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Abstract This paper deals with a new discrete distribution with high flexibility. We have studied many of its mathematical
and statistical properties, and we have neglected many other properties due to the narrow scope of the paper. Additionally, we
have presented a comprehensive analysis of actuarial risks. A good set of actuarial risk indicators that are used in financial
analysis and measurement and evaluation of financial risks. Five discrete data sets have been relied upon in conducting the
financial analysis and risk assessment. Necessary comments have been provided on the results of the paper, and a set of
necessary recommendations are provided for insurance companies to avoid the occurrence of unexpected large losses. All
these financial analyses have been conducted in light of a discrete probability distribution.
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1. Introduction

In insurance and risk analysis, examining claims frequencies is crucial for effectively evaluating and managing
financial risks. Specifically, analyzing automobile claims data poses distinct difficulties due to inflated and over-
dispersed frequencies. Factors like demographic attributes, vehicle types, and geographic regions significantly
impact both the frequency and severity of claims (see [32]). The goal of this paper is to use the discrete expanded
Burr-Hatke (DEBH) distribution (see [41]) to analyze automobile claims frequencies that exhibit inflation and over-
dispersion. Discrete models provide a more adaptable and detailed approach compared to traditional continuous
models, especially for handling count data with excessive zeros and greater variability than what is typically
predicted by standard statistical distributions (see [36], [4] and [28]). According to [4], the focus on a discrete
modeling framework stems from the inadequacies of traditional continuous distributions in accurately capturing the
unique characteristics of automobile claims data. By utilizing discrete models, we aim to overcome the limitations
of normality and homogeneity assumptions, offering a more accurate representation of the underlying claims
processes. This paper contributes to the fields of statistics and risk analysis by introducing a new methodology
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specifically designed to address the excess zeros and variability found in automobile claims frequencies. Our
approach integrates advanced statistical techniques to develop a specialized discrete claims model, effectively
capturing the complex patterns and relationships within the data, thereby enhancing the accuracy and reliability of
risk assessments in the insurance industry.

Recently, [41] introduced an innovative generalized discrete distribution known as the DEBH distribution,
which includes the discrete Burr-Hatke distribution. They thoroughly examined its properties, revealing that the
distribution’s probability mass function can exhibit a range of features such as right skewness with different
shapes, bimodality and uniformity. Additionally, the hazard rate function associated with this distribution may
display monotonically decreasing, monotonically increasing or constant patterns. In their research, [41] conducted
numerical analyses to detail important statistical measures, including mean, variance, skewness, kurtosis, and
the index of dispersion. The distribution’s flexibility makes it useful for modeling both under-dispersed and
over-dispersed count data. The study also included characterizations of the distribution through the conditional
expectation of specific functions of the random variable and the hazard rate function. Furthermore, the authors
investigated both Bayesian and non-Bayesian estimation techniques, comparing their performance through
numerical simulations. The DEBH model was applied to real-world datasets, such as dental carries and kidney cyst
counts, illustrating its practical utility. In statistical modeling, selecting the right probability distribution is crucial
for accurately representing real-world phenomena. This is especially important in ithe nsurance analytics, where
precise assessment and prediction of automobile insurance claims are critical. Given the increasing complexity of
the insurance data and the need for accurate risk evaluation, developing new distributions that address the specific
complexities of such data is essential (see [33]).

The DEBH distribution shows considerable potential in the realm of automobile insurance claims. Automobile
claim data frequently present complexities such as over-dispersion, right skewness and multimodality, which
require adaptable distribution models to accurately capture these characteristics. Utilizing the flexibility of the
DEBH distribution allows researchers and practitioners to develop more precise and reliable models for evaluating
claim frequency and severity, thus improving risk management strategies within the insurance sector (for more
useful details, see [29], [12], [37], [5] and [2]. Other useful continuous model can be covered to discrete models,
see [13] (for new Lindley extension), [3] (for novel XGamma extension) and [35], [14] (novel compound reciprocal
Rayleigh extension), [17] (Burr XII model) and [11] (for new lomax extensions)).

In this context, the paper aims to explore the application of the DEBH distribution for modeling automobile
claim data. By conducting empirical analyses and case studies, we intend to illustrate how effectively the DEBH
distribution captures the complexities inherent in automobile insurance data, thus improving the accuracy and
reliability of risk assessment models. The study utilized five different datasets of automobile insurance claims
(see [30], [31] and [38]). The data were analyzed statistically, and the performance of the DEBH distribution
was compared with several other competitive distributions in this field. In the statistical literature, there are
many important, flexible and applicable continuous probability distributions that deserve attention and conversion
from continuous distributions to discrete distributions. The process of converting to discrete distributions will
undoubtedly serve the field of statistical and mathematical modeling of discrete numerical data. For more of these
previously mentioned distributions, see [39], [22], [23], [15], [16], [6] and [34].

In the following sections, we will provide a comprehensive analysis of the DEBH distribution, covering
its mathematical formulation, key statistical properties, and techniques for parameter estimation. We will then
illustrate its practical application in modeling automobile claim data through detailed insurance case studies
and numerical simulations. These examples will underscore the DEBH distribution’s potential to revolutionize
statistical modeling practices in the insurance industry. By highlighting the importance of the DEBH distribution
and its application in modeling automobile claim data, this research seeks to advance statistical methodologies in
insurance analytics, with the goal of improving the robustness and accuracy of decision-making processes in the
sector. Additionally, we will consider various risk indicators to analyze automobile insurance claims, including:
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1. Value at Risk (VaR[q;Y ]): This metric measures the potential loss at a given quantile, providing an estimate
of the maximum loss expected over a specified time period with certain level of confidence.

2. Tail Value at Risk (TVaR[q;Y ]): Also known as Conditional Value at Risk (CVaR), this indicator assesses
the average loss exceeding the VaR, offering insights into the risk of extreme losses.

