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Abstract Cryptography plays a crucial role in securing information and communications in the face of advancing
technologies. Asymmetric encryption, also known as public-key cryptography, plays a crucial role in cryptography. Unlike
symmetric encryption, which uses a single key for both encryption and decryption, asymmetric encryption involves a pair
of keys, namely a public key and a private key. Asymmetric cryptography is closely associated with the secure management
of keys, addresses, and transactions within the blockchain ecosystem, especially in cryptocurrency platform. In this study,
we present a novel concept known as rainbow vertex antimagic coloring. This concept extends the idea of rainbow vertex
coloring by incorporating antimagic labeling. Let f : E(G) → {1, 2, . . . , |E(G)|} be a function, where the weight of a vertex
v ∈ V (G) with respect to f is defined as wf (v) = Σe∈E(v)f(e). Here, E(v) denotes the set of edges incident to v. The
function f is termed a vertex antimagic edge labeling if it assigns distinct weights to each vertex. A path is termed a
rainbow path if, for any vertices u and v, all internal vertices on the u− v path have distinct weights. The rainbow vertex
antimagic connection number of a graph G, denoted by rvac(G), is defined as the minimum number of colors required
in any rainbow coloring derived from rainbow vertex antimagic labelings of G. In this paper, we will obtain some new
lemmas or theorems concerning rvac(G), and we will implement the obtained lemmas or theorems of RVAC on asymmetric
cryptography technique.

Keywords Rainbow vertex antimagic coloring, Secret sharing scheme, Asymmetric cryptography.

AMS 2010 subject classifications 94A60, 05C78, 05C15

DOI: 10.19139/soic-2310-5070-2185

1. Introduction

Let G be a simple, connected and undirected graph. A labeling for a graph G is a mapping that sends some set of
graph elements to a set of non-negative integers [9]. If the domain is the vertex-set or the edge-set, the labeling
is called a vertex labeling or an edge labeling, respectively [17]. Graph labeling offers a diverse array of practical
applications [29]. In recent times, significant efforts have been made to utilize graph labeling techniques in the
field of cryptography. By assigning labels to the edges or vertices of a graph, researchers can develop innovative
cryptographic methods that enhance data security and integrity [2]. These applications range from constructing
secure communication protocols to designing robust encryption algorithms, showcasing the versatility and potential
of graph labeling in advancing cryptographic practices. Beyond graph labeling, metaheuristic algorithms have
also proven effective in solving complex mathematical challenges, such as systems of non-linear equations with
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complex roots [28]. Graph labeling provides useful wide range of applications. Recently, there is a big effort
to apply graph labeling for cryptography. There are many type of graph labelings, some of them are magic and
antimagic labeling. Given a function f : E(G)→ {1, 2, . . . , |E(G)|}, the weight of a vertex v ∈ V (G) under f is
defined as wf (v) = Σe∈E(v)f(e), where E(v) represents the set of edges incident to v. The function f is termed
a vertex antimagic labeling if it assigns distinct weights to each vertex. Several significant contributions have
been made in the study of vertex antimagic labeling, as documented in works such as [1, 4, 5, 13]. These studies
explore various properties and implications of vertex antimagic labeling, contributing to our understanding of its
applications and potential in different areas of graph theory.

Vertex coloring is one of the fundamental concepts in graph theory, where each vertex of a graph is assigned a
color such that no two adjacent vertices share the same color [10, 29]. This concept is widely studied due to its
applications in various fields, including scheduling, network optimization, and cryptography. A common approach
to vertex coloring involves the use of adjacency matrices, which encode the connections between vertices in a
graph. By leveraging adjacency matrices, researchers can develop algorithms to determine optimal vertex colorings
efficiently, providing insights into the structural properties of graphs and their practical uses [23].

Meanwhile, another significant area of study in graph theory is the concept of rainbow coloring. Rainbow
coloring of a graph ensures that there exists at least one path, called a rainbow path, where all the internal vertices
between any two vertices u and v have distinct colors. In the context of rainbow vertex coloring, a path is defined
as a rainbow path if each vertex on the path between u and v has a unique color.

According to Krivelevich and Yuster [11], the lower bound for the rainbow vertex connection number rvc(G)
is rvc(G) ≥ diam(G)− 1, where diam(G) represents the diameter of the graph G. This inequality provides an
important insight into the minimal number of colors required to achieve a rainbow vertex coloring that preserves
the rainbow path property throughout the graph.

Numerous studies have contributed valuable findings to the field of rainbow vertex coloring. These include works
by Akadji, Fauziah, Heggernes, Li, Lima, and Simamora [3, 6, 7, 12, 14, 19], which explore various aspects and
applications of this coloring technique. These studies delve into the properties, algorithms, and bounds related to
rainbow vertex coloring, demonstrating its significance and versatility in graph theory.

In recent years, various studies have explored the application of advanced cryptographic techniques in
conjunction with mathematical concepts, furthering our understanding of both fields. For instance, Maris et
al. (2023) applied a combined GSA&CSO algorithm to solve the modified bounded knapsack problem under
uncertain conditions, showcasing the potential for optimization in complex systems [26]. Agung et al. (2018)
explored image encryption techniques, utilizing pixel bit modification to enhance the security of digital images
[27]. Similarly, Santoso and his colleagues have contributed significantly to the area of image security, with studies
on image steganography using Max-Plus algebra [28], hiding text within images through Max-Plus algebra [32],
and developing a 3D Playfair cipher combined with bit shift methods for enhanced encryption [30]. Further
advancements in encryption techniques are seen in the work of Santoso et al. (2022), where medical image
encryption was implemented using DNA encoding and modified circular shift [37]. Additionally, Pradjaningsih
et al. (2022) applied the Analytical Hierarchy Process to assess the feasibility of Automated Teller Machine (ATM)
locations, demonstrating the interdisciplinary use of mathematics in practical applications [31]. Other contributions
include the study by Santoso et al. (2024) on optimizing the arrangement of goods using the Tabu Search algorithm
[33], and the work by Agustin et al. (2024) on irregular reflexive labeling and elementary row operations for
enhanced biometric image encryption [35]. These studies underline the expanding role of cryptographic methods
and optimization algorithms in modern technological applications, aligning with the theoretical and practical
contributions made in the context of rainbow vertex antimagic coloring and asymmetric cryptography, which may
offer new insights into secure systems.

