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Abstract The Kumaraswamy alpha power Lomax model, a five-parameter sub-model of the Kumaraswamy alpha power
transformed family, is explored in detail. It is of particular interest because there are a variety of possible symmetrical and
asymmetrical forms for the density function of this distribution. The proposed distribution is loaded with several features.
Maximum likelihood, least squares, weighted least squares, and Cramer-von Mises are the four techniques used to estimate
the parameters of the new model. A simulation study has been conducted to assess its effectiveness. Actuarial measures like
value at risk and tail value at risk are also derived. Compared to other recently introduced heavy-tailed distributions, the tail
of the proposed distribution is heavier. Moreover, the model’s usefulness is investigated using four real data sets from the
fields of insurance, finance, and reliability. Compared to other well-known Lomax-based and competing distributions, the
results demonstrate that the proposed distribution can fit the data better.
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1. Introduction

The modeling of heavy-tailed data in applied fields has been investigated using heavy-tailed statistical distributions.
Since data in the field of actuarial science, such as insurance losses, are frequently skewed to the right, unimodal,
hump-shaped, and possess a thick right tail, researchers are primarily interested in distributions with only positive
support. For details, one can refer to [7, 8, 9, 10, 11]. Classical distributions like the exponential, Rayleigh, Weibull,
and Gamma cannot reveal extensive flexibility. These distributions are relatively limited in modeling heavy-tailed
data for many reasons. Actuaries are constantly searching for new statistical distributions to fill in the gaps left
by the traditional distributions because of the significance of heavy-tailed distributions in the field of actuarial
sciences. According to Beirlant et al. [37] , a distribution G is said to be heavy-tailed if

lim
x→∞

1−G(x)

e−λx
= ∞ for all λ > 0.

In risk management, heavy right-tailed distributions are useful for value at risk, tail value at risk, tail variance,
and tail variance premium. In this context, Zhao et al. [38] introduced the heavy-tailed beta-power transformed
Weibull distribution and compared it with other known distributions. The proposed model has been used to find
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actuarial measures, and a simulation study has been carried out to establish the usefulness of the suggested model.
The extended log-logistic distribution has been introduced to model heavy-tailed insurance loss data, and actuarial
measures computed for the chosen models [39].

Recently, Ahmad et al. [40] contributed work on a particular sub-model of the proposed family, called the
Weibull claim (W-Claim) model, and investigated its properties, characterizations, and applications to insurance
claim data. Some risk measures are calculated for the fundamental Weibull and W-Claim distributions. According
to the simulation study, the values of risk measures for the W-Claim distribution are larger than those for the
conventional Weibull distribution. Arif et al. [41] developed extended heavy-tailed Weibull distribution, applying it
to actuarial measures. They demonstrated the model’s practical utility using heavy-tailed insurance loss data. The
findings indicate that the proposed model outperforms six other competing models with respect to flexibility and
efficiency.

Some related works recently introduced on this topic have different limitations. For example, Riad et al.
[42] proposed a new heavy-tailed distribution called Kavya-Manoharan Power Lomax (KMPLo) with actuarial
measures. They illustrated the suggested model using only one data set from the reliability field. Still, actuarial
measures must be used to show how the model works in insurance, finance, and economics. Therefore, the potential
flexibility and applicability of the proposed distribution in actuarial science and other domains is a significant gap
in this work. The other heavy-tailed model recently introduced is the extended heavy-tailed Weibull (NEHTW)
distribution [46]. However, the tail of the proposed distribution is compared with only the Weibull model, which
is insufficient to suggest that the NEHTW model is a good candidate for heavy-tailed data sets. Other recently
proposed heavy-tailed distributions in the literature are given in [43, 44, 45, 47, 48]. Given the above description,
we are motivated to look for heavy-tailed distributions that are more flexible and improve the accuracy of data fitting
in the fields of insurance, finance, reliabilities, and others. Kumaraswamy proposed a two-parameter distribution
called Kumaraswamy distribution Kumaraswamy [1], denoted by Kum(ψ, c). Its Cumulative Distribution Function
(CDF) is given by

