
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 12, November 2024, pp 1710–1724.
Published online in International Academic Press (www.IAPress.org)

A new family of continuous distributions with applications
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Abstract This article introduces a novel set of optimizing probability distributions known as the Survival Power-G (SP-G)
family, which employs a specific approach to introduce an additional parameter with the survival function of the original
distributions. The utilization of this family enhances the modeling capabilities of diverse existing continuous distributions.
By applying this approach to the single-parameter exponential distribution, a new two-parameter Survival Power-Exponential
(SP-E) distribution is generated. The statistical characteristics of this fresh distribution and the maximum likelihood estimator
are established, and Monte Carlo simulation is utilized to explore the efficiency of the maximum likelihood estimator of the
two parameters under varying sample sizes. Subsequently, the new distribution is used in the analysis of three distinct sets of
real data. Compared with alternative distributions on these datasets, it is demonstrated that the new distribution outperforms
the other distributions.
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1. Introduction

In the realm of probability distribution theory, the inclination towards a specific probability distribution for
representing real-world phenomena might stem from the distribution’s tractability or its flexibility. The ease
of handling a probability distribution, known as tractability, holds theoretical value as it simplifies operations,
particularly in simulating random samples. However, stakeholders and practitioners often find the adaptability of
probability distributions intriguing. Opting for probability distributions that align best with the provided data set is
more favorable than altering the original data, preserving its integrity. Consequently, recent years have witnessed
considerable endeavors to enhance the flexibility and modelling capacity of standard theoretical distributions,
ensuring a better fit for real-world data sets. Adding an extra parameter to a probability distribution could
improve its flexibility in modelling intricate phenomena. By employing more customized distributions, scholars can
adequately accommodate variations in data analysis techniques. Furthermore, the addition of an extra parameter
could potentially improve the accuracy of the distribution and result in enhanced predictive capabilities. The
incorporation of a new parameter within established categories of continuous distributions has yielded a multitude
of unique distribution families in recent years. A technique proposed by A. Mahdavi and D. Kundu (2016)
marked the initial introduction of the Alpha Power method for generating innovative distributions [1]. Yilmaz
(2017) put forth a novel family of distributions through the incorporation of a modified exponentiated component
into the multiplication of two distribution functions, concentrating on the exponential baseline distributions and
their characteristics [2]. Nanvapisheh (2019) brought forward the exponentiated Uniform-Pareto distribution
(EU-PD), a model with five parameters applicable in economics and biological sciences, to assess its efficacy
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using actual data [3]. Nanvapisheh et al. (2019) recommended the exponentiated Shanker distribution, a two-
parameter lifetime distribution featuring various hazard rate functions, and validated its appropriateness for
real datasets through maximum likelihood estimation and simulation studies [4]. Aslam et al. (2020) devised
a mechanism for novel continuous lifetime distributions by introducing an additional parameter, demonstrating
the model’s efficacy through applications to actual datasets and Monte Carlo simulations [5]. X. Xie and J.
Shi (2020) introduced a distributed algorithm for the estimation of quantiles in heavy-tailed distributions with
extensive datasets [6]. N.J. Hassan et al. (2021) suggested the Weibull Lindley model using a methodology that
introduces a new shape parameter to the Weibull distribution [7]. Turner (2021) introduced a new adaptable
distribution for discrete data, examining moment estimation and maximum likelihood estimation, and validating
the model through real and simulated data [8]. Klakattawi and Khormi (2022) deliberated on the exponentiation
of generalized models through the addition of three supplementary parameters, resulting in the exponentiated
generaling inverted Kumaraswamy Gompertz distribution, which notably enhances goodness of fit compared
to non-exponentiated distributions [9]. Alsolami and Alsulami (2022) introduced the exponentiated Weibull-X
(EEW-X) family, particularly the EEWE distribution, which has exhibited exceptional flexibility in fitting intricate
data through maximum likelihood estimation [10]. Ünözkan and Yilmaz (2023) introduced a fresh distribution
by evaluating the conditional diagonal segment of the bivariate F-GM distribution with exponential marginals,
showcasing its effectiveness in modelling lifetime datasets [11]. Amani Alghamdi and Aisha Fouad Fayomi (2023)
introduced a new range of distributions utilizing the Dagum distribution as a generator, focusing on characteristics
such as hazard rate functions, moments, and Renyi entropy, and applying it to actual datasets to demonstrate
its performance [12]. Ibrahim et al. (2023) introduced the Truncated Cauchy Power Kumaraswamy-G family of
probability distributions, and certain specialized models within this family have been delineated [13]. Fayomi et al.
(2023) unveiled a group of BFGMLG utilizing the Lomax generator and the FGM copula [14]. Jimmy Reyes and
Yuri (2023) along with Iriarte (year not provided) unveiled a fresh range of symmetric distributions of heavy-tailed
from the ratio of a normal and a Birnbaum-Saunders distribution, capable of capturing high levels of kurtosis and
effectively fitting actual datasets [15]. Chamunorwa et al. (2014) developed a new family of distributions called
the Marshall-Olkin-Topp-Leone-Gompertz-G family [16]. Mehran et al. (2024) introduced the distribution family
(GKM-G) by extending the K-M class to offer flexibility for continuous distributions [17].Oluyede et al. (2014)
presented the (MO-TL-Gom-G) Family as the generalized family for creating continuous distributions by adding
new two-shape parameters [18].