3. Tail Variance (TV[q;Y ]): This measures the variance of losses beyond the quantile q, helping to understand
the variability of extreme losses.

4. Tail Mean Variance (TMV[q;Y ]): This provides the variance of the mean of losses beyond the quantile q,
contributing to a deeper understanding of the distribution of extreme outcomes.

5. Expected Loss (EL[q;Y ]): This indicator calculates the expected value of losses at a specific quantile,
reflecting the average loss anticipated in the tail of the distribution.

In this context, the DEBH distribution will be evaluated based on these risk indicators, analyzing how well it
performs in terms of risk calculations and its behavior in modeling extreme values.

2. The model and its main properties

In recent years, there has been increasing interest in the discretization of continuous probability distributions. This
deals with a three-parameter discrete distribution that encompasses the Burr-Hatke distribution, as described by El-
Morshedy et al. [8]. Therefore, this new distribution can be regarded as an extension of the Burr-Hatke distribution.
In statistical research, numerous discrete versions of continuous distributions have been developed, examined, and
utilized for modeling count data. Examples include the Poisson-Lindley distribution (PLi) by Sankaran [26], the
discrete Weibull distribution (DW) by Nakagawa and Osaki [24], the discrete half-normal distribution by Kemp
[18], the discrete Rayleigh distribution (DR) by Roy [25], the discrete Pareto distribution (DPa) by Krishna and
Pundir [19], the generalized geometric distribution (GGc) by Gomez-Déniz [9], the discrete Lindley distribution
(DLi) by Gomez-Déniz and Calderin-Ojeda [10], the discrete linear failure rate distribution (DLFR) by Kumar
et al. [20], and the exponentiated discrete Lindley distribution (EDLi) by El-Morshedy et al.[7]. Recently, a new
family of discrete distributions based on the Rayleigh distribution, called the discrete Rayleigh G (DRG) family,
has been introduced. This family includes various new discrete sub-models (see Aboraya et al. [1]). Yousof et
al. [40] defined and studied a new continuous family of probability distributions based on the Burr-Hatke (BH)
distribution. A RV Y is said to have the expanded Burr-Hatke (EBH) distribution if its cumulative distribution
function (CDF) is given by

Ga,b (y) = 1− 1

y + 1
exp

(
−ayb

)
|y > 0, and a, b > 0

For b = 1, the EBH distribution reduces to one parameter BH distribution first introduced by Maniu and Voda [21].
Then, the CDF of the discrete expanded Burr-Hatke (DEBH) model can be expressed as

Fp,a,b (y) = 1− 1

y + 2
pa(y+1)b |0 < p < 1 and y ∈ N∗ = N ∪ {0} , (1)

where N= {1, 2, . . . }. For b = 1, the DEBH distribution reduces to one parameter DEBH distribution as introduced
by El-Morshedy et al. [8]. The corresponding reliability function (RF) due to Steutel and van Harn [27] can be
written as

F p,a,b (y) = Sp,a,b (y) =
1

y + 2
pa(y+1)b |0 < p < 1 and y ∈ N∗. (2)

The probability mass function (PMF) of the DEBH distribution corresponding to (1) and (2) can be expressed as

Pp,a,b (y) = F p,a,b (y − 1)− F p,a,b (y) |(0<p<1 and y∈N∗), (3)

that is
Pp,a,b (y) =

1

y + 1
pay

b

− 1

y + 2
pa(y+1)b |0 < p < 1 and y ∈ N∗. (4)
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As y becomes large, the denominator y + 1 is approximately y, so

1

y + 1
≈ 1

y
.

Therefore, the first term 1
y+1p

ayb

asymptotically behaves as 1
yp

ayb

. Since 0 < p < 1, pay
b

will tend to 0 as yb

grows, but it will do so very slowly, depending on the values of p, a, b. As y becomes large, y + 2 is approximately
y and (y + 1)

b can be expanded using the binomial theorem

(y + 1)
b
= yb

(
1

y
+ 1

)b

≈ yb
(
b

y
+ 1

)
.

Thus
1

y + 2
pa(y+1)b ≈ 1

y
pa(y

b+byb−1),

which simplifies to
1

y
pay

b

paby
b−1

.

The PMF Pp,a,b (y) of the DEBH distribution asymptotically decays as

Pp,a,b (y) ≈
1

y

[
pay

b

− pay
b

paby
b−1
]
≈ 1

y
pay

b

[− ln (p)] abyb−1.

The model in (4) can be considered as a new generalization of the model of [42].This illustrates the flexibility of
the proposed two-parameter DEBH distribution and the importance of the parameter b in this regard. The hazard
rate function (HRF) can be written as

Hp,a,b (y) =
1

F p,a,b (y − 1)
Pp,a,b (y) .

Then,

Hp,a,b (y) =
(y + 2) pay

b

(y + 1) pa(y+1)b
− 1|0 < p < 1 and y ∈ N∗. (5)

This can be further broken down as

Hp,a,b (y) =
(y + 2)

(y + 1)
pa[y

b−(y+1)b] − 1|0 < p < 1 and y ∈ N∗.

As y → ∞, (y+2)
(y+1) = 1, (y + 1)

b
= yb, implying that yb − (y + 1)

b becomes increasingly negative. Therefore, for
large y we have

pa[y
b−(y+1)b] → 0 ⇒ Hp,a,b (y) → −1.

As y increases, the HRF approaches −1, indicating a decreasing probability of occurrence as y grows large. For
small y, the term (y+2)

(y+1) is slightly greater than 1, and the exponent a
[
yb − (y + 1)

b
]

is less negative. Hence, the
HRF might be small but positive for smaller values of y. Specifically, we have

Hp,a,b (1) =
3

2
pa(1

b−2b) − 1.