G(x) = 1− (1− xψ)c, 0 < x < 1, ψ, c > 0, (1)

where ψ, c > 0 are shape parameters. However, Cordeiro and de Castro [12] extended the Kum distribution to a
more generalized form and introduced the Kumaraswamy generalized (Kum-G) family of distributions with CDF
and Probability Density Function (PDF) expressed as

G(x) = 1− [1− (F (x))ψ]c (2)

and
g(x) = cψf(x)F (x)ψ−1[1− (F (x))ψ]c−1, (3)

respectively, where F (x) is the CDF of a chosen baseline distribution, with corresponding PDF f(x).
The alpha power transformation (APT) family has been introduced by Mahdavi and Kundu [13]. If L(x) is the
CDF and l(x) is the PDF of a continuous random variable X , then the CDF and PDF of this family are given by

F (x) =

{
aL(x)−1
a−1 , x ∈ R, a > 0, a ̸= 1

L(x), a = 1,
(4)

f(x) =

{
(log(a))
a−1 l(x)aL(x), a ̸= 1

l(x), a = 1.
(5)

This technique provides more flexibility and enables a wider range of shapes by raising the base distribution to
the power of a parameter. It applies in many disciplines where extreme values are widespread, such as reliability
analysis, environmental sciences, and economics. Many novel distributions have been published in the literature
using the alpha power transformation technique. Alpha power Lomax distribution was proposed by Bulut et al.
[20], who investigated some distributional properties, but heavy-tailedness and flexibility of hazard rate function
(hrf) were not addressed. A three-parameter alpha power transformed inverse Lomax distribution was introduced
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by Zein et al. [21], which is more flexible than inverse Lomax distribution. Other recent distributions derived in the
literature using alpha power transformation with different base distributions are alpha power Kum distribution [6],
alpha power exponentiated Teissier distribution [4], alpha power exponentiated new Weibull-Pareto distribution
[22], alpha power Kum-Burr III distribution [5] and alpha power inverse Weibull distribution [23]. The researchers
are still focusing on deriving more generalized and flexible distributions that are superior to modified distributions
using a combination of two or more techniques. Some flexible distributions generated from the combination of
Kum-G and APT techniques in the literature are Kum alpha power inverted exponential distribution [2], alpha
power Kum distribution [24] and alpha power inverted Kum distribution [25].

Lomax distribution was introduced by Lomax [14], and the CDF and PDF have the forms

L(x) = 1− (1 + ςx)−ϑ, x > 0, ς, ϑ > 0 (6)

and

l(x) = ς ϑ (1 + ςx)−(ϑ+1), (7)

respectively, where ϑ > 0 and ς > 0 are respectively shape and scale parameters. Lomax distribution is significant
since it helps to deal with data with heavy tails. It is commonly used to model income distributions, insurance
claim sizes, and product lifetimes where large values are relatively more frequent. Numerous distributions have
been made available, utilizing the widely recognized Lomax distribution as a baseline. To cite a few, Kum-G power
Lomax distribution [17], type II Topp-Leone power Lomax distribution [26], Kum-G inverse Lomax distribution
[27], Marshall–Olkin alpha power Lomax distribution [3], power Lomax distribution [28], inverse power Lomax
distribution [29] and Weibull-Lomax distribution [30].

This article aims to develop more generalized heavy-tailed distributions and evaluate the flexibility in modeling
actuarial data and other fields. A novel five-parameter heavy-tailed distribution is proposed by combining the Kum-
G and APT family of distributions. The proposed distribution is also known as the KAP-Lomax (Kumaraswamy
alpha power Lomax distribution). The reasons behind choosing the combination of Kum-G and APT families to
extend the Lomax distribution are:

• Increased flexibility and control: Combining both families makes it possible to describe complex data
patterns in a more flexible manner. The Kum-G distribution provides a flexible base distribution with tractable
features due to two shape parameters, allowing it to model a wide range of distribution shapes. At the same
time, the APT alters the tail behavior and shape due to its transformation parameter.

• Broad applicability: When different kinds of tail behavior, skewness, and kurtosis are needed, the
combination can provide distributions that are relevant in a variety of fields, including finance and
environmental modeling.