This research is centred on further enhancing the flexibility of the continuous probability distribution through
the introduction of an additional parameter that amalgamates it with the survival function as a Power. The set of
distributions presented in this paper is denoted as the survival Power family (SP-G). Specifically, the examination
of this family is conducted using the exponential distribution, resulting in the derivation of a novel two-parameter
distribution known as survival Power exponential (SP-E) distribution, accompanied by an investigation into the
general characteristics of the functions associated with this recent distribution. The resultant Survival Power-
Exponential (SP-E) distribution displays many advantageous properties. The manuscript also explores the process
of estimating maximum likelihood parameters [19]. Additionally, an evaluation of the new distribution utilizing
three real datasets is tested, alongside comparative analyses with similar distributions based on the goodness-of-fit
criteria of these datasets, to demonstrate the effectiveness and superiority of the new distribution.

This research is structured as follows. An advantageous extension for the CDF and PDF of the SP-G
family is delineated in Section 2. Section 3 introduces the Survival Power-Exponential (SP-E) distribution as a
distinctive instance of the SP-G family. Section 4 delves into the statistical characteristics of the SP-E distribution,
encompassing the quantile function, moments, and the maximum likelihood approach. In Section 5, The simulation
study is applied to assess the maximum likelihood estimators by determining the mean squared error (MSE) and
bias for two parameters. Section 6 offers insights into the application of the proposed family through the analysis
of real-world data sets.
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2. The proposed SP-G family method

This section presents the origin of the suggested approach. In a recent study, the T-X family method was introduced,
characterized by the cumulative distribution function CDF.

F (x) =

∫ ω[G(x;θ)]

p1

h(t)dt, x ∈ R, t ∈ (p1, p2) (1)

the conditions under which ω[G(x; θ) ] is satisfied conditions approach as presented by Alzaatreh et al. [20]. The
probability density function f(x) associated with Equation (1) is defined as.

f(x) =

{
∂

∂x
ω[G(x; θ)]

}
h (ω[G(x; θ)]) , x ∈ R (2)

Utilizing the T-X methodology, numerous novel families of statistical models have been introduced in scholarly
works. If we consider T to follow an exponential distribution with the rate parameter 1, we have the following CDF.

H(t) = 1− e−t, t ≥ 0 (3)

In correspondence with Equation (1), the density function of the random variable t is determined.

h(t) = e−t, t > 0 (4)

We define the function ω[G(x; θ)] as follows.

ω[G(x; θ)] = − log
(
−αS(x;θ) + αS(x; θ) + 1

)
(5)

where α > 0 is shape parameter and S(x; θ) = 1−G(x; θ) is the survival function of the baseline distribution
function G(x; θ). To show the function in Equation (5) complies with the methodology of the T-X family approach
as presented by Alzaatreh et al. [20], let T be a random variable having PDF of the exponential distribution,
that belongs to (0,∞), and let suppose, X be a random variable having CDF G(x; θ), then function ω[G(x; θ)] in
Equation (5) satisfy three conditions of the T-X family method, as under.