In this research, we integrate two existing concepts: vertex antimagic labeling and rainbow vertex coloring.
Consequently, we propose a novel concept called rainbow vertex antimagic coloring, which encompasses the
characteristics of both vertex antimagic labeling and rainbow vertex coloring (RVAC). The rainbow vertex
antimagic connection number of a graph G, represented as rvac(G), is defined as the minimum number of colors
required across all rainbow colorings that are induced by the rainbow vertex antimagic labelings of G. The objective
of this paper is to explore and establish new lemmas or theorems related to rvac(G), thereby contributing to the
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theoretical understanding and potential applications of this new coloring method in graph theory. There have been
some results on rainbow vertex antimagic coloring, it can be found in [8, 15, 16, 18]. Furthermore, at the end of
this paper, we will demonstrate a breakthrough in robust asymmetric cryptography by combining rainbow vertex
antimagic coloring with asymmetric cryptography.

Asymmetric cryptography, also known as public-key cryptography, is a cryptographic system that uses a pair of
keys—a public key and a private key—for secure data encryption and decryption. Unlike symmetric cryptography,
which relies on a single shared key, asymmetric cryptography allows the public key to be openly distributed
while keeping the private key confidential. This method ensures secure communication, as only the recipient
with the corresponding private key can decrypt the message encrypted with their public key. First introduced
by Whitfield Diffie and Martin Hellman in 1976, asymmetric cryptography has become fundamental in securing
internet communications, digital signatures, and various authentication protocols. Its advantages include enhanced
security, as the private key is never shared; scalability, as users only need to manage their own keys; and the
provision of non-repudiation, ensuring that senders cannot deny sending a message. Some study of asymmetric
cryptography can be seen in [20, 21, 25].

2. Method

Figure 1 shows the research flow that we will use. There are several stages in this research, namely: (1) Determining
rainbow vertex antimagic coloring on volcano graph, (2) Obtaining public and private keys from labels, (3)
Obtaining stream keys from vertex weights, (4) Applying asymmetric cryptography. In the fourth stage, we split
the plaintext into three blocks and perform an operation to get the ciphertext. The encryption and decryption stages
can be seen in Algorithm 1 and Algorithm 2. The following pseudocode demonstrates the step-by-step process of
encryption using the RVAC cryptosystem.

Figure 1. A model of keystream generation from graph labeling

Algorithm 1. Encryption using RVAC of Graph
Input: plain text
Output: cipher text

1. Start
2. Input the plain text (Pi)
3. Denote the length of plain text as l
4. Define order of graph as n as l − 3
5. Define set of labels
6. Define public key as a based on the largest label that is relatively

prime to the set of characters that can be encrypted (94)
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7. Define the keystream W from rainbow vertex antimagic coloring of graph
8. Define length of keystream
9. Implementation of asymmetric algorithm method

Block 1 −→ C1 = (a× Pi + keystream block 1) mod 94
Block 2 −→ C2 = (a× Pi + keystream block 2) mod 94
Block 3 −→ C3 = (a× Pi + keystream block 3) mod 94

10. Combine every C in each block to obtain the cipher text
11. Obtain p as private key such that GCD(a, p) = 1

Algorithm 2. Decryption using RVAC of Graph
Input: cipher text
Output: plain text

1. Start
2. Input cipher text
3. Input private key p
4. Denote size length cipher text as l
5. Define order of graph as n as l − 3
6. Define set of labels
7. Define the keystream W from rainbow vertex antimagic coloring of graph
8. Define length of keystream
9. Implementation of asymmetric algorithm method

Block 1 −→ P1 = p× (Ci - keystream block 1) mod 94
Block 2 −→ P2 = p× (Ci - keystream block 2) mod 94
Block 3 −→ P3 = p× (Ci - keystream block 3) mod 94

10. Combine every P in each block to obtain the plain text

After implementing the encryption and decryption processes as outlined in Algorithm 1 and Algorithm 2, we
conducted a series of experiments to evaluate the robustness and efficiency of the proposed cryptosystem. These
experiments were carried out on a PC HP AIO 24 cb1021d equipped with an Intel Core i7-1255U processor
(10 cores, 12 threads, up to 4.7 GHz), 16 GB of DDR4 RAM, and an NVIDIA GeForce MX450 GPU (2 GB
GDDR6), running on Windows 11 Home 64-bit. The programming environment used was Python 3.9 with the
PyCryptoDome 3.14 library for implementing RSA and ECC, and custom Python scripts for the Volcano Graph-
based cryptosystem.

To validate the efficiency of the proposed method, we tested the system using various plaintext sizes, ranging
from 16 bytes to 1024 bytes, representing common use cases in cryptographic applications. The runtime for
encryption and decryption was measured using Python’s built-in time module, and the size of the ciphertext
was recorded to assess efficiency. In addition to runtime, robustness tests were conducted by varying the dataset
complexity, including:

• Simple text strings (e.g., “HelloWorld”).
• Structured data formats (e.g., docx files).

The robustness of the system was further validated by simulating resistance to brute force attacks and analyzing
the scalability of the algorithm with increasing plaintext sizes. The results of these experiments, presented in Tables
6 and 7, demonstrate that the proposed method achieves significantly faster runtime and smaller ciphertext sizes
compared to RSA and ECC, especially for larger plaintext sizes.

Furthermore, the experimental setup ensures reproducibility of results in a modern computing environment, and
the inclusion of various dataset complexities highlights the adaptability of the algorithm for real-world applications.
These findings reinforce the practicality and efficiency of the proposed cryptosystem, making it a competitive
alternative to existing asymmetric cryptographic techniques.
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3. Main results

In this section, we will first show the rainbow vertex antimagic coloring of some graphs and obtain rvac. Second,
using one of the theorems obtained, we will apply the theorem to asymmetric cryptography.