• Closed-form solutions: Kum-G with APT family frequently yields distributions with closed-form PDFs
and CDFs, which facilitate practical usage, particularly in parameter estimation, simulation, and hypothesis
testing.

• Modeling extreme events: By merging these families, distributions that can effectively assess risk can be
created in domains such as risk management. These distributions can be used to simulate both small and
large losses.

• Heavy-tailed nature and applicability of the Lomax distribution: Lomax distribution is a continuous
probability distribution with a heavy tail, which makes it convenient for modeling data in fields like finance,
insurance, and reliability analysis, where extreme events are of particular concern.

The article is organized as follows. Section 2 introduces the Kumaraswamy alpha power transformed family of
distributions and the sub-model, Kumaraswamy alpha power Lomax distribution. Some statistical properties of the
Kumaraswamy alpha power Lomax distribution are explored in Section 3. In Section 4, estimation and simulation
study are discussed. Section 5 provides the mathematical expressions of actuarial measures for the proposed model.
Section 6 elaborates on the practical illustration using real data sets. Section 7 includes some concluding remarks.
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2. Development of the Proposed Family

This section presents the Kumaraswamy alpha power transformed (KAPT) family of distributions. Using L(x) as
the CDF of any baseline distribution, the CDF of the KAPT family can be defined as

G(x) =

{
1− [1− (a

L(x)−1
a−1 )ψ]c, a ̸= 1, c, a,ψ > 0, x > 0

1− [1− (L(x))ψ]c, a = 1.
(8)

From (8), the KAPT family reduces to

• the Kum-G family for a = 1,
• the APT family for c = ψ = 1,
• the exponentiated family for a = c = 1.

The PDF of the KAPT family corresponding to (8) is

g(x) =

{
(log(a))
a−1 cψl(x)aL(x)(a

L(x)−1
a−1 )ψ−1[1− (a

L(x)−1
a−1 )ψ]c−1, a ̸= 1

cψl(x)L(x)ψ−1[1− L(x)ψ]c−1, a = 1.
(9)

It is possible to derive new flexible distributions using the forms of CDF, L(x), and PDF, l(x) in equation (8).

2.1. The Kumaraswamy Alpha Power Lomax Distribution

This section introduces a five-parameter KAP-Lomax distribution that significantly contributes to the insurance,
finance, and reliability fields by providing a robust and flexible tool for modeling light and heavy-tailed data. The
KAP-Lomax distribution is desirable for contemporary risk management, pricing, and financial analytics because
of its adaptability, closed-form solutions, and flexibility.

Using equations (2), (4) and (6), a random variable X is said to have KAP-Lomax distribution if its CDF is

G(x,Π) =

1−
[
1−

(
a1−(1+ςx)−ϑ−1

a−1

)ψ]c
, a ̸= 1, a, c, ς , ψ, ϑ > 0 x > 0

1− [1− (1− (1 + ςx)−ϑ)ψ]c, a = 1,

(10)

where Π = (a, c, ς, ψ, ϑ)
′

, ϑ, ψ, c > 0 are shape parameters.
Comprehending and interpreting the parameters of the KAP-Lomax distribution in real-world applications needs

breaking down its components and considering how they might be applied practically. The shape parameters ψ and
c determine the shape of the distribution, particularly the skewness and tail behavior. In reliability engineering, they
are used to model the life span of a product, where ψ and c control how quickly the probability of failure increases
or decreases over time. The parameter a of APT influences the distribution’s shape by adjusting the heaviness of
the tail and the peak. Higher values of a can make the distribution more skewed or heavy-tailed. In finance, a
can model the behavior of extreme events, like market crashes, by affecting how likely extreme returns are. The
scale parameter ς influences the spread of the distribution. A larger ς means that values are more spread out. Risk
assessment might represent the scale of losses in case of a catastrophic event, and a larger value would imply that
extreme losses are more likely. The shape parameter ϑ mainly affects the tail behavior of the distribution. It is
essential to model how rapidly the probability decreases as we move away from the mode. In insurance, ϑ could be
used to model the distribution of claim sizes, whereas a higher value could indicate a slower decay in the probability
of extremely large claims.