1. ω[G(x; θ)] ∈ (0,∞).
It is clear because S(x; θ) ∈ (0, 1) ⇒

(
−αS(x;θ) + αS(x; θ) + 1

)
∈ (0, 1)

and then − log
(
−αS(x;θ) + αS(x; θ) + 1

)
∈ (0,∞).

2. ω[G(x; θ)] is differentiable and monotonically increasing function.
Note that the function S(x; θ) is differentiable, so ω[G(x; θ)] is a differentiable, and also monotonically
decreasing function.

3. x → −∞ ⇒ S(x; θ) → 1 ⇒ ω[G(x; θ)] → 0
and x → ∞ ⇒ S(x; θ) → 0 ⇒ ω[G(x; θ)] → ∞

If h(t) follows Equation (4) and setting Equation (5) in Equation (1), then the CDF of the survival power-G
(SP-G) family follows as

F (x;α, θ) = 1− e−ω[G(x;θ)]

= 1− elog(−αS(x;θ)+αS(x;θ)+1)

= αS(x;θ) − αS(x; θ)

= α1−G(x;θ) − α (1−G(x; θ)) , α > 0, x ∈ R

(6)
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where G(x; θ) is the CDF of the baseline distribution function which may have the vector of parameters θ ∈ R.
From Equation (6), we can see if α = 1 then F (x;α, θ) = G(x; θ).
And when g(x; θ) is the PDF of baseline distribution, thin the PDF of the SP-G family method associated with
Equation (6) is

f(x;α, θ) = g(x; θ)
(
α− α1−G(x;θ) log (α)

)
(7)

2.1. Quantile function of SP-G family

We employ the cumulative distribution function CDF of SP-G family distributions for the purpose of obtaining the
quantile function through the resolution of a non-linear equation.

u = α1−G(x;θ) − α (1−G(x; θ)) (8)

Solving for G(x; θ), then

G(x; θ) =
W
(
− log(α)α

−α−u
α

)
α+ log (α) (α+ u)

log (α)α
(9)

where W is the LambertW function and 0 < u < 1, the quantile function is

Q(u) = G−1

W
(
− log(α)α

−α−u
α

)
α+ log (α) (α+ u)

log (α)α

 (10)

The quantile function serves as a tool for producing random variables to represent the parameters of a specific
model, particularly applied in Monte Carlo simulations. Moreover, the quantile function is fundamental in
establishing the Median, skewness and kurtosis.

3. The Survival Power-Exponential (SP-E) distribution

Consider the CDF G(x; θ) = 1− e−
x
β , x ≥ 0, β > 0, and PDF g(x; θ) = 1

β e
− x

β , the vector of parameters θ is equal
to only one-parameter β of the Exponential distribution. Then, the CDF of the new Survival Power-Exponential
(SP-E) distribution is defined in the following

F (x;α, β) = αe
− x

β − α e−
x
β , x ≥ 0, α, β > 0 (11)

The PDF of the Survival Power-Exponential (SP-E) distribution is

f(x;α, β) =
e−

x
β

(
α− log (α)αe

− x
β
)

β
, x > 0 (12)

Plots for the CDF and PDF of the Survival Power-Exponential (SP-E) distribution are sketched in Figure 1 and
Figure 2 respectively.
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Figure 1. The Plots for the CDF of the SP-E distribution.
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Figure 2. The Plots for the PDF of the SP-E distribution.

4. The Statistical properties of SP-E distribution

In this section, an examination is conducted on various statistical properties of the Survival Power-Exponential
(SP-E) distribution, encompassing the quantile function, as well as the moment about the origin and the moment
generating function.