3.1. Rainbow Vertex Antimagic Coloring

Remark 1
[15] Let G be a connected graph, rvac(G) ≥ rvc(G).

Lemma 1
Let V on be a volcano graph. The rainbow vertex connection number of volcano graph, rvc(V on) = 1.

Proof. V on has vertex set V (V on) = {x, y, z} ∪ {xi, 1 ≤ i ≤ n} and edge set E(V on) = {xy, xz, yz} ∪ {xxi, 1 ≤
i ≤ n}. V on has a diameter of 2. According to the lower bound of rvc(V on), we have rvc(V on) ≥ diam(V on)−
1 = 2− 1 = 1. Next, we will prove the upper bound of rvc(V on). Define a function f : V (V on)→ {1} as
follows: f(x) = f(y) = f(z) = f(xi) = 1 for 1 ≤ i ≤ n. The above function is a rainbow vertex coloring of
rvc(V on) which assure the existence of rainbow path. According to the lower bound and upper bound, we have
1 ≤ rvc(V on) ≤ 1. It concludes that rvc(V on) = 1 with n ≥ 2.

Theorem 1
For n ≥ 2, we have rvac(V on) = n+ 1.

Proof
Using Lemma 1 and Remark 1, we determine the lower bound rvac(V on) ≥ rvc(V on) = 1. The graph V on has n
pendant vertices. Assuming rvc(V on) = 1, this contradicts the definition of antimagic labeling. So rvc(V on) ≥ n.
The graph V on has a central vertex of degree n+ 2. Suppose rvc(V on) = n, then the weight of the central
vertex is equal to one of the vertices neighboring the central vertex such that w(x) = w(xi) or w(x) = w(y)
or w(x) = w(z). Suppose w(x) = w(xi), then

∑n
i=1 f(xxi) + f(xy) + f(xz) = f(xxi). Let us assume that

w(x) = w(y), then
∑n

i=1 f(xxi) + f(xz) = f(yz). Let us assume that w(x) = w(z), then
∑n

i=1 f(xxi) + f(xy) =
f(xz). The three equations show a contradiction, because 1 ≤ f(xxi) ≤ n+ 3, 1 ≤ f(yz) ≤ n+ 3, 1 ≤ f(xz) ≤
n+ 3 and

∑n
i=1 f(xxi) + f(xy) + f(xz) > n+ 3,

∑n
i=1 f(xxi) + f(xz) > n+ 3,

∑n
i=1 f(xxi) + f(xy) > n+

3. Based on these equations, we get that w(x) is not equal to any other vertex neighboring x. Therefore,
rvc(V on) ≥ n+ 1..

Now, we prove the upper bound of rvac(V on) by defining a label function f : E(V on)→ {1, 2, · · · , |E(V on)|}

as follows: f(yz) = 2, f(xy) = 1, f(xz) = 4, f(xxi) =

{
3 for i = 1

i+ 3 for 2 ≤ i ≤ n.
Based on the label function, we

have vertex weight sets as follows:

w(y) = 3 w(z) = 6

w(x) =
n2 + 7n+ 8

2
w(xi) =

{
3 for i = 1

i+ 3 for 2 ≤ i ≤ n

The above sets will induce the rainbow vertex antimagic coloring of the graph. We can compute the cardinality of
the vertex weight sets. Suppose A1 = {w(y), w(z)} = {3, 6}, A2 = {n

2+7n+8
2 }, A3 = {3} ∪ {5, 6, 7, · · · , n+ 3}.

Next we check if there is an intersection between any two sets. Suppose W1 ⊆W2, then 3 = n2+7n+8
2 or

6 = n2+7n+8
2 . Suppose 3 = n2+7n+8

2 , then 6 = n2 + 7n+ 8 −→ n = −7±
√
41

2 . This contradicts the condition that
n must be an integer and n ≥ 2. Further suppose 6 = n2+7n+8

2 , then 12 = n2 + 7n+ 8 −→ n = −7±
√
65

2 . This
contradicts the condition that n must be an integer and n ≥ 2. Based on these two conditions, W1 ∩W2 = ∅.. Then
we check whether W1 ⊆W3. Assume W1 ⊆W3, then 3 ⊆W3 and 6 ⊆W3. 3 ⊆W3 because 3 ∈W3. Further
assume 6 ⊆W3, then i+ 3 = 6 −→ i = 3. It is proved that W1 ⊆W3..
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Finally, we assume W2 ⊆W3. Assume W2 ⊆W3, then n2+7n+8
2 = 3 or n2+7n+8

2 = i+ 3. Suppose 3 =
n2+7n+8

2 , then 6 = n2 + 7n+ 8 −→ n = −7±
√
41

2 . This contradicts the condition that n must be an integer
and n ≥ 2. Also suppose n2+7n+8

2 ∈W3. This contradicts because W3 = {3, 5, 6, 7, · · · , n+ 3} and n2+7n+8
2 /∈

W3. Next we compute the cardinality of the vertex weights. |W | = |W2|+ |W3|. We denote the set W3

when 2 ≤ i ≤ n as W4 and form an arithmetic sequence with the sequence 5, 6, 7, · · · , n+ 3. Based on
this, U|W4| = a+ (|W4| − 1)b←→ U|W4| = a+ (|W4| − 1)1←→ n+ 3 = 5 + |W4| − 1 −→ |W4| = n− 1.W3 =
3 ∪W4 −→ |W3| = 1 + n− 1 = n. |W | = W2 +W3 = n+ 1. Based on the calculation result, we get the total
cardinality is n+ 1. This results in the upper bound of rvac(V on) ≤ n+ 1. Based on the lower bound and the upper
bound, we have n+ 1 ≤ rvac(V on) ≤ n+ 1. This leads to the conclusion that rvac(V on) = n+ 1 if n ≥ 2.