Given 0 < p < 1, and a
(
1b − 2b

)
being negative, the HRF for y = 1 will also be less than 1, indicating a low

probability of occurrence at the first step. Now, let Y be a random variable following the DEBH distribution. Then,
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the probability generating function (PGF) of Y is given by

p(s) = E(sy) = 1 + (s− 1)

∞∑
y=1

sy−1 1

y + 1
pay

b

|0 < s < 1. (6)

The rth ordinary moments of Y is given by

E(Y r) =

∞∑
y=1

[yr − (y − 1)r]
1

y + 1
pay

b

. (7)

Therefore, the mean and variance of the DEBH distribution do not have analytical forms. We can ,however,
expressed them as the following series expressions:

E (Y ) =

∞∑
y=1

1

y + 1
pay

b

, (8)

and

V (Y ) =

∞∑
y=1

(2y − 1)
1

y + 1
pay

b

−

( ∞∑
y=1

1

y + 1
pay

b

)2

. (9)

Based on (8) and (9), the index of dispersion is

D (Y ) =
1

E (Y )
V (Y ) .

Similarly, we can express the first four moments of Y , allowing to define the following skewness and kurtosis
measures:

S (Y ) =
1

[V (Y )]3/2
{
E(Y 3)− 3E (Y )E(Y 2) + 2[E (Y )]3

}
.

and
ς (Y ) =

1

[V (Y )]2
{
E(Y 4)− 4E (Y )E(Y 2) + 6[E (Y )]2E(Y 2)− 3[E (Y )]4

}
.

All these measures can be determined numerically with the help of any mathematical software. Now, let us establish
some general relations regarding the order statistics of the DEBH distribution. The CDF of the kth order statistic
from the DEBH distribution is given by

Fp,a,b,k:m (y) =

m∑
ς=k

(
m

ς

)
[Fp,a,b (y)]

ς [
F p,a,b (y)

]m−ς
.

Applying the binomial formula to [Fp,a,b (y)]
ς
=
[
1− F p,a,b (y)

]ς
, we have

Fp,a,b,k:m (y) =

m∑
ς=k

ς∑
l=0

(
m

ς

)(
ς

l

)
(−1)l

[
F p,a,b (y)

]l+m−ς
.

Then,

Fp,a,b,k:m (y) =

m∑
ς=k

ς∑
l=0

(
m

ς

)(
ς

l

)
(−1)l

p(l+m−ς)a(y+1)b

(y + 2)l+m−ς
, |0 < p < 1 and y ∈ ⋗.

Also, the corresponding PMF is obtained as

Pp,a,b,k:m (y) = Fp,a,b,k:m (y)− Fp,a,b,k:m (y − 1) .
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Then

Pp,a,b,k:m (y) =

m∑
ς=k

ς∑
l=0

(
m

ς

)(
ς

l

)
(−1)l

[
1

(y+2)l+m−ς p
(l+m−ς)a(y+1)b

− 1
(y+1)l+m−ς p

(l+m−ς)ayb

]
.

From this form of the PMF, several measures and functions can be derived, as done for the former DEBH
distribution.

The entropy H (Y ) of the DEBH distribution is a measure of uncertainty and can be computed as:

H (Y ) = −
+θ∑
y=0

Pp,a,b (y) logPp,a,b (y) .

Let Mm = max(Y1, Y2, . . . , Ym). Then, the distribution function of Mm is

P (Mm ≤ y) =

[
1− 1

y + 2
pa(y+1)b

]m
.

Analyze the behavior of
[
1− 1

y+2 pa(y+1)b
]m

as m → +∞ and determine the limiting distribution. For modeling
extreme values, compute the return level and return period. Given a return period T , the return level yT is such that
P (Mm ≤ yT ) = 1− 1/T. Solving for yT provides insights into extreme value predictions. For a given extreme
value, the return period T is T = 1/ [1− Fp,a,b (y)] . The tail index ξ characterizes the heaviness of the tails and
can be estimated from the data. Using methods like the Hill estimator or the Pickands estimator, estimate the tail
index to understand the extremal behavior of the DEBH distribution.

3. Risk indicator derivations

The VaR at a specified confidence level a is the q-quantile of the distribution. For a discrete distribution represented
by the PMF, VaR can be computed by finding the smallest value v such that

Pr(y ≤ v) ≥ q.

For the PMF, the VaR at confidence level a can be found numerically by solving:

Σy≤v PP,β(y) = Σy≤v

[
1

y + 1
P ayb

− 1

y + 2
P a(y+1)β

]
≥ q,

here, v =VaR[q;Y ] is our VaR. The Tail Value at Risk at a specified confidence level −q (or Conditional Value at
Risk) represents the expected loss beyond the VaR. It is computed as the conditional expectation of losses exceeding
the VaR. TVaR at confidence level a can be calculated as:

TVaR [q;Y ] =
1

1− q
Σy≤VaR (y − TVaR [q;Y ])

[
1

y + 1
P ayb

− 1

y + 2
P a(y+1)β

]
.

Tail-variance at a specific quantile q represents the variance of losses beyond the q-quantile. It is calculated as:

TV [q;Y ] = Σy≤q (y − q)
2 ×

[
1

y + 1
P ayb

− 1

y + 2
P a(y+1)β

]
.