4.1. Quantile function

Through the inverse of the function CDF in the Equation (11), we get the Quantile function of the Survival Power-
Exponential (SP-E) distribution as following

QSPE(u) = F−1(u) = − log

−
W

(
− log(α)e−

u log(α)
α

α

)
α+ u log(α)

α log(α)

β (13)

here 0 < u < 1 and W is LambertW function. So we can use the Quantile Function to find the median of
the Survival Power-Exponential (SP-E) distribution by substituting u=0.5 in the Equation (13). One of the initial
measures of skewness that was proposed is the Bowley skewness [23], which is defined by as following
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SK =
QSPE

(
3
4

)
+QSPE

(
1
4

)
− 2QSPE

(
1
2

)
QSPE

(
3
4

)
−QSPE

(
1
4

) (14)

and the kurtosis of the Moors calculated based on quantiles is expressed in the following [24]

KU =
QSPE

(
7
8

)
−QSPE

(
5
8

)
+QSPE

(
3
8

)
−QSPE

(
1
8

)
QSPE

(
6
8

)
−QSPE

(
2
8

) (15)

Where QSPE(.) denotes the quantile function of the Survival Power-Exponential (SP-E) distribution is depicted.
The metrics SK and KU exhibit reduced sensitivity to outliers and are applicable even in cases of distributions
lacking moments.

4.2. Moments

This subsection focuses on the computation of the rth moment of the Survival Power-Exponential (SP-E)
distribution. The derivation of the rth moment about the origin point is presented as follows.

µ′
r =

∫ ∞

0

xrf(x;α, β)dx =

∫ ∞

0

xre−
x
β

(
α− log (α)αe

− x
β
)

β
dx (16)

µ′
r = I =

− log(α)

β

∫ ∞

0

xre−
x
β αe

− x
β
dx+

α

β

∫ ∞

0

xre−
x
β dx (17)

To solve the integral I1 =
∫∞
0

xre−
x
β αe

− x
β
dx

Substitution: Let t = e−
x
β . Then, x = −b log(t), and dx = −β

t dt.

I1 =

∫ 0

1

(−β log(t))rtαt

(
−β

t

)
dt = βn+1

∫ 1

0

(log(t))nαtdt (18)

Note that the value of the last integral is∫ 1

0

(log(t))rαtdt =
(−1)r

(n+ 1)2
γ(r + 1, log(α))

where γ(s, z) is the lower incomplete gamma function.

I1 = βr+1 (−1)r

(r + 1)2
γ(r + 1, log(α)) (19)

To solve the integral I2 =
∫∞
0

xre−
x
β dx

Using the substitution u = x
β (thus du = dx

β and dx = βdu ):

I2 =

∫ ∞

0

(βu)re−uβdu = br+1

∫ ∞

0

ure−udu

This is a standard Gamma function integral, where∫ ∞

0

ure−udu = Γ(r + 1) = r!

Thus,
I2 = βr+1r! (20)
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Now, substituting I1 and I2 back into the original expression for I :

I =
− log(α)

β

(
βr+1 (−1)r

(r + 1)2
γ(r + 1, log(α))

)
+ αβrr!

Where γ(r + 1, log(α)) is the lower incomplete gamma function. Therefore, the moment is:

µ′
r = βr

(
αr!− log(α)

(−1)r

(r + 1)2
γ(r + 1, log(α))

)
(21)

4.3. Moment generating function

The moment generating function MX(t) of the Survival Power-Exponential (SP-E) random variable X , is can
derived as

MX(t) = E
(
etx
)
=

∫ ∞

0

etxfSPE(x;α, β)dx (22)

Taking the Taylor series for the value etx, as following

etx =

∞∑
r=0

trxr

r!
(23)

By substituting Equation (23) into (22), then

MX(t) = E(etx) =

∞∑
r=0

tr

r!
µ′
r (24)

So we get the moment-generating function of the Survival Power-Exponential (SP-E) distribution by using
Equation (21) in Equation (24).