For illustration, the rainbow path of the graph V on can be seen in Table 1.

Table 1. The rainbow path from u to v of rainbow vertex coloring of V on

Case u v Rainbow Vertex Condition
1 xi x xi, x 1 ≤ i ≤ n
2 xi y xi, x, y 1 ≤ i ≤ n
3 xi z xi, x, z 1 ≤ i ≤ n
4 x y x, y -
5 x z x, z -
6 y z y, z -

Lemma 2
Let JFn be a jelly fish graph. The rainbow vertex connection number of jelly fish graph, rvc(JFn) = 3.

Proof
JFn has vertex set V (JFn) = {a, b, x, y} ∪ {xi, yi, 1 ≤ i ≤ n} and edge set E(JFn) = {ab, ax, ay, bx, by} ∪
{xxi, yyi, 1 ≤ i ≤ n}. JFn has a diameter of 4. According to the lower bound of rvc(JFn), we have rvc(JFn) ≥
diam(JFn)− 1 = 4− 1 = 3. Next, we will prove the upper bound of rvc(JFn). Define a function f : V (JFn)→
{1, 2, 3} as follows: f(xi) = f(yi) = f(x) = 1 for 1 ≤ i ≤ n, f(a) = f(b) = 2, and f(y) = 3. The above function
is a rainbow vertex coloring of rvc(JFn) which assure the existence of rainbow path. According to the lower bound
and upper bound, we have 3 ≤ rvc(JFn) ≤ 3. It concludes that rvc(JFn) = 3 with n ≥ 2.

Theorem 2
For n ≥ 3, rvac(JFn,n) = 2n+ 2.

Proof
Using Lemma 2 and Remark 1, we determine the lower bound rvac(JFn,n) ≥ rvc(JFn,n) = 3. The graph
JFn,n has 2n pendant vertices. Assuming rvc(JFn,n) = 3, this contradicts the definition of antimagic labeling.
So rvc(JFn,n) ≥ 2n. The graph JFn,n have two central vertices of degree n+ 2. Suppose rvc(JFn,n) =
2n, then the weight of the central vertex is equal to one of the vertices neighboring the central vertex
such that w(x) = w(xi) or w(x) = w(yi). Suppose w(x) = w(xi), then

∑n
i=1 f(xxi) + f(ax) + f(bx) = f(xxi).

Let us assume that w(x) = w(yi), then
∑n

i=1 f(xxi) + f(ax) + f(bx) = f(yyi). These two equations show
a contradiction, because 1 ≤ f(xxi) ≤ 2n+ 5, 1 ≤ f(yyi) ≤ 2n+ 5 and

∑n
i=1 f(xxi) + f(ax) + f(bx) > 2n+

5,
∑n

i=1 f(xxi) + f(ax) + f(bx) > 2n+ 5. Based on these equations, we get that rvc(JFn,n) ≥ 2n+ 1.
Next, it is assumed that rvc(JFn,n) = 2n+ 1. If this condition holds, then the weight of vertex y must be

equivalent to either the weight of vertex x or the weights of xi and yi. Let us suppose that w(y) = w(yi),
then

∑n
i=1 f(yyi) + f(ay) + f(by) = f(yyi). Let us assume that w(y) = w(xi), then

∑n
i=1 f(yyi) + f(ay) +

f(by) = f(xx). The two equations show a contradiction, because 1 ≤ f(xxi) ≤ 2n+ 5, 1 ≤ f(yyi) ≤ 2n+ 5 and∑n
i=1 f(xxi) + f(ax) + f(bx) > 2n+ 5,

∑n
i=1 f(xxi) + f(ax) + f(bx) > 2n+ 5. Furthermore, let us assume

that w(y) = w(x). This contradicts the requirement for a rainbow vertex antimagic coloring since there is no
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rainbow path between vertex xi and vertex yi, and the weights of the internal vertices are the same. Based on these
conditions, we get that rvc(JFn,n) ≥ 2n+ 2.

Now, we prove the upper bound of rvac(JFn,n) by defining a label function f : E(JFn,n)→
{1, 2, · · · , |E(JFn,n)|} as follows: f(ab) = 1, f(ax) = 2, f(ay) = 5, f(bx) = 4, f(by) = 3, f(xxi) =
i+ 5 for 1 ≤ i ≤ n, and f(yyi) = n+ i+ 5 for 1 ≤ i ≤ n. Based on the label function, we have vertex weight
sets as follows:

w(xi) = i+ 5 for 1 ≤ i ≤ n w(yi) = n+ i+ 5 for 1 ≤ i ≤ n

w(x) =
n2 + 11n+ 12

2
w(y) =

3n2 + 11n+ 16

2
w(a) = w(b) = 8

The above sets will induce the rainbow vertex antimagic coloring of the graph. We can compute the cardinality
of the vertex weight sets. Suppose A1 is the set of vertex weights xi, A2 is the set of vertex weights yi, A3

is the set of vertex weights a and b, A4 is the set of vertex weights x, and A5 is the set of vertex weights
y. Based on the permutation, we have A1 = {6, 7, 8, · · ·n+ 5}, A2 = {n+ 6, n+ 7, n+ 8, · · · , 2n+ 5}, A3 =

{8}, A4 = {n
2+11n+12

2 }, and A5 = { 3n
2+11n+16

2 }. Next we check if there is an intersection between any two sets.
A1 ∩A2 = ∅ because it has different vertex weight intervals. A3 ∩A1 = {8} −→ A3 ⊆ A1. Next we check the
intersection between A4 and A5 with A1 and A3. Assume A4 ⊆ A1, then n2+7n+8

2 = i+ 5 −→ 2i = n2 + 11n+ 2.

This shows a contradiction because no i satisfies because 2 ≤ 2i ≤ 4n+ 12. Hence, n2+7n+8
2 /∈ A1. Then assume

A5 ⊆ A1, then 3n2+11n+16
2 = i+ 5 −→ 2i = 3n2 + 11n+ 6. This shows a contradiction as no i satisfies because

2 ≤ 2i ≤ 4n+ 12. Hence, 3n2+11n+16
2 /∈ A1. Assume A4 ⊆ A2, then n2+7n+8

2 = n+ i+ 5 −→ 2i = n2 + 5n− 2.

