, pp. 215–249, 2014.

[3] A. Singh, “Anomaly detection for temporal data using long short-term memory (LSTM),” 2017.

[4] J. Duan, P. F. Zhang, R. Qiu, and Z. Huang, “Long short-term enhanced memory for sequential
recommendation,” World Wide Web, vol. 26, no. 2, pp. 561–583, 2023.

[5] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying density-based local outliers,”
in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104,
2000.

[6] A. Nowak-Brzezińska and C. Horyń, “Outliers in rules-the comparison of LOF, COF and KMEANS
algorithms,” Procedia Computer Science, vol. 176, pp. 1420–1429, 2020.

[7] A. A. Hady, A. Ghubaish, T. Salman, D. Unal, and R. Jain, “Intrusion detection system for healthcare systems
using medical and network data: A comparison study,” IEEE Access, vol. 8, pp. 106576–106584, 2020.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

21

[8] S. A. Wagan, J. Koo, I. F. Siddiqui, N. M. F. Qureshi, M. Attique, and D. R. Shin, “A fuzzy-based duo-
secure multi-modal framework for IoMT anomaly detection,” Journal of King Saud University-Computer
and Information Sciences, vol. 35, no. 1, pp. 131–144, 2023.

[9] M. M. Alani, A. Mashatan, and A. Miri, “XMeDNN: An Explainable Deep Neural Network System for
Intrusion Detection in Internet of Medical Things,” in ICISSP, pp. 144–151, 2023.

[10] I. F. Kilincer, F. Ertam, A. Sengur, R. S. Tan, and U. R. Acharya, “Automated detection of cybersecurity
attacks in healthcare systems with recursive feature elimination and multilayer perceptron optimization,”
Biocybernetics and Biomedical Engineering, vol. 43, no. 1, pp. 30–41, 2023.

[11] H. Tauqeer, M. M. Iqbal, A. Ali, S. Zaman, and M. U. Chaudhry, “Cyberattacks detection in IOMT using
machine learning techniques,” Journal of Computing & Biomedical Informatics, vol. 4, no. 01, pp. 13–20,
2022.

[12] V. Ravi, T. D. Pham, and M. Alazab, “Deep learning-based network intrusion detection system for Internet
of medical things,” IEEE Internet of Things Magazine, vol. 6, no. 2, pp. 50–54, 2023.

[13] F. Mosaiyebzadeh, S. Pouriyeh, R. M. Parizi, M. Han, and D. M. Batista, “Intrusion Detection System
for IoHT Devices using Federated Learning,” in IEEE INFOCOM 2023-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 1–6, 2023.

[14] W. Lu, “Applied Machine Learning for Securing the Internet of Medical Things in Healthcare,” in
International Conference on Advanced Information Networking and Applications, pp. 404–416, 2023.

[15] A. S. Dina, A. B. Siddique, and D. Manivannan, “A deep learning approach for intrusion detection in Internet
of Things using focal loss function,” Internet of Things, vol. 22, pp. 100699, 2023.

[16] M. Al-Hawawreh and M. S. Hossain, “A privacy-aware framework for detecting cyber attacks on internet
of medical things systems using data fusion and quantum deep learning,” Information Fusion, vol. 99, pp.
101889, 2023.

[17] S. Raschka, Y. H. Liu, and V. Mirjalili, Machine Learning with PyTorch and Scikit-Learn: Develop machine
learning and deep learning models with Python, Packt Publishing Ltd, 2022.

[18] I. T. Jolliffe and J. Cadima, “Principal component analysis: A review and recent developments,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065,
pp. 20150202, 2016.

[19] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling
Technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

	1 Introduction
	1.1 Background
	1.2 Challenges in Anomaly Detection
	1.3 Deep Learning for Anomaly Detection
	1.4 Unsupervised anomaly detection
	1.5 Hybrid Approaches: Combining LSTM with LOF
	1.6 Objectives of the study
	1.7 Structure of the paper

	2 Related Work
	3 Methodology
	3.1 Dataset Description
	3.1.1 WUSTL-EHMS-2020 Dataset
	3.1.2 Thyroid Diff Dataset
	3.1.3 Justification of Dataset Selection

	3.2 Preprocessing of dataset
	3.2.1 Label Encoding
	3.2.2 Feature Scaling
	3.2.3 Dimensionality Reduction
	3.2.4 SMOTE OverSampling Technique

	3.3 Model Design and Training
	3.3.1 LSTM Model Architecture

	3.4 K-Fold Cross Validation
	3.5 Cross-Dataset Validation
	3.6 Anomaly Detection with LOF
	3.7 Combining LSTM and LOF Predictions
	3.8 Model Design and Hyperparameter Tuning

	4 Model Evaluation
	4.1 Metrics
	4.2 Real-Time Performance Evaluation
	4.3 Final Testing
	4.4 Comparative Analysis

	5 Conclusion