4.4. Maximum likelihood estimation

Various approaches have been suggested to estimate the unidentified parameters for the purpose of deriving
the predictions. The foremost and extensively utilized technique among these is the maximum likelihood
estimation (MLE) method. The estimators acquired through this method exhibit advantageous characteristics and
can be employed to formulate the confidence interval and various statistical assessments. The MLEs’ normal
approximation can be conveniently managed either through numerical computations or analytical techniques.
Deeper insights into maximum likelihood estimation can be uncovered in [21]. In this particular section, we opt
for the employment of the MLE method to estimate the two parameters of the Survival Power-Exponential (SP-E)
distribution. Let us consider X1, X2, . . . , Xn as a randomly selected observed sample from the SP-E distribution.
The likelihood function to Equation (2) is

L(α, β;xi) = β−n

(
n∏

i=1

e−
xi
β

)(
n∏

i=1

(
α− log(α)αe

− xi
β

))
. (25)

The logarithm of the likelihood function is

ℓ(α, β;xi) = −n log(β)−
∑n

i=1 xi

β
+

(
n∑

i=1

log

(
α− log(α)αe

− xi
β

))
(26)

To find out the values of the parameters that make the Likelihood function a maximum value, the expressions
for the partial derivatives of equation (26) are provided.
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∂ℓ(α, β;xi)

∂α
=

n∑
i=1

α−1+e
− xi

β
e−

xi
β log(α) + α−1+e

− xi
β − 1

log(α)α− xi
β − α

(27)

and

∂ℓ(α, β;xi)

∂β
= −n

β
+

1

β2

n∑
i=1

xi +

n∑
i=1

− log(α)2αe
− xi

β xie
− xi

β

β2
(
α− log(α)αe

− xi
β

)
 (28)

By setting the nonlinear Equations (27) and (28) to zero and subsequently solving them concurrently, one can
obtain the Maximum Likelihood Estimates MLEs to α and β. However, the solution to the machine learning
equations is nontrivial, thus requiring the utilization of numerically optimized methods provided by computer
software like R or Matlab.

Alternative Bayesian and non-Bayesian methodologies [22]. for estimating the parameters of the SP-E
distribution can be extrapolated for prospective investigations, including the estimation via the method of moments,
given that the moment concerning the origin has been established in the present study.

5. Simulation study

In this section, an assessment is carried out on the efficacy of the Maximum Likelihood Estimators to the two
parameters of the Survival Power-Exponential (SP-E) distribution. The analysis focuses on the utilization of the
new distribution as a specialized model for simulation. The simulation methodology entails a sequence of steps, as
generated N = 1000 samples of sizes n = 25, 50, 100, 250, 400, 600 from the Survival Power-Exponential (SP-E)
distribution with using the inversion method for four values sets of parameters (α = 1.5, β = 2), (α = 0.5, β = 0.5),
(α = 1.5, β = 0.5), (α = 2, β = 3), (α = 0.5, β = 1.5) and (α = 3, β = 2), Compute mean square error (MSE) and
average bias of the new distribution parameters with repeating for the sample size n, as the following

MSE(α) =
1

1000

1000∑
k=1

(α̂k − α)
2 and MSE(β) =

1

1000

1000∑
k=1

(
β̂k − β

)2
Bias(α) =

1

1000

1000∑
k=1

(α̂k − α) and Bias(β) =
1

1000

1000∑
k=1

(
β̂k − β

) (29)

The presented simulation outcomes can be observed in Table 1 with the Figure (3) of MSE and the Figure (4) of
bias. The data displayed in this table and these figures demonstrate the favourable performance of the estimations
of the Survival Power-Exponential (SP-E) distribution parameters, exhibiting minimal bias and credible Mean
Squared Errors (MSEs) across all analyzed scenarios, thus signifying the reliability and proximity to the true
values of these estimations. Additionally, the biases tend towards zero with the growth of sample size, indicating
that the estimations function as asymptotically unbiased estimators. Furthermore, the MSEs exhibit a reduction
with the increase in sample size, suggesting the consistency of these estimators in estimating the SP-E distribution
parameters.
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Table 1. Simulation Results for SP-E distribution: MSE and Bias

α = 1.5, β = 2 α = 0.5, β = 0.5

n MSE(α) Bias(α) MSE(β) Bias(β) MSE(α) Bias(α) MSE(β) Bias(β)