We write G(x) in the place of G(x,Π) and g(x) in the place of g(x,Π) for simplicity. The PDF, the survival
function, and the hrf of KAP-Lomax distribution corresponding to (10) are, respectively, written as

g(x) =


(log(a))
a−1 cψςϑ(1 + ςx)−(ϑ+1)a1−(1+ςx)−ϑ(a

1−(1+ςx)−ϑ−1
a−1 )ψ−1[1− (a

1−(1+ςx)−ϑ−1
a−1 )ψ]c−1

cψςϑ(1 + ςx)−(ϑ+1)(1− (1 + ςx)−ϑ)ψ−1[1− (1− (1 + ςx)−ϑ)ψ]c−1, a ̸= 1
(11)
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S(x) = 1−G(x) =

[
1−

(
a1−(1+ςx)−ϑ − 1

a− 1

)ψ]c
, a ̸= 1, (12)

and

h(x) =

log(a)
(a−1) cψςϑ(1 + ςx)−(ϑ+1)a1−(1+ςx)−ϑ

(
a1−(1+ςx)−ϑ−1

a−1

)ψ−1

1−
(
a1−(1+ςx)−ϑ−1

a−1

)ψ , a ̸= 1. (13)

3. Basic Properties of KAP-Lomax Distribution

The plots of PDF, CDF, survival, and hrf of KAP-Lomax for various combinations of parameters are shown in
Figures 1, 2, 3 and 4, respectively. The plots of PDF in Figures 1 and 2 suggest that the proposed distribution is
positively skewed and unimodal for ψ > 1. In Figures 1(a), 1(b) and 2(b), the suggested model tends toward a
heavy-tailed distribution as the values of the shape parameters c and ϑ decrease. From Figure 2(a), it is clear that
as the value of the shape parameter ψ increases, the right tail of the KAP-Lomax distribution tends to assign higher
probabilities to larger values, indicating that the proposed model tends to be heavy-tailed. Figure 4 depicts that
the proposed distribution has reversed symmetric densities, decreasing/increasing, bathtub, upside-down bathtub
shaped, and constant and reversed-J hazard rates.
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Figure 1. The PDF plots of the KAP-Lomax.

3.1. Quantile Function

The ρth quantile of KAP-Lomax distribution is derived as

xρ =
1

ς

{(
log(a)

log(a)− log(1 + (a− 1)[1− (1− ρ)
1
c ]

1
ψ )

) 1
ϑ
}
, (14)
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Figure 2. The PDF plots of the KAP-Lomax.
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3(a) CDF plots
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Figure 3. The CDF and survival function plots of the KAP-Lomax.

where 0 < ρ < 1, a ̸= 1, a, c, ς , ψ, ϑ > 0. Replacing ρ by (0.25, 0.5, 0.75) in (14), the first quartile (Q1), the second
quartile (Q2), and third quartile (Q3) of KAP-Lomax distribution can be, respectively written as follows:

Q1 =
1

ς

{(
log(a)

log(a)− log(1 + (a− 1)[1− (1− 1/4)
1
c ]

1
ψ )

) 1
ϑ
}

Q2 =
1

ς

{(
log(a)

log(a)− log(1 + (a− 1)[1− (1− 1/2)
1
c ]

1
ψ )

) 1
ϑ
}

Q3 =
1

ς

{(
log(a)

log(a)− log(1 + (a− 1)[1− (1− 3/4)
1
c ]

1
ψ )

) 1
ϑ
}
.

(15)
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Figure 4. The hrf plots of the KAP-Lomax.