The tail-mean-variance at a quantile −q is the mean of squared losses beyond the −q-quantile. It can be computed
as:

TMV [q;Y ] =
1

1− q
Σy≤q (y − q)

2 ×
[

1

y + 1
P ayb

− 1

y + 2
P a(y+1)β

]
.
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The expected-loss at a quantile q is the expected value of losses beyond the q-quantile. It is given by:

EL [q;Y ] = Σy≤q (y − q)×
[

1

y + 1
P ayb

− 1

y + 2
P a(y+1)β

]
,

where, the VaR[q;Y ] provides a threshold value representing the maximum loss that might occur with a given
confidence level. It is a crucial risk metric for setting risk limits and capital requirements. The TVaR[q;Y ] quantifies
the average severity of losses beyond the VaR, providing deeper insights into potential extreme losses and tail risk.
the TV[q;Y ] measures the spread or variability of losses in the tail of the distribution beyond a specified quantile,
offering information on the risk of extreme outcomes. The TMV[q;Y ] provides the average squared deviation of
losses beyond a quantile, indicating the average variability of extreme losses. Finally, the EL[q;Y ] estimates the
average amount of loss expected beyond a certain quantile, aiding in risk assessment and scenario planning (for
more details see [2]).

4. Describing automobile claims data

In this Section, we undertake a thorough examination of automobile insurance claim frequencies across different
countries. This analysis is guided by the work of [31], who offer an extensive evaluation of this topic through the
presentation of five distinct datasets. These datasets, which are also cited in the study by [38], provide a valuable
basis for our exploration. Table 1 presents a detailed summary of these datasets, illustrating the occurrence of
inflated over-dispersion in automobile insurance claims. This phenomenon, characterized by greater variability and
higher-than-expected frequencies of claims, is a significant factor in understanding the complexities of insurance
data across different regions.

Additionally, Figure 1 provides a comprehensive visualization of the automobile claims frequencies across five
different countries. It includes three types of plots: box plots, scatter plots, and Q-Q (Quantile-Quantile) plots,
each offering unique insights into the distribution and characteristics of the data sets. The box plots display the
distribution of automobile claims frequencies for each country. Each plot presents a box-and-whisker diagram
showing the median, quartiles, and potential outliers for the claims frequencies. The central box represents the
interquartile range (IQR) between the first and third quartiles, with a line inside the box indicating the median
frequency. The whiskers extend to 1.5 times the IQR from the quartiles, and any points outside this range are
considered potential outliers. The scatter plots illustrate the relationship between the number of claims and the
frequency of claims for each country.

Each plot is separated by country, allowing for a detailed examination of how the frequency of claims varies
with the number of claims. Data points are plotted on the x-axis (number of claims) against the y-axis (frequency
of claims), with different colors representing different countries. The Q-Q plots compare the quantiles of the claim
frequencies against a theoretical normal distribution. Each Q-Q plot assesses how well the claim frequencies follow
a normal distribution by plotting the quantiles of the data against the quantiles of a normal distribution. A straight
line in the Q-Q plot indicates that the data follows a normal distribution closely. These visual representations offer
a clear comparison of the distributions and variability within the data, highlighting the presence of inflated over-
dispersion. By analyzing these plots, we can better understand how claim frequencies differ across countries and
the implications for modeling and risk assessment in automobile insurance.

The average number of claims is relatively low at 0.15514, indicating that most policyholders had very few
claims. Both the median and mode are zero, showing that a large portion of the data is concentrated around no
claims. This is supported by the quartiles, all of which are zero. The data exhibits a high skewness of 3.153594,
signifying a strong right skew. This means there are a few instances of higher claims, but most data points are
clustered around zero. In Switzerland, the mean number of claims is also low at 0.1317373, with the median and
mode at zero, and quartiles indicating that most claims are zero. The skewness is slightly lower than in the previous
case at 2.980456, but still shows a right-skewed distribution. This suggests that while most claims are zero, there are
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some higher claims that affect the distribution. Belgium has a slightly higher mean claim frequency of 0.2143537.
Although the median and mode remain zero, and quartiles show that most data points are zero, the skewness is
the highest among the datasets at 3.4812. This indicates a pronounced right skew, with a few high claims having a
significant impact on the distribution. Zaire exhibits the lowest mean claim frequency at 0.0865, indicating fewer
claims on average. The median and mode are zero, and quartiles reinforce this concentration around zero. The
skewness is the highest at 5.31602, reflecting an even more pronounced right skew, with very few high claims
compared to the rest of the data. Germany’s mean claim frequency is similar to Switzerland and Great Britain
at 0.1442198. The median and mode are zero, and quartiles suggest that most claims are zero. The skewness is
slightly lower than Belgium’s at 3.230354, but still indicates a notable right skew.

Table 1: Automobile claim data.
data set Country Year Automobile claims frequencies

0, 1, 2, 3, 4, 5, 6, 7

I Switzerland 1961 103704, 14075, 1766, 255, 45, 6, 2, 0
II Great-Britain 1968 370412, 46545, 3935, 317, 28, 3, 0, 0
III Belgium 1958 7840, 1317, 239, 42, 14, 4, 4, 1
IV Zaire 1974 3719, 232, 38, 7, 3, 1, 0, 0
V Germany 1960 20592, 2651, 297, 41, 7, 0, 1, 0

Table 1 provides detailed insights into automobile insurance claim data from various countries and years. Here’s
an expanded analysis of the data entries:

1. Switzerland (1961): The data for Switzerland in 1961 reveals a predominant number of claims in the
”0 claims” category, totaling 103,704 instances. This distribution shows a pronounced right skew, with a
substantial drop in the number of claims as we progress to higher claim categories. This pattern, where fewer
claims are observed in higher categories, is typical in insurance claim data, reflecting a common trend of
many policyholders experiencing no claims while a few incur higher numbers of claims.

2. Great Britain (1968): The dataset from Great Britain in 1968 exhibits a similar trend to Switzerland, with
a very high frequency of claims in the ”0 claims” category, numbering 370,412. As with the Swiss data,
there is a noticeable decrease in the number of claims in the higher categories, indicative of a right-skewed
distribution. Notably, there are no reported claims in categories 6 and 7, which points to a relatively infrequent
occurrence of extreme claims.