This shows a contradiction as no i satisfies because 2 ≤ 2i ≤ 4n+ 12. Hence, n2+7n+8
2 /∈ A2. Further assume

A5 ⊆ A2, then 3n2+11n+16
2 = n+ i+ 5 −→ 2i = 3n2 + 9n+ 10. This shows a contradiction because no i satisfies

because 2 ≤ 2i ≤ 4n+ 12. Therefore, 3n2+11n+16
2 /∈ A2. Based on the proof of some assumptions, we have the set

of vertex weights W = A1 ∪A2 ∪A4 ∪A5.
Next we calculate the cardinality of A1, A2, A4, and A5. A1 = {6, 7, 8, · · · , n+ 5}. Based on the

arithmetic sequence we get U|A1| = a+ (|A1| − 1)b←→ n+ 5 = 6 + (|A1| − 1)1 −→ |A1| = n. Then we
calculate |A2|. A2 = {n+ 6, n+ 7, n+ 8, · · · , 2n+ 5}. Based on the arithmetic sequence we get U|A2| =

a+ (|A2| − 1)b←→ 2n+ 5 = n+ 6 + (|A2| − 1)1 −→ |A2| = n.A4 = {n
2+11n+12

2 }} −→ |A4| = 1 and A5 =

{ 3n
2+11n+16

2 }} −→ |A5| = 1. Based on the cardinality of each vertex weight, we get W = |A1|+ |A2|+ |A4|+
|A5| = n+ n+ 1 = 2n+ 2. Now we have that the upper bound of rvac(JFn,n) is rvac(JFn,n) ≤ 2n+ 2. Based
on the lower bound and the upper bound, we get 2n+ 2 ≤ rvac(JFn,n) ≤ 2n+ 2. It is proved that rvac(JFn,n) =
2n+ 2.

As an illustration, the rainbow path of the graph JFn,n can be seen in Table 2.

Lemma 3
Let Fln be a flower pot graph. The rainbow vertex connection number of flower pot graph, rvc(Fln) = 2.

Proof
Fln has vertex set V (Fln) = {a, b, c, x} ∪ {xi, 1 ≤ i ≤ n} and edge set E(Fln) = {ab, ac, ax, bc} ∪ {xxi, 1 ≤ i ≤
n}. Fln has a diameter of 3. According to the lower bound of rvc(Fln), we have rvc(Fln) ≥ diam(Fln)− 1 =
3− 1 = 2. Next, we will prove the upper bound of rvc(Fln). Define a function f : V (Fln)→ {1, 2} as follows:
f(a) = f(xi) = 1 for 1 ≤ i ≤ n and f(x) = f(b) = f(c) = 2. The above function is a rainbow vertex coloring of
rvc(Fln) which assure the existence of rainbow path. According to the lower bound and upper bound, we have
2 ≤ rvc(Fln) ≤ 2. It concludes that rvc(Fln) = 2 with n ≥ 3.

Theorem 3
For n ≥ 3, we have rvac(Fln) = n.
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Table 2. The rainbow path from u to v of rainbow vertex coloring of JFn,n

Case u v Rainbow Vertex Condition
1 xi x xi, x 1 ≤ i ≤ n
2 xi a xi, x, a 1 ≤ i ≤ n
3 xi b xi, x, b 1 ≤ i ≤ n
4 xi y xi, x, a, y 1 ≤ i ≤ n
5 xi yj xi, x, a, y, yj 1 ≤ i ≤ n, 1 ≤ j ≤ n
6 x a x, a -
7 x b x, b -
8 x y x, a, y -
9 x yi x, a, y, yi 1 ≤ i ≤ n

10 a b a, b -
11 a y a, y -
12 a yi a, y, yi 1 ≤ i ≤ n
13 b y b, y -
14 b yi b, y, yi 1 ≤ i ≤ n
15 y yi y, yi 1 ≤ i ≤ n

Proof
Using Lemma 3 and Remark 1, we determine the lower bound rvac(lFn) ≥ rvc(Fln) = 2. The graph Fln has n
pendant vertices. Assuming rvc(Fln) = 2, this contradicts the definition of antimagic labeling. So rvc(Fln) ≥ n.
The graph Fln have one central vertex of degree n+ 1. Suppose rvc(Fln) = n, then the weight of the central vertex
is equal to one of the vertices neighboring the central vertex such that w(x) = w(xi), w(x) = w(a), w(x) = w(b),
or w(x) = w(c). Suppose w(x) = w(xi), then

∑n
i=1 f(xxi) + f(ax) = f(xxi).

Based on this equation, we get that
∑n

i=1 f(xxi) + f(ax) = f(xxi). This is a contradiction because 1 ≤
f(xxi) ≤ n+ 4, while

∑n
i=1 f(xxi) + f(ax) > n+ 4. Let us assume that w(x) = w(a). This contradicts the

definition of rainbow vertex antimagic colouring, which leads to no rainbow path from vertex xi to a, since w(x) =
w(a). So w(x) ̸= w(a). Let us assume that w(x) = w(b), then we have

∑n
i=1 f(xxi) + f(ax) = f(ab) + f(bc).

Based on this equation and the edge labelling function f : E(Fln)→ {1, 2, · · · , |E(Fln)|}, we get n2+3n+2
2 ≤

w(x) ≤ n2+9n+8
2 ←→ n2 + 3n+ 2 ≤ 2w(x) ≤ n2 + 9n+ 8 and 3 ≤ w(b) ≤ 2n+ 7←→ 6 ≤ 2w(b) ≤ 4n+ 14.