3.2. Skewness and Kurtosis

The shapes of KAP-Lomax distribution can be obtained using Galton’s skewness and Moor’s kurtosis [15]. These
are obtained using (14 and 15), as follows:

Skewness =
Q3 − 2Q2 +Q1

Q3 −Q1
, (16)

and
Kurtosis =

x.875 − x.625 + x.375 − x.125
Q3 −Q1

. (17)

3.3. Moment Generating Function (mgf)

If X ∼ KAP-Lomax (a, c, ς , ψ, ϑ), the mgf is expressed as

MX(t) =

∞∑
♭,ℓ,k=0

∞∑
r=1

tr

r!
v♭,ℓ(Π, 1)

(−1)1+re(ℓ+1)log(a)aℓ+1ς−r−1ς(1 + r)ς(ϑ− kϑ)

ς(1 + r + ϑ− kϑ)
. (18)

Moments

For any positive integer r, the rth order moment about the origin is provided as follows:

µ′
r = E[Xr] =

∫ ∞

0

xrg(x)dx. (19)

This integral is not tractable given the mathematical complexity of the density function in (19). The expansion
for the PDF of the KAP-Lomax may be obtained using an analytical approach and can be plugged into (19). The
following result displays a series expansion of a power transformation of the KAP-Lomax distribution’s PDF.
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Proposition 3.1
For any ℏ > 0,

(g(x,Π))ℏ =

∞∑
♭=0

∞∑
ℓ=0

v♭,ℓ(Π,ℏ)dℓ(x, a, ς, ϑ,ℏ), x > 0,

where

v♭,ℓ(Π,ℏ) =
(
log(a)

a− 1
cψ ς ϑ

)ℏ(
1

1− a

)ψ♭+ψ−1(ℏ(c− 1)

♭

)(
ψ♭+ ℏ(ψ − 1)

ℓ

)
(−1)♭+ℓ,

and
dℓ(x, a, ς, ϑ,ℏ) = (1 + ςx)−ℏ(ϑ+1)a(ℓ+ℏ)[1−(1+ςx)−ϑ]

are generalized binomial coefficients.

Proof
We have

(g(x,Π))ℏ =

(
log(a)

a− 1
cψςϑ

)ℏ
(1 + ςx)−ℏ(ϑ+1)aℏ[1−(1+ςx)−ϑ]

(
a1−(1+ςx)−ϑ − 1

a− 1

)ℏ(ψ−1)

[
1−

(
a1−(1+ςx)−ϑ − 1

a− 1

)ψ]ℏ(c−1)

.

Now, we use the result which gives (1− ℵ)n =
∑∞

♭=0

(
n
♭

)
(−1)♭ℵ♭ for any real number n and ℵ such that |ℵ| < 1.

Therefore, by applying this result, we obtain

(g(x,Π))ℏ =

(
log(a)

a− 1
cψςϑ

)ℏ
(1 + ςx)−ℏ(ϑ+1)aℏ[1−(1+ςx)−ϑ]

∞∑
♭=0

(
ℏ(c− 1)

♭

)
(−1)♭

(
a1−(1+ςx)−ϑ − 1

a− 1

)ψ♭+ℏ(ψ−1)

.

=

(
log(a)

a− 1
cψςϑ

)ℏ
(1 + ςx)−ℏ(ϑ+1)

∞∑
♭=0

∞∑
ℓ=0

(
ℏ(c− 1)

♭

)(
ψ♭+ ℏ(ψ − 1)

ℓ

)
(−1)♭+ℓ

a(ℓ+ℏ)[1−(1+ςx)−ϑ]

(
1

a− 1

)ψ♭+ψ−1

.

=

∞∑
♭=0

∞∑
ℓ=0

v♭,ℓ(Π,ℏ)dℓ(x, a, ς, ϑ,ℏ).

For ℏ = 1, Proposition (3.1) gives

g(x,Π) =

∞∑
♭=0

∞∑
ℓ=0

v♭,ℓ(Π, 1)dℓ(x, a, ς, ϑ, 1).