25 3.3638 0.5802 0.2653 -0.1722 0.5284 0.2080 0.0132 -0.0602
50 0.2707 0.0561 0.1089 -0.1067 0.4114 0.2177 0.0104 -0.0406

100 0.2429 0.1065 0.0556 -0.0676 0.2546 0.1461 0.0048 -0.0227
250 0.1510 -0.0471 0.0258 -0.0096 0.1053 0.0634 0.0027 -0.0084
400 0.1077 -0.0287 0.0179 -0.0055 0.1377 0.1151 0.0018 -0.0075
600 0.0767 -0.0249 0.0151 -0.0045 0.1003 0.0978 0.0014 0.0009

α = 1.5, β = 0.5 α = 2, β = 3

n MSE(α) Bias(α) MSE(β) Bias(β) MSE(α) Bias(α) MSE(β) Bias(β)

25 2.6551 0.4624 0.0157 -0.0391 3.0126 0.2452 0.5401 -0.1485
50 0.3053 0.0621 0.0071 -0.0111 0.9181 0.0160 0.2429 0.0449

100 0.1907 0.0035 0.0029 -0.0090 0.1423 -0.0259 0.1092 0.0063
250 0.1628 0.0045 0.0015 -0.0107 0.1013 0.0043 0.0530 -0.0098
400 0.1186 -0.0157 0.0013 -0.0028 0.0624 -0.01378 0.03155 -0.01925
600 0.0875 -0.0274 0.0008 -0.0001 0.0260 0.0089 0.02285 -0.0172

α = 0.5, β = 1.5 α = 3, β = 2

n MSE(α) Bias(α) MSE(β) Bias(β) MSE(α) Bias(α) MSE(β) Bias(β)

25 0.2269 -0.0004 0.1707 -0.1607 45.5867 6.5373 0.5580 -0.6538
50 0.3122 0.1782 0.0860 -0.1037 34.9175 5.1521 0.5614 -0.6681

100 0.1396 0.0819 0.0371 -0.0511 35.9211 5.3053 0.7434 -0.8008
250 0.1031 0.1032 0.0188 -0.0303 28.2474 4.3537 0.7013 -0.7766
400 0.0552 0.0456 0.0166 -0.0088 21.0201 3.4354 0.6066 -0.7054
600 0.0720 0.0738 0.0116 -0.0059 8.4658 1.8357 0.3588 -0.5457
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Figure 3. The Plots for the MSE of the SP-E distribution parameters.
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Figure 4. The Plots for the bias of the SP-E distribution parameters.

6. Applications SP-E distribution

In this portion, an examination and explication of three authentic datasets will be carried out to elucidate the
advantages associated with the application of the Survival Power-Exponential (SP-E) distribution methodology.
The assessment of the model’s pertinence entailed the identification of various information criteria.Model selection
is commonly performed by assessing a range of information criteria like the Akaike IC (AIC), the consistent
Akaike IC (CAIC), the Bayesian IC (BIC), and the Hannan-Quinn IC (HQIC), as well as the Kolmogorov-Smirnov
Criterion(K-S). It is essential to underscore that a decrease in the values of goodness-of-fit metrics indicates a
more optimal fit of the data. Below we will show the real data to which the new distribution was applied. The
profusion and variety of data could pose challenges for researchers in acquiring the most suitable data reflecting
the new distribution. Consequently, during the data selection process, alternative distributions were chosen for
comparison based on previous research pertaining to the data in question, rather than selecting the distributions
themselves for comparison across the three datasets, which will be explained below.