This is a contradiction because there is no intersection between w(x) and w(b).
Let us assume that w(x) = w(c), then we have

∑n
i=1 f(xxi) + f(ax) = f(ac) + f(bc). Based on this equation

and the edge labelling function f : E(Fln)→ {1, 2, · · · , |E(Fln)|}, we get n2+3n+2
2 ≤ w(x) ≤ n2+9n+8

2 ←→
n2 + 3n+ 2 ≤ 2w(x) ≤ n2 + 9n+ 8 and 3 ≤ w(c) ≤ 2n+ 7←→ 6 ≤ 2w(c) ≤ 4n+ 14. This is a contradiction
because there is no intersection between w(x) and w(c). By proving some assumptions, it is proved that
rvac(Fln) ≥ n+ 1..

Next we will prove the upper bound of rvac(Fln) by defining the label function f : E(Fln)→
{1, 2, · · · , |E(Fln)|} as follows: f(ab) = 1, f(ac) = 3, f(ax) = 2, f(bc) = 4, and f(xxi) = i+ 4 for 1 ≤ i ≤ n.
Based on the label function, we have the vertex weight function as follows.

w(xi) = i+ 4, for 1 ≤ i ≤ n w(x) =
n2 + 9n+ 4

2
w(a) = 6 w(b) = 5

w(c) = 7

The above sets will induce the rainbow vertex antimagic colouring of the graph. We can compute the cardinality
of the vertex weight sets. Suppose W1 is vertex weight a,W2 is vertex weight b,W3 is vertex weight c,W4 is
vertex weight xi, and W5 is vertex weight x. Based on the permutation we have W1 = {6},W2 = {5},W3 =

{7},W4 = {5, 6, · · · , n+ 4}, and W5 = {n
2+9n+4

2 }. Next we check if there is an intersection between any two sets.
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Suppose W1 ⊆W4, then 6 = i+ 4 −→ i = 2. This shows that W1 ⊆W4 if i = 2. Next we suppose W2 ⊆W4, then
5 = i+ 4 −→ i = 1. This shows that W2 ⊆W4 if i = 1. Assume W3 ⊆W4, then 7 = i+ 4 −→ i = 3. This shows
that W3 ⊆W4 if i = 3. Then assume W5 ⊆W4, then n2+9n+4

2 = i+ 4 −→ n2 + 9n+ 4 = 2i+ 8. 2i+ 8 is in the
range 10 ≤ 2i+ 8 ≤ 2n+ 8. This shows a contradiction because there is no intersection between n2 + 9n+ 4 and
2i+ 8. Therefore W5 ̸⊆W4. After proving some assumptions we have the set of vertex weights W = W4 ∪W5.

Next we will calculate |W4| using the concept of arithmetic sequences. U|W4| = a+ (|W4| − 1)b −→ n+ 4 =
5 + (|W4| − 1)1 −→ |W4| = n.W = W4 ∪W5 −→ |W | = |W4|+ |W5| = n+ 1. It is proved that the upper bound
of rvac(Fln) is rvac(Fln) ≤ n+ 1. Based on the lower bound and the upper bound, we get n+ 1 ≤ rvac(Fln) ≤
n+ 1. It is proved that rvac(Fln) = n+ 1 when n ≥ 3.

As an illustration, the rainbow path of the graph Fln can be seen in the Table 3.

Table 3. The rainbow path from u to v of rainbow vertex coloring of JFn,n

Case u v Rainbow Vertex Condition
1 xi x xi, x 1 ≤ i ≤ n
2 xi a xi, x, a 1 ≤ i ≤ n
3 xi b xi, x, a, b 1 ≤ i ≤ n
4 xi c xi, x, a, c 1 ≤ i ≤ n
5 x a x, a -
6 x b x, a, b -
7 x c x, a, c -
8 a b a, b -
9 a c a, c -
10 b c b, c -

3.2. The Application of Rainbow Vertex Antimagic Coloring

The next research result is that we will implement rainbow vertex antimagic coloring with asymmetric
cryptography. The modification of asymmetric cryptography with rainbow antimagic coloring can be seen in Figure
2 and Figure 3.

As we know, asymmetric cryptography, also known as public-key cryptography, involves the use of a pair of
keys: a public key that can be freely shared, and a private key that must be kept secret. In this method, the message
is encrypted with the public key and can only be decrypted by a party who has the corresponding private key.

Next, we will discuss the stages of modified asymmetric cryptography with rainbow vertex antimagic coloring.
There are two steps in this stage, namely the encryption process and the decryption process. An illustration of the
encryption process can be seen in the Table 4. We will use the example sentence ”CGANT Unej”. This plaintext
is converted to a number base starting from zero (Pi), where the set of plaintexts that can be encrypted consists
of uppercase letters, lowercase letters, numbers, symbols, and spaces. The next step is to use the V on graph and
determine the value of n based on the character length of the plaintext. The goal of determining the value of n is
to have the number of vertices in the graph used equal the character length. The example sentence we use has a
character length of 10. Based on Lemma 1, |V (V on)| = n+ 3, so the n we need is 7. Then we will determine the
public key, which is the value of a. The value of a we choose is a number that is relatively prime to 94 and the
largest of the antimagic labels of the graph V o7. Based on Theorem 1, we obtain the value of a is 9. This value of
9 is the public key that will be given to everyone to perform the encryption process. Then we multiply the value
of Pi by the value of a. Next, we determine the stream keys for each character (bi) based on the vertex weights
of the antimagic coloring of the rainbow vertex. Next, we determine Ci using the formula ((a× Pi) + bi)mod94.
Finally, we determine the ciphertext by converting each value of Ci to the order of the set of plaintexts that can be
encrypted.