Hence X has rth order moment about the origin written as

µ′
r =

∫ ∞

0

xr
[ ∞∑
♭=0

∞∑
ℓ=0

v♭,ℓ(Π, 1)dℓ(x, a, ς, ϑ, 1)

]
dx =

∞∑
♭=0

∞∑
ℓ=0

v♭,ℓ(Π, 1)

∫ ∞

0

xrdℓ(x, a, ς, ϑ, 1)dx.
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The integral term can be expressed as∫ ∞

0

xrdℓ(x, a, ς, ϑ, 1)dx =

∫ ∞

0

xr(1 + ςx)−(ϑ+1)a(ℓ+1)[1−(1+ςx)−ϑ]dx

Set y = (1 + ςx)−ϑ, so x = 1
ς (y

−1
ϑ − 1) and ∂x = −1

ς ϑ y
1
ϑ

+1
∂y, where 0 < y < 1. Then

∫ ∞

0

xr(1 + ςx)−(ϑ+1)a(ℓ+1)[1−(1+ςx)−ϑ]dx =
−aℓ+1

ϑςr+1

∫ 1

0

(y
1
ϑ − 1)r

ay(ℓ+1)
∂y.

Since az =
∑∞

k=0
(log(a))k

k! Zk, hence the above expression can be written as

−aℓ+1

ϑςr+1

∫ 1

0

(y
1
ϑ − 1)r

ay(ℓ+1)
∂y =

−aℓ+1

ϑςr+1

∞∑
k=0

(log(a))k

k!
(ℓ+ 1)k

∫ 1

0

(y
1
ϑ − 1)r

yk
∂y

=
(−1)1+re(ℓ+1)log(a)aℓ+1ς−r−1ς(1 + r)ς(ϑ− kϑ)

ς(1 + r + ϑ− kϑ)
.

Finally, we get

µ
′

r =

∞∑
♭=0

∞∑
ℓ=0

∞∑
k=0

v♭,ℓ(Π, 1)
(−1)1+re(ℓ+1)log(a)aℓ+1ς−r−1ς(1 + r)ς(ϑ− kϑ)

ς(1 + r + ϑ− kϑ)
.

Proposition 3.2
For any λ > 0,

lim
x→∞

1−G(x,Π)

e−λx
= lim
x→∞

(
1−

(
a1−(1+ςx)−ϑ−1

a−1

)ψ)c
e−λx

= ∞.

Proof
To show that

lim
x→∞

eλx

1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψc

= ∞,

for a > 0, ς > 0, ϑ > 0, ψ > 0, and c > 0, let’s analyze the behavior of the expression as x→ ∞.
Step 1: Consider the expression inside the parentheses:

a1−(ςx+1)−ϑ − 1

a− 1
.

As x→ ∞: (ςx+ 1)−ϑ → 0, because ςx+ 1 → ∞ and raising a large number to a negative power, it tends to zero.
Thus, 1− (ςx+ 1)−ϑ → 1. So the expression becomes:

a1−(ςx+1)−ϑ → a1 = a.

Hence:
a1−(ςx+1)−ϑ − 1

a− 1
→ a− 1

a− 1
= 1.

Step 2: Raise the above expression to the power ψ:(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ
→ 1ψ = 1.
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Step 3: Now subtract the expression from 1:

1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ
→ 1− 1 = 0.

Step 4: Raise the result to the power c:1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψc

→ 0c = 0.

Step 5: Now multiply this by eλx:

eλx

1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψc

.

Given that eλx grows exponentially as x→ ∞, and the other factor tends to 0, we need to determine the overall

limit. Thus, although the term
(
1−

(
a1−(ςx+1)−ϑ−1

a−1

)ψ)c
tends to 0, the exponential term eλx grows very rapidly.

Therefore, the exponential term dominates the product, causing the entire expression to approach infinity. Thus,

lim
x→∞

eλx

1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψc

= ∞.

4. Estimation and Simulation Study

The estimation techniques maximum likelihood, least squares, weighted least squares, and Cramer-von Mises have
been implemented for the parameter estimation of the KAP-Lomax distribution, and a simulation study carried out.

4.1. Maximum Likelihood Estimation (MLE)

Let x1, x2, ..., xn be a random sample from KAP-Lomax distribution. Then the log-likelihood function for the
parameter vector Π = (a, c, ς, ψ, ϑ)

′
, using the PDF in (11) is,

l(Π) = nlog

(
log(a)

a− 1

)
+ nlog(cψςϑ)− (ϑ+ 1)

n∑
♭=1

log(1 + ςx♭) + log(a)

n∑
♭=1

[1− (1 + ςx♭)
−ϑ]

+(ψ − 1)

n∑
♭=1

log

(
a1−(1+ςx♭)

−ϑ − 1

a− 1

)
+ (c− 1)

n∑
♭=1

log

[
1−

(
a1−(1+ςx♭)

−ϑ − 1

a− 1

)ψ]
.