the first dataset pertains to the occurrences of surpassing flood flow rates (measured in cubic meters per second)
of the Wheaton River in proximity to Carcross within the Yukon Territory, Canada. There are 72 instances of
surpassing measurements spanning from the years 1958 to 1984, the data were examined by various researchers
such as Bourguignon et al. [25], S Chhetri et al. [26] and others. The selection of the identical dataset was
made to facilitate a comparative analysis of our findings with the alternative models proposed by these and
other researchers. Our analysis involves the estimation of parameters for the Survival Power-Exponential (SP-
E) model and an evaluation of its suitability in modelling this dataset, along with other models comprising the
beta-transmuting Pareto (BTP), Exponentiated Fréchet (EF), beta Pareto distribution (BP), Marshall-Olkin Fréchet
(MOF), transmuted Pareto (TP), Beta Exponential Fréchet (BEF), exponentiated Pareto (EP) and Pareto distribution
(P) distributions. The first data is given as ”1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3,1.4, 18.7, 8.5,
25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7,37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7,
7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6,5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0,1.5,
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2.5, 27.4, 1.0, 27.1, 20.2, 16.8,5.3, 9.7, 27.5, 2.5, 27.0”. The results of the comparison using The goodness-of-fit
statistics for the first data are shown in Table 2.

Table 2. The goodness-of-fit statistics for the first dataset

Dis. −ℓ(., x) AIC CAIC BIC HQIC KS
SP-E 252.127 508.255 514.809 512.809 510.068 0.142
BTP 256.577 521.154 521.760 530.204 524.753 0.159
EF 255.803 517.606 517.959 524.436 520.325 0.158
BP 283.700 573.400 573.753 580.230 576.119 0.174

MOF 256.605 519.211 519.563 526.041 521.930 0.121
TP 286.201 576.402 576.575 580.954 578.214 0.287

BEF 255.222 521.353 520.444 531.827 524.976 0.976
EP 287.300 578.600 578.774 583.153 580.413 0.198
P 303.100 608.200 608.257 610.477 609.106 0.332

The second dataset comprises 34 instances of vinyl chloride concentrations gathered from remediation gradient
groundwater monitoring wells in milligrams per liter. This dataset was gathered from the analysis done by
Bhaumik et al. [27]. Our analysis involves the estimation of parameters for the SP-E distribution and an
evaluation of its suitability in modelling this dataset, along with the other distributions as comprising Exponentiated
generalized modified Weibull distribution (EGMW), inverse Weibull Weibull distribution (IWW), Beta modified
Weibull distribution (BMW), Weibull distribution (W), Kumaraswamy Lomax distribution (KL), Weibull Weibull
distribution (WW) and Weibull Lomax distribution (WL), these distributions were also selected by Hassan and
Abd-Allah [28], and outlined in the Table 3. The second data is given as ”5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0,
0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4,0.2”.

Table 3. The goodness-of-fit statistics for the second dataset

Dis. −ℓ(., x) AIC CAIC BIC HQIC KS
SP-E 55.4520 114.905 119.957 117.957 115.946 0.089
EWL 54.3210 118.642 120.642 126.274 121.245 0.106

EGMW 55.4020 120.804 122.949 128.435 123.406 0.121
IWW 54.2351 116.470 117.850 122.576 118.552 0.087
BMW 55.0955 120.191 122.333 127.822 122.793 0.233

W 58.7322 121.253 121.640 124.306 122.294 0.113
KL 64.7635 137.527 138.817 143.632 139.609 0.145

WW 55.5531 119.160 120.539 125.265 121.242 0.094
WL 64.1625 136.325 137.615 142.43 138.407 0.279

The third dataset, presented in Murthy et al. [29], pertains to the time intervals between failures for repairable
items. Our study focuses on estimating the parameters of the SP-E distribution and assessing its appropriateness
for modelling this specific dataset. This involves considering alternative models such as the Kumaraswamy Weibull
exponential (KwWE), the Additive Weibull distribution (AW), the transmuated power function ( TPF), the New
Modified Weibull distribution (NMW), the exponentiated Weibull exponential (EWE), the traditional Weibull
distribution (W), the beta modified Weibull (BMW) and Weibull exponential (WE), these distributions were also
selected by Hassan and Nassr [30] and outlined in the Table 3. The dataset is presented as follows, ”1.43, 0.11,
0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30,
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1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17”. The results of the comparison using The goodness-of-fit statistics for
the third data are shown in Table 4.