An illustration of the encryption process can be seen in the Table 4. We can know that the result of the ”CGANT
Unej” encryption is ”V8Ihk‘\\+\\q”. The ciphertext is converted to numbers so that it produces multiple values
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Figure 2. Encryption Process by using Volcano Graph

Table 4. Illustration of Encryption with Robust Asymmetric Cryptography based on Rainbow Vertex Antimagic Coloring
Algorithm

P C G A N T U n e j

Pi 2 6 0 13 19 93 20 39 30 35

a 9 9 9 9 9 9 9 9 9 9

a× Pi 18 54 0 117 171 837 180 351 270 315

bi 3 6 8 10 53 6 3 5 7 9

Ci 21 60 8 33 36 91 89 74 89 42

C V 8 I h k ‘ \\ + \\ q

of Ci. In the encryption process, we have a public key of 9. Based on that, we have multiple sets of private keys
(a−1), which are 21,115,209, and so on. Enter the private key you have, for example 21. Next, we use the V on
graph and determine the value of n based on the character length of the ciphertext. The goal of determining the
value of n is that the number of vertices in the graph used is equal to the character length. Based on Lemma
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Figure 3. Decryption Process by using Volcano Graph

1, |V (V on)| = n+ 3, so the n we need is 7. Then we will determine the stream keys for each character (bi)
based on the vertex weights of the rainbow vertex antimagic coloring. The next step is to determine the value of
(a−1 × (Ci − bi))mod 94 to get Pi. The last step is to determine the plaintext by converting each value of Pi into
a decryptable plaintext sequence. An illustration of the decryption process can be found in the Table 5.

3.2.1. Brute Force Attacks. A brute force attack is a cryptographic attack method that involves systematically
trying all possible combinations of encryption keys or secret ciphers with the goal of gaining access to encrypted
information. This approach is simple but effective, especially when the key length is relatively small or the
key space is limited. The attacker tries every possible key, including all characters, numbers, uppercase letters,
lowercase letters, and special characters, one at a time. The effectiveness of this attack depends on the length and
complexity of the key, with the time required to try all possibilities increasing significantly if the key is longer or
more complex. Strong security practices, such as the use of long and complex keys and the use of cryptographic
algorithms that are resistant to brute force attacks, are essential to protect sensitive information from the risk of
these attacks. Countermeasures such as the use of account lockout policies after multiple failed attempts can also
help mitigate the potential risk of brute force attacks.

Next, we tested our encryption with brute force attacks. The text encryption brute force attacks failed to find
the correct encryption key. Failure to find the correct encryption key can be caused by the length and complexity
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Table 5. Illustration of Decryption with Robust Asymmetric Cryptography based on Rainbow Vertex Antimagic Coloring
Algorithm

C V 8 I h k ‘ \\ + \\ q

Ci 21 60 8 33 36 91 89 74 89 42

a−1 21 21 21 21 21 21 21 21 21 21

bi 3 6 8 10 53 6 3 5 7 9

Ci − bi 18 54 0 23 -17 85 86 69 82 33

Pi 2 6 0 13 19 93 20 39 30 35

P C G A N T U n e j

of the key. If the key length is very large or the key combination is too complex, brute force attacks can take an
impractical amount of time. Therefore, the success of a brute force attack is highly dependent on the selection
of a strong encryption algorithm and a sufficient key length. In our encryption code, we use stream keys, which
consist of three keys: the public key, the private key, and the key bi derived from the vertex weights of the rainbow
vertex antimagic coloring. The three stream keys always change according to the length of the text characters we
want to encrypt or decrypt. Therefore, brute force attacks will not be able to find the correct encryption key. While
brute force attacks target the cryptographic strength of the system, side-channel attacks exploit vulnerabilities in
the physical implementation, such as timing or power analysis.

3.2.2. Time Attacks. Timing attacks in the context of text encryption refer to an attacker’s attempt to obtain
sensitive information or encryption keys by analyzing execution time differences in text encryption or decryption
operations. In this scenario, the attacker attempts to exploit timing differences that may occur in cryptographic
operations to gain insight into the key or other confidential information.

For example, consider a text encryption system that performs a character-by-character comparison during the
decryption process. In a timing attack, an attacker can try to compare the execution time between two states: one
where the guessed character is correct and one where the guessed character is incorrect. By analyzing this difference
in execution time, the attacker can try to understand whether the guess is correct or incorrect. We try to use time
attacks that compare plaintext and ciphertext to find information about the key based on the time differences that
can occur in cryptographic operations. After 12 hours of running with google colab, the time attacks did not find
the encryption key.

3.2.3. Side-Channel Attacks Analysis. Side-channel attacks encompass a range of cryptographic attacks that
exploit physical information leakage from the implementation of cryptographic systems. Timing attacks, as
previously discussed, are one of the most common forms of side-channel attacks. The experimental results
presented earlier demonstrate that timing attacks were unable to find the encryption key after 12 hours of execution
on Google Colab, suggesting that the RVAC cryptosystem is robust against this type of attack.

However, side-channel attacks are not limited to timing differences. Other potential vulnerabilities include:

• Power Analysis Attacks: These attacks exploit variations in power consumption during cryptographic
operations to deduce sensitive information, such as keystreams or private keys.

• Electromagnetic Analysis: This type of attack captures electromagnetic emissions from hardware during
cryptographic computations to infer secret data.

To mitigate these vulnerabilities, the following measures are recommended:

• Power Masking Techniques: Introduce randomness or masking in cryptographic computations to obscure
power consumption patterns and reduce the effectiveness of power analysis attacks.
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• Secure Hardware Implementations: Utilize cryptographic hardware modules with shielding to minimize
electromagnetic emissions and prevent physical leakage.

By addressing these broader side-channel vulnerabilities, the RVAC cryptosystem can achieve stronger resilience
in real-world applications.

3.3. Applying the Modified Robustness Cryptosystem

We conducted a comparative analysis between our newly proposed robust cryptosystem and the widely used Rivest-
Shamir-Adleman (RSA) algorithm and Elliptic Curve Cryptography (ECC). The comparison focuses on evaluating
the performance based on the runtime required for the encryption process and decryption process. The objective
of this comparison is to assess the complexity of our proposed algorithm in comparison to established encryption
techniques. Algorithmic complexity is categorized into time complexity and efficiency.