3. Belgium (1958): The Belgian data from 1958 shows a lower overall number of automobile claims
compared to Switzerland and Great Britain. This could suggest either fewer insurance policies or differences
in insurance practices. The distribution remains right-skewed, with most claims clustered in the lower
categories. Although there are a few claims reported in categories 6 and 7, these are relatively rare, indicating
that extreme claims are uncommon.

4. Zaire (1974): The dataset for Zaire in 1974 reflects a significant drop in the number of automobile claims
relative to the previous entries. This reduction could be attributed to lower insurance coverage or different
insurance practices prevalent in Zaire at the time. The distribution is strongly right-skewed, with the majority
of claims in the ”0 claims” category. There are very few claims in the higher categories, suggesting that
moderate to severe claims are infrequent.

5. Germany (1960): The German data from 1960 also follows the right-skewed pattern seen in the other datasets,
with the majority of claims falling into the lower categories. There is a clear decline in the number of claims
as the claim categories increase, although this decline is less sharp compared to some of the other countries’
data.
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Figure 1. The box plots, scatter plots and Q-Q plots for the five data sets.
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5. Data modeling

In this section, we delve into the challenges of modeling automobile claims data, which is vital for actuarial
science and insurance analytics. Accurate claims data modeling is essential for insurers to effectively assess risk,
determine suitable premiums, and ensure financial stability. Our analysis seeks to meet these needs by applying
established claims distributions from actuarial literature. We have two main objectives: first, to use recognized
claims distributions to model the automobile claims data, and second, to conduct a thorough comparison and
evaluation of these distributions. This analysis is important as it enhances actuaries’ and insurance professionals’
understanding and predictive capabilities, providing valuable insights into automobile claims data behavior. To
achieve our objectives, we will evaluate the distributions using three key criteria: the negative log-likelihood (NLL),
the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). These metrics serve as
quantitative measures of each distribution’s goodness-of-fit, helping us determine how well each model captures the
underlying data patterns and characteristics. By comparing these criteria, our aim is to identify the distribution that
best fits the automobile claims data and to highlight the strengths and weaknesses of each model. This information
is crucial for practitioners to make informed decisions regarding risk management, pricing strategies, and resource
allocation in the insurance industry. Table 2 below presents the results for the NLL, AIC, and BIC across five
different models (BDLD, DLD, Poisson, DP, DEBH) applied to five datasets.

Table 2: Results of NLL, AIC and BIC for all automobile claims data.

data set Criteria BDLD DLD Poisson DP DEBH
I NLL 54659.100 54659.614 55108.455 56351.011 54616.705

AIC 109320.201 109321.227 110218.910 112704.021 109239.411
BIC 109329.895 109330.921 110228.604 112713.715 109268.493

II NLL 171198.407 171196.166 171373.176 178321.718 171141.352
AIC 342398.813 342394.333 342748.352 356645.437 342288.704
BIC 342409.764 342405.283 342759.303 356656.388 342321.557

III NLL 5377.784 5377.510 5490.780 5486.714 5347.532
AIC 10757.57 10757.02 10983.56 10975.43 10701.064
BIC 10764.72 10764.18 10990.72 10982.58 10722.529

IV NLL 1217.358 1217.698 1246.077 1186.498 1183.380
AIC 2436.717 2437.397 2494.154 2374.997 2372.760
BIC 2443.011 2443.691 2500.448 2381.291 2391.643

V NLL 10228.342 10228.453 10297.843 10551.846 10223.857
AIC 20458.684 20458.906 20597.686 21105.693 20453.714
BIC 20466.752 20466.975 20605.755 21113.761 20477.920

Table 2 illustrates that for data set I, the DEBH model exhibits the lowest values across all criteria: a negative log-
likelihood (NLL) of 54616.705, an Akaike Information Criterion (AIC) of 109239.411, and a Bayesian Information
Criterion (BIC) of 109268.493. These results indicate that the DEBH model provides the best fit for this dataset,
making it the preferred choice. In data set II, the DEBH model again leads with the lowest NLL value of
171141.352, the lowest AIC of 342288.704, and the lowest BIC of 342321.557. This confirms that the DEBH
model is the best option for this dataset as well. For data set III, the DEBH model continues to perform the best,
with the lowest NLL value of 5347.532, the lowest AIC of 10701.064, and the lowest BIC of 10722.529. This
consistent performance across all metrics makes the DEBH model the top choice for this dataset. In data set IV, the
DEBH model achieves the lowest NLL of 1183.380, the lowest AIC of 2372.760, and the lowest BIC of 2391.643,
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reinforcing its status as the best model for this data set. Similarly, for data set V, the DEBH model has the lowest
NLL value of 10223.857, the lowest AIC of 20453.714, and the lowest BIC of 20477.920, confirming that it is the
optimal model based on all three metrics.

The DEBH model consistently outperforms other models across all datasets when assessed using NLL, AIC, and
BIC criteria. It achieves the lowest values for each of these metrics, reflecting its superior fit, efficiency, and balance
between model complexity and goodness-of-fit. For all datasets presented in Table 2, the DEBH model is the
preferred choice due to its best overall performance according to these statistical measures. Its reliable performance
across various datasets indicates that it is robust and dependable for modeling automobile insurance claims data.
Selecting the DEBH model allows practitioners to obtain a more accurate and dependable representation of claims
data, enhancing risk assessment and decision-making processes within the insurance sector.