Table 4. The goodness-of-fit statistics for the third dataset

Dis. −ℓ(., x) AIC CAIC BIC HQIC KS
SP-E 43.0050 90.010 94.8131 92.813 90.907 0.184
KWE 53.4332 116.964 119.464 114.350 119.205 0.062
AW 79.8210 167.642 169.242 173.246 169.435 0.283
TPF 45.2279 101.458 102.381 105.662 102.80 0.139

NMW 121.250 250.051 251.651 255.656 251.845 0.942
EWE 56.6513 121.344 122.944 119.252 123.137 0.078

W 46.3755 96.751 97.196 99.554 97.648 0.134
BMW 43.2513 94.406 96.906 101.412 96.647 0.866
EW 55.9511 117.901 118.824 116.332 119.246 0.083

The three distinct data sets were subjected to analysis utilizing the novel SP-E distribution. We derived the
mean and variance through the application of moment functions or the moment-generating function; additionally,
utilizing the functions inherent in the quantile function, we ascertained the Median, Skewness, and Kurtosis, as
shown in Table 5. The extent to which the SP-E distribution matches these three data sets is also shown in Figures
5, 6 and 7.

Figure 5. Test results of SP-E distribution for the first dataset
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Table 5. Descriptive analyzes for the datasets

Data Mean Median Variance Skewness Kurtosis Min Max
first 12.20416 9.50000 151.22153 1.472508 5.889549 0.1000 64.000

second 1.879412 1.150000 3.812594 1.603688 5.005408 0.1000 8.0000
third 1.542667 1.235000 1.271675 1.295462 4.319170 0.1100 4.7300

Figure 6. Test results of SP-E distribution for the second dataset

Figure 7. Test results of SP-E distribution for the third dataset
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7. Conclusion

This manuscript introduces a novel Survival Power-G (SP-G) family, which involves the incorporation of a singular
parameter representing the power function of the survival function in an innovative manner into established
continuous distributions. The distinct model for the (SP-G) family were introduced through the selection of the
exponential distribution, deemed suitable for the envisaged SP-G family. The SP-E distribution, characterized
by two parameters, was formulated. Diverse some mathematical functions and attributes of the SP-E model
were studied, with the Maximum Likelihood Estimation (MLE) being calculated for the two parameters, while
Monte Carlo simulations were utilized to show the effectiveness of these estimators. The validity of this model
was empirically substantiated using three authentic datasets, affirming its superior fitting for selected data when
juxtaposed with alternative models.
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2. A. Yilmaz and C. Biçer , A New Family of Distributions with Exponentiated Modified Term, International Journal of Mathematics
and Statistics, vol. 18, pp. 14-–25, 2017.

3. A. Nanvapisheh, A New Five-Parameter Distribution: Properties and Applications , International Journal of Mathematical Modelling
and Computations, vol. 9, no. 3, pp. 201—212, 2019.

4. A. Nanvapisheh, A new two-parameter distribution: properties and applications, properties and applications, vol. 7, no. 1, pp.
35-–48, 2019.

5. S Maiti and S Pramanik, A Generalized One Parameter Polynomial Exponential Generator Family of Distributions , arXiv preprint,
vol. 1, pp. 1–35, 2020.

6. X. Xie and J. Shi, A distributed quantile estimation algorithm of heavy-tailed distribution with massive datasets, Mathematical
Biosciences and Engineering, vol. 18, no. 1, pp. 214–230, 2020.

7. N. Hassan, H. Kalt, H. Aal-Rkhais and A. Hashoosh, The Weibull Lindley: General family of probability distributions, Mathematics
in Engineering, Science and Aerospace, vol. 12, no. 1, pp. 29–42, 2021.

8. R. Turner, A New Versatile Discrete Distribution, R FOUNDATION STATISTICAL COMPUTING, vol. 13, no. 2, pp. 485—506,
2021.

9. H. Klakattawi and A. Khormi, The effect of exponentiating generalized models, International Journal of Advanced and Applied
Sciences, vol. 9, no. 11, pp. 51—63, 2022.

10. E. Alsolami and D. Alsulami, Combining Two Exponentiated Families to Generate a New Family of Distributions, Symmetry, vol.
14, no. 8, 2022.
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