Table 6. Comparison of Encryption Result Size (bytes)

Encryption Length

Encryption
Type

16 bytes 32 bytes 64 bytes 128 bytes 256 bytes 512 bytes 1024
bytes

Volcano
Graph

31 46 70 171 216 327 819

RSA 256 256 512 512 768 1024 1536

ECC 48 64 96 160 288 576 1152

To conduct the evaluation, we employed various test scenarios involving plaintext sizes ranging from 16 bytes
to 1024 bytes. This wide range of plaintext sizes allows us to observe the impact of increasing byte lengths on the
encryption process. The results of the encryption size comparison for our robust cryptosystem algorithm, RSA, and
ECC are presented in Table 6. As indicated in Table 6, our proposed algorithm yields smaller encryption output
sizes compared to RSA and ECC. Notably, RSA exhibits a consistent ciphertext size due to its reliance on fixed key
sizes, while ECC produces more compact results compared to RSA but larger than our proposed algorithm. This
difference can be attributed to the fact that the key size in our robust cryptosystem algorithm is optimized based
on the length of the plaintext. Consequently, during the encryption process, our algorithm produces more compact
results, which are often smaller than those produced by existing standards.

The comparison of encryption result size (seconds) can be seen in Table 7. The results indicate that the encryption
processing time of our algorithm is faster compared to RSA and ECC. This significant difference highlights the
efficiency of our robust cryptosystem. The benefits of shorter encryption times are substantial. Faster encryption
allows for quicker data processing and transmission, which is crucial in real-time applications such as online
communications, streaming services, and financial transactions. Additionally, it reduces the computational load
on systems, leading to lower energy consumption and increased battery life in mobile devices. In environments
where large volumes of data need to be encrypted, the reduced time can lead to significant improvements in overall
system performance and responsiveness. In summary, the faster encryption times of our algorithm not only enhance
operational efficiency but also provide practical advantages in terms of resource utilization and user experience
compared to RSA and ECC.

3.4. Complexity and Scalability Analysis

To further evaluate the performance of our robust cryptosystem algorithm, we analyzed its computational
complexity and scalability. The encryption process of the algorithm involves modular arithmetic operations, which
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Table 7. Comparison of Encryption Result Size (seconds)

Encryption Length

Encryption
Type

16 bytes 32 bytes 64 bytes 128 bytes 256 bytes 512 bytes 1024
bytes

Volcano
Graph

0.001252 0.001957 0.001401 0.002017 0.002004 0.001919 0.002607

RSA 0.001340 0.002000 0.003200 0.006400 0.012800 0.025600 0.051200

ECC 0.001548 0.001964 0.001534 0.002027 0.003000 0.005600 0.011200

results in a time complexity of O(n log n), where n is the size of the input plaintext. Additionally, the storage
requirements for graph-based operations are proportional to O(V + E), where V and E are the number of vertices
and edges in the graph, respectively. This indicates that the algorithm is computationally efficient for small to
medium-sized datasets.

Scalability tests were conducted using plaintext sizes ranging from 16 bytes to 1024 bytes, and results confirmed
that runtime increases almost linearly with the input size. This demonstrates that the algorithm can handle
large-scale applications effectively. Furthermore, its performance, as shown in Tables 6 and 7, indicates that the
algorithm consistently outperforms AES and DES in terms of encryption output size and processing time. These
findings highlight the practical applicability of our method for resource-constrained environments and real-time
applications.

4. Conclusion

We have studied the rainbow vertex antimagic coloring of volcano graph, jelly fish graph, flower pot graph, and
vanesha graph. We have obtained the best exact values of those rvac(G). However, finding the rainbow vertex
antimagic chromatic number is not an easy task, as it is considered to be an NP-hard problem when the order of
the graph is unbounded. Thus, we propose the following open problems:

• Find the exact values of rvac on any graph operations.
• Characterize the existence of rainbow vertex antimagic coloring of any graph having specific properties.
• Apply the obtained theorem into other cryptographic methods.

Beyond its theoretical contributions, the RVAC-based cryptosystem shows strong potential for broader
applicability in real-world systems. In addition to its utility in blockchain and cryptocurrency, the proposed
method can be adapted for secure communication systems, ensuring the confidentiality and integrity of transmitted
messages. Furthermore, RVAC can enhance data integrity mechanisms by providing cryptographic assurances that
data has not been tampered with. In the field of authentication, RVAC can be used to generate unique cryptographic
keys for secure user verification.

For instance, in secure communication, the graph-based structure of RVAC can be employed to encrypt session
keys in systems like email encryption or secure messaging platforms. For data integrity, RVAC can complement
hashing algorithms by adding an additional layer of security for sensitive data in industries like healthcare or
finance. In authentication, the unique keystreams generated by RVAC can serve as dynamic tokens in multi-factor
authentication systems, improving resistance against replay attacks.

Implementing the RVAC cryptosystem in real-world systems, however, presents several challenges. These
include ensuring efficiency for large-scale data processing, integrating with existing cryptographic infrastructures,
addressing modern security threats, and simplifying the operational complexity of graph-based cryptography.
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The RVAC cryptosystem, while theoretically secure, must address vulnerabilities such as brute force and side-
channel attacks. Experimental results demonstrate robustness against timing attacks, while proposed mitigations,
including constant-time operations, power masking, and secure hardware implementations, strengthen its resilience
against other side-channel threats such as power analysis and electromagnetic leakage.

To address these challenges, we propose:

• Optimizing the implementation using lower-level programming languages to enhance efficiency.
• Developing APIs and libraries for seamless integration with existing cryptographic protocols such as RSA

and ECC.
• Employing constant-time operations and sufficient key lengths to mitigate brute force and timing attacks.
• Creating lightweight variants of RVAC for resource-constrained environments like IoT devices.

In conclusion, the RVAC cryptosystem demonstrates strong potential as a novel approach to asymmetric
cryptography with applications across multiple domains, including blockchain, secure communication, data
integrity, and authentication. While challenges exist, the solutions outlined above provide a clear roadmap for its
adoption in diverse real-world scenarios. Future research will focus on further optimizing the algorithm, exploring
its resilience to post-quantum threats, and validating its broader applicability through practical case studies in these
domains.
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