6. Automobile claims data and risk analysis

In the fields of risk management and financial analysis, assessing risk at various confidence levels is essential for
understanding how adverse events might impact an organization’s financial stability. The analysis of risk indicators
such as VaR[q;Y ], TVaR[q;Y ], TV[q;Y ], TMV[q;Y ], and EL[q;Y ] offers crucial insights into the nature of loss
distributions and the behavior of tail risks. VaR[q;Y ] (Value at Risk) estimates the maximum potential loss that is
unlikely to be exceeded with a given probability (confidence level). Higher VaR[q;Y ] values at elevated confidence
levels reflect a more conservative risk management strategy, indicating a lower tolerance for potential losses.
TVaR[q;Y ] (Tail Value at Risk) represents the average loss that exceeds the VaR[q;Y ] threshold. It measures the
expected shortfall beyond the maximum loss estimate, providing a sense of the average severity of losses in the tail
of the distribution. TV[q;Y ] (Tail Variance) assesses the variability of the distribution’s tail at a specified quantile
level, highlighting the potential magnitude of losses in extreme scenarios that surpass the VaR[q;Y ]. TMV[q;Y ]
(Tail Mean Variance) captures the mean of losses in the tail of the distribution beyond the quantile level q, offering
insights into the average severity of extreme losses. EL[q;Y ] reflects the expected value of the loss distribution
beyond the quantile q, helping to evaluate the average impact of extreme events on the financial position of an
organization.

Tables 3, 4, 5, 6, and 7 display various risk indicators for data sets I through V, respectively, at different quantile
levels (70%, 75%, 80%, 85%, 90%, 95%, 99%). These tables offer a comprehensive view of risk assessment
using the DEBH distribution, highlighting potential losses, tail behavior, and expected outcomes across different
confidence levels. The consistent patterns observed across quantiles (70%, 90%, 99%) suggest that the DEBH
distribution provides a stable and reliable framework for modeling and predicting risk. This stability is crucial for
risk managers, analysts, and decision-makers, as it improves their ability to accurately quantify and manage risks
in various scenarios.

Additionally, we present a series of visual aids to further substantiate our findings. Each figure provides a detailed
graphical representation of the risk indicators across various confidence levels for different data sets. Figure 2
illustrates the risk indicators for data set I, highlighting how these indicators vary with different confidence levels.
Figure 3 showcases the risk indicators for data set II, offering insights into the behavior of these metrics across
varying levels of confidence. Figure 4 presents the risk indicators for data set III, depicting the changes in risk
measures with different confidence thresholds. Figure 5 displays the risk indicators for data set IV, providing a
visual overview of how these indicators fluctuate with confidence levels. Figure 6 reveals the risk indicators for data
set V, illustrating the patterns and trends in risk metrics across various confidence levels.These figures collectively
offer a comprehensive view of the risk indicators’ patterns and behavior under different confidence levels. By
visualizing the data in this manner, the figures not only validate the robustness and effectiveness of the DEBH
distribution in modeling automobile insurance claims but also enhance our understanding of how risk indicators
perform across a range of confidence levels. The clarity provided by these plots underscores the reliability of the
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DEBH model in capturing and analyzing the complexities of insurance data, thereby reinforcing the credibility of
our results and methodology.

Table 3: Risk analysis for data set I under the DEBH model.
CL VaR[q;Y ] TVaR[q;Y ] TV[q;Y ] TMV[q;Y ] EL[q;Y ]

70% 2 0.12884 0.2708 0.26424 −1.10418
75% 2 0.1546 0.32098 0.31509 −1.30458
80% 2 0.19325 0.39375 0.39013 −1.5541
85% 3 0.0496 0.15619 0.1277 −2.08553
90% 3 0.0744 0.23245 0.19062 −2.63333
95% 4 0.02506 0.10411 0.07712 −3.71485
99% 7 0.00037 0.00268 0.00171 −6.28478

Table 3 presents a detailed risk analysis for data set I, utilizing the DEBH distribution model. The table includes
various risk indicators calculated at different confidence levels, providing a comprehensive view of the potential
financial risks associated with this dataset. The results in Table 3 highlight several key aspects of risk analysis
under the DEBH model for data set I:

1. The VaR[q;Y ] and EL[q;Y ] increase as the confidence level rises, which is consistent with expectations.
Higher confidence levels indicate a greater potential for extreme losses.

2. The TVaR[q;Y ], TV[q;Y ], and TMV[q;Y ] provide insights into the severity and variability of losses in
the tail of the distribution. At lower confidence levels, these metrics are relatively higher, showing more
significant risks and variability. However, as the confidence level increases, these metrics decrease, indicating
that extreme losses are less frequent but more impactful.

3. The negative values for EL[q;Y ] at all quantiles suggest that the DEBH model might be indicating a net gain
rather than a loss, which could be an artifact of the specific dataset or model calibration.

Table 4: Risk analysis for data set II under the DEBH model.
Method VaR[q;Y ] TVaR[q;Y ] TV[q;Y ] TMV[q;Y ] EL[q;Y ]

70% 2 0.07195 0.14678 0.14534 −1.06875
75% 2 0.08634 0.1749 0.17379 −1.2447
80% 2 0.10793 0.21629 0.21607 −1.45984
85% 2 0.1439 0.28321 0.28551 −1.73365
90% 3 0.02232 0.06832 0.05648 −2.29756
95% 4 0.00347 0.01411 0.01053 −3.07927
99% 5 0.00109 0.0055 0.00384 −4.84251

Table 4 provides an in-depth risk analysis for data set II using the DEBH distribution model. The table includes
key risk indicators at various confidence levels, allowing for a comprehensive assessment of potential financial
risks. The results from Table 4 provide several insights into the risk characteristics for data set II under the DEBH
model:

1. As with data set I, the VaR[q;Y ] increases with higher confidence levels, indicating that more extreme
losses are considered at higher confidence levels. This pattern reflects a more conservative approach to risk
management.

2. The TVaR[q;Y ] and TV[q;Y ] metrics illustrate that losses in the tail of the distribution are relatively low at
lower confidence levels and become very minimal at higher confidence levels. This suggests that extreme
loss events are rare and have less variability, which may imply a stable but low-frequency risk.