(20)

The MLEs are computed by equating the first partial derivatives, ∂l(Π)
∂a , ∂l(Π)

∂c , ∂l(Π)
∂ς , ∂l(Π)

∂ψ and ∂l(Π)
∂ϑ of the log-

likelihood function with respect to a, c, ς , ψ and ϑ to zeros and solving for the parameters a, c, ς , ψ and ϑ.

4.2. Least square estimation (LSE)

Let the order statistics of a random sample from KAP-Lomax be x1:m, x2:m, . . . , xm:m. Then, the LSE of the
parameters of the KAP-Lomax distribution is obtained by minimizing the equation written as (21).

L =

m∑
♭=1

[
G(x♭:m)− ♭

m+ 1

]2
=

m∑
♭=1

[
1−

(
1−

(
a1−(ςx♭+1)−ϑ − 1

a− 1

)ψ)c
− ♭

m+ 1

]2
. (21)
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It is also possible to derive the LSE of the KAP-Lomax parameters by resolving the following equations:

m∑
♭=1

[
1−

(
1−

(
a1−(ςx♭+1)−ϑ − 1

a− 1

)ψ)c
− ♭

m+ 1

]
δk(x♭:m) = 0, k = 1, 2, 3, 4, 5 (22)

where

δ1(x♭:m) =
∂

∂a
G(x♭:m) =cψ

((
1− (ςx+ 1)−ϑ

)
a−(ςx+1)−ϑ

a− 1
− a1−(ςx+1)−ϑ − 1

(a− 1)2

)
(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ−1(
1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ)c−1

,

(23)

δ2(x♭:m) =
∂

∂ς
G(x♭:m) =cϑxψ

log(a)

a− 1
(ςx+ 1)−ϑ−1a1−(ςx+1)−ϑ

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ−1

(
1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ)c−1
, (24)

δ3(x♭:m) =
∂

∂ϑ
G(x♭:m) =cψ

log(a)

a− 1
(ςx+ 1)−ϑ log(ςx+ 1)a1−(ςx+1)−ϑ(

a1−(ςx+1)−ϑ − 1

a− 1

)ψ−1(
1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ)c−1

,

(25)

δ4(x♭:m) =
∂

∂ψ
G(x♭:m) =c

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ
log

(
a1−(ςx+1)−ϑ − 1

a− 1

)
(
1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ)c−1

,

(26)

δ5(x♭:m) =
∂

∂c
G(x♭:m) = −

(
1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ)c
log

(
1−

(
a1−(ςx+1)−ϑ − 1

a− 1

)ψ)
. (27)

4.3. Weighted least square estimation (WLSE)

By minimizing W, the WLSE of the KAP-Lomax parameters can be obtained where

W =

m∑
♭=1

(m+ 1)2(m+ 2)

♭(m− ♭+ 1)

[
G(x♭:m)− ♭

m+ 1

]2
=

m∑
♭=1

(m+ 1)2(m+ 2)

♭(m− ♭+ 1)

[
1−

(
1−

(
a1−(ςx♭+1)−ϑ − 1

a− 1

)ψ)c
− ♭

m+ 1

]2
.

(28)

4.4. Cramer-von Mises Estimation (CVME)

The CVME of KAP-Lomax parameters are obtained by minimizing the following equation:

CV =
1

12m
+

m∑
♭=1

[
G(x♭:m)− 2♭− 1

2m

]2
=

1

12m
+

m∑
♭=1

[
1−

(
1−

(
a1−(ςx♭+1)−ϑ − 1

a− 1

)ψ)c
− 2♭− 1

2m

]2
. (29)
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Alternatively, through resolving the subsequent equations:

m∑
♭=1

[
1−

(
1−

(
a1−(ςx♭+1)−ϑ − 1

a− 1

)ψ)c
− 2♭− 1

2m

]
δk(x♭:m) = 0, (30)

where δk(x♭:m), for k = 1, 2, 3, 4, 5, are defined in equations (23-27).