3. The EL[q;Y ] values are negative across all quantiles, which indicates that the DEBH model might be
forecasting net gains rather than actual losses. This could point to a reduction in risk exposure or a peculiarity
of the dataset or model calibration.
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Table 5: Risk analysis for data set III under the DEBH model.
Method VaR[q;Y ] TVaR[q;Y ] TV[q;Y ] TMV[q;Y ] EL[q;Y ]

70% 1 0.71443 0.58463 1.00675 −0.20621
75% 2 0.31583 0.67281 0.65223 −0.76407
80% 2 0.39478 0.80984 0.79971 −0.88594
85% 2 0.52638 1.01052 1.03164 −1.02193
90% 2 0.78957 1.30798 1.44356 −1.15038
95% 3 0.49889 1.45341 1.22559 −2.14247
99% 5 0.21018 1.08653 0.75345 −4.16501

Table 5 presents a detailed risk analysis for data set III using the DEBH model. The table includes several key
risk indicators across various confidence levels, offering a comprehensive view of the risk profile. Table 5 provides
a detailed risk analysis for data set III using the DEBH model. The key observations are as follows:

1. The VaR[q;Y ] increases with higher confidence levels, indicating that more extreme losses are captured at
higher confidence levels. This is consistent with a more conservative approach to risk assessment, reflecting
a higher potential for extreme losses as the confidence level rises.

2. The TVaR[q;Y ] and TV[q;Y ] show variability across confidence levels. For example, TVaRq fluctuates,
with both increases and decreases at higher confidence levels, while TVq varies significantly, highlighting
the complexity and unpredictability of extreme losses in the tail.

3. The TMV[q;Y ] shows substantial variation, with some confidence levels reflecting high average severity in
the tail, while others show lower values. This variability indicates that the average loss severity in extreme
scenarios can differ significantly depending on the confidence level.

The consistently negative EL[q;Y ] across all quantiles suggests that the DEBH model might be projecting net
gains or a reduction in financial exposure. This could indicate a peculiarity in the dataset or model calibration but
is worth further investigation.

Table 6: Risk analysis for data set IV under the DEBH model.
Method VaR[q;Y ] TVaR[q;Y ] TV[q;Y ] TMV[q;Y ] EL[q;Y ]

70% 1 0.28834 0.35121 0.46394 −0.59946
75% 2 0.11413 0.27631 0.25228 −0.96087
80% 2 0.14266 0.34132 0.31332 −1.17992
85% 2 0.19021 0.44605 0.41324 −1.48188
90% 3 0.0967 0.33676 0.26508 −2.12662
95% 4 0.06908 0.31448 0.22632 −3.25597
99% 7 0.02029 0.15643 0.09851 −6.61694

Table 6 provides a comprehensive risk analysis for data set IV using the DEBH model, highlighting key risk
indicators at various confidence levels. Table 6 provides a nuanced view of risk for data set IV using the DEBH
model. Key observations are:

1. The VaR[q;Y ] increases with higher confidence levels, reflecting a more conservative approach to risk
management as more severe losses are considered. The increase from 1 at the 70% level to 7 at the 99% level
aligns with typical risk modeling practices, where higher quantiles account for more extreme outcomes.

2. The TVaR[q;Y ] shows considerable variation across confidence levels, suggesting that the average loss in the
tail changes with different quantiles. The decrease in TVaRq at the highest confidence level might indicate a
lower average loss in the tail compared to intermediate levels.
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3. TV[q;Y ] starts high and decreases at higher confidence levels, suggesting that the variability of extreme
losses reduces as more severe outcomes are considered. This pattern may indicate that while extreme losses
are less variable, they are still significant.

4. The TMV[q;Y ] decreases with increasing confidence levels, indicating that the mean severity of losses in the
tail becomes less pronounced at higher quantiles.

5. The consistently negative EL[q;Y ] across all quantiles indicates that the DEBH model might be projecting a
net reduction in exposure or potential gains, which could reflect a peculiarity in the data or model calibration.

Table 7: Risk analysis for data set V under the DEBH model.
Method VaR[q;Y ] TVaR[q;Y ] TV[q;Y ] TMV[q;Y ] EL[q;Y ]

70% 1 0.48069 0.38176 0.67157 −0.44623
75% 2 0.1318 0.27299 0.2683 −0.94765
80% 2 0.16475 0.33581 0.33266 −1.10478
85% 2 0.21967 0.43569 0.43751 −1.29962
90% 2 0.32951 0.61734 0.63818 −1.549
95% 3 0.1141 0.34897 0.28858 −2.39243
99% 4 0.08532 0.34719 0.25892 −3.91349

Table 7 provides a detailed analysis of risk indicators for data set V using the DEBH model.
Commentary:

1. The increasing trend in VaRq with higher confidence levels shows a standard pattern where more severe
losses are considered as confidence levels rise. This is expected in risk modeling and aligns with the DEBH
model’s ability to account for increasingly severe potential losses.

2. The significant drop in TVaRq from 0.48069 at the 70% level to 0.08532 at the 99% level suggests that the
average losses beyond the VaR threshold decrease as more extreme quantiles are considered. This decrease
may indicate that while high quantile thresholds capture extreme losses, the average loss in these tails is less
severe.

3. The decrease in Tail Variance from 0.38176 to 0.25892 shows that the variability of extreme losses diminishes
at higher quantiles. This may reflect a stabilization in the extreme loss distribution as more severe outcomes
are considered.

4. TMVq’s decrease from 0.67157 to 0.25892 suggests that the average severity of losses in the tail reduces as
the quantile level increases, which could imply that extreme loss values become less severe on average.

5. The consistently negative expected loss values across quantiles might indicate a model-specific feature or an
unusual characteristic of the data, pointing to potential reductions in financial exposure or net gains.

Overall Recommendation for Automobile Insurance Companies:

1. The DEBH model demonstrates its effectiveness in providing detailed and nuanced risk assessments across
different confidence levels. The model’s capability to handle zero-inflated data and capture the tail behavior
of loss distributions makes it a valuable tool for analyzing automobile insurance claims. Insurance companies
should consider adopting the DEBH model for improved risk analysis and decision-making.

2. The DEBH model provides comprehensive insights into tail risk through indicators like VaR[q;Y ],
TVaR[q;Y ], TV[q;Y ], TMV[q;Y ], and EL[q;Y ]. The consistent trends observed in these indicators suggest
that the DEBH model is adept at capturing the characteristics of extreme losses and tail risk. Companies
should leverage these insights to enhance their tail risk management strategies, ensuring they are well-
prepared for extreme loss scenarios.
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Figure 2. Risk indicators across confidence levels under data set I.
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Figure 3. Risk indicators across confidence levels under data set II.
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Figure 4. Risk indicators across confidence levels under data set III.
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Figure 5. Risk indicators across confidence levels under data set IV.
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Figure 6. Risk indicators across confidence levels under data set V.

3. Tables 3 to 7 reveal a consistent pattern in the behavior of risk indicators across various quantile levels
(70%, 75%, 80%, 85%, 90%, 95%, 99%). This consistency suggests that the DEBH model provides
reliable estimates of risk across a range of confidence levels. Insurance companies should evaluate their
risk exposure at multiple quantiles to gain a comprehensive understanding of potential losses and adjust their
risk management practices accordingly.

4. The analysis highlights how risk indicators change with different confidence levels. For example, the
VaR[q;Y ] increases with higher confidence levels, reflecting more severe potential losses. Companies
should carefully consider how confidence levels impact their risk metrics and ensure their risk management
strategies align with their risk tolerance and financial goals.

5. The consistently negative EL[q;Y ] values observed in the analysis may warrant further investigation. These
negative values could indicate potential reductions in net exposure or gains, but they also require a closer
examination to ensure that the model’s assumptions and calibrations are accurate. Companies should validate
these results to ensure they are not misleading and adjust their strategies if necessary.

6. Figures 3 to 7 provide visual representations of risk indicators across confidence levels, offering a clearer
picture of risk behavior. Insurance companies should use these plots to communicate risk findings effectively
to stakeholders and decision-makers, aiding in the formulation of strategies and policies based on visual and
quantitative evidence.

7. The insights gained from the DEBH model should be integrated into the company’s overall risk management
framework. This integration will help in setting premiums, determining reserve requirements, and making
informed decisions about risk mitigation strategies. By incorporating DEBH analysis into their risk
management practices, insurance companies can enhance their financial stability and risk preparedness.

8. While the DEBH model shows promise, ongoing research and validation are essential to ensure its robustness
and applicability in different contexts. Companies should stay updated with advancements in statistical
modeling and risk analysis to continuously refine their approaches and leverage the latest methodologies
for optimal risk management.
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7. Concluding remarks

In this paper, we present a new model of a discrete probability distribution called the discrete expanded Burr-
Hatke (DEBH) distribution, that is highly flexible and adaptable to a wide range of data and distributions. This
flexibility means that this distribution can be used in a variety of statistical and financial applications, making it a
powerful tool for data analysis in many fields. In this study, we focused on analyzing the basic mathematical and
statistical properties of this distribution, including the distribution of probabilities and moments, such as the mean
and standard deviation, as well as studying the boundary behavior of the distribution. We were able to understand
how the data is distributed and how it changes based on different distribution parameters. The analysis also included
a careful study of convergence towards other distributions in special cases, highlighting the importance of this
distribution as a mixture of previously known distributions. However, despite the effort expended in studying
these properties, we faced limitations related to the size of the paper, which forced us to leave some advanced
statistical properties outside the scope of this study. For example, we did not delve deeply into properties related
to multivariate analysis or time dependence, areas that could be the subject of future studies. As part of this new
distribution, we conducted a comprehensive analysis of actuarial risk, which is the risk associated with financial
losses that companies, especially insurance companies, may face. In this analysis, we used a wide range of actuarial
risk indicators that are essential to understanding how to assess and manage financial risks. These indicators include
including VaR[q;Y ], TVaR[q;Y ] at quantile q, TV[q;Y ] at quantile q, TMV[q;Y ] at quantile q, and EL[q;Y ] at
quantile q, which are an estimate of the maximum loss that a company may incur over a specific period of time, and
expected loss, which helps predict average potential losses. To ensure the accuracy and reliability of the analysis, we
relied on five discrete data sets that represent different and diverse situations, allowing us to test the performance
of the new distribution across multiple scenarios. Through these sets, we were able to test how the distribution
adapts to real data and how it can be used to more accurately estimate and assess financial risks. After conducting
the analysis, we reached a set of important findings that demonstrated the effectiveness of this new distribution in
improving financial risk forecasting. Based on these results, we provided a number of practical recommendations
for insurance companies to improve their risk management strategies. Among these recommendations, we stressed
the importance of adopting advanced analytical techniques and flexible distributions such as the one we presented,
to reduce the possibility of unexpected large losses. Finally, we emphasize that all the analyses conducted in
this paper, and the recommendations drawn, are mainly based on the new discrete probability distribution. This
distribution represents a valuable addition to the statistical tools used in the field of risk analysis, and opens the
door to more future studies that can benefit from its flexibility and diversity to improve the understanding and
management of financial risks. The paper is notable for treating nearly zero-inflated data for the first time in the
statistical literature using a discrete distribution. The paper addressed some of the shortcomings that actuaries
previously faced when estimating value at risk. Among them is that the value at risk under discrete distributions
cannot take fractional or decimal values. This paper represents a sign of hope for the application of more discrete
statistical distributions in the field of insurance and actuarial science.
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