4.5. Simulation Study

In this subsection, the performance of the estimates obtained by the four estimation methods is evaluated by
performing a simulation study. The steps are as follows:
(1) Samples X1, X2, ..., Xn of sizes n= 25, 50, 100,. . . , 500 from the KAP-Lomax are generated.
(2) the MLEs, LSEs, WLSEs, and CVMEs are computed.
(3) Ten thousand repetitions are performed to compute the estimates’ mean square error (MSE) and the absolute
bias (AB).
(4) Two combinations of values are considered for the parameters of the KAP-Lomax distribution.

The simulation results are shown numerically in Tables 1, 2, and 3, and the results of MLEs, LSEs, WLSEs,
and CVMEs with their corresponding MSEs are graphically displayed in Figures 5-12. From the numerical and
graphical results, it can be noted that as sample size rises
(i) the values of the estimates get closer and closer to the parameters (a, c, ς, ψ, ϑ) and
(ii) the values of the MSE and AB of the estimates tend to zero for all the four estimation methods.
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5(a) MLEs plots
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Figure 5. Plots of MLEs and MSEs of the KAP-Lomax for a = 1.2, c = 0.4, ς = 0.7, ψ = 0.1, ϑ = 0.8.

5. Actuarial Measures

Analyzing an instrument portfolio’s vulnerability to market risk in actuarial sciences is one of the most important
tasks. Risk may arise from changes in underlying variables such as prices of equity and interest rates/exchange
rates. Using the proposed distribution, this section computed the Value at Risk (VaR) and Tail Value at Risk (TVaR).
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Table 1. MLE, LSE, WLSE, CVME of KAP-Lomax for two combinations of parameters (Par.)

a = 1.2, c = .4, ς = .7, ψ = .1, ϑ = .8 a = 1.3, c = .2, ς = .9, ψ = .1, ϑ = .3

n Par. MLE LSE WLSE CVME MLE LSE WLSE CVME

â 5.591 6.259 7.615 1.426 3.186 7.747 1.388 1.647
ĉ 0.414 0.205 0.102 0.132 0.328 0.049 4.043 0.035

25 ς̂ 7.361 0.313 0.189 0.855 7.662 0.224 1.339 0.475
ψ̂ 0.129 5.822 7.316 5.217 0.274 7.536 0.022 8.049
ϑ̂ 0.966 0.403 0.209 0.774 0.398 0.074 0.498 0.091

â 4.105 4.293 6.154 1.502 2.526 6.345 1.615 1.747
ĉ 0.355 0.271 0.175 0.200 0.248 0.075 3.327 0.060

50 ς̂ 5.658 0.460 0.309 0.951 6.663 0.378 1.178 0.468
ψ̂ 0.108 3.583 5.673 3.10 0.159 5.840 0.039 5.308
ϑ̂ 0.961 0.541 0.353 1.142 0.363 0.113 0.397 0.199

â 2.701 1.507 3.848 1.591 1.948 3.294 1.557 1.904
ĉ 0.367 0.297 0.280 0.280 0.214 0.104 1.997 0.101

100 ς̂ 3.405 0.664 0.490 0.680 4.981 0.692 1.045 0.595
ψ̂ 0.103 0.437 3.079 1.678 0.120 2.365 0.065 3.446
ϑ̂ 0.877 0.749 0.559 0.813 0.330 0.201 0.342 0.207

â 1.529 1.228 1.833 1.399 1.354 1.589 1.501 1.767
ĉ 0.391 0.369 0.371 0.367 0.199 0.153 0.906 0.154

200 ς̂ 1.332 0.693 0.649 0.673 1.145 0.869 0.961 0.782
ψ̂ 0.100 0.128 0.812 0.494 0.100 0.428 0.086 1.394
ϑ̂ 0.818 0.789 0.742 0.765 0.300 0.293 0.310 0.240

â 1.213 1.200 1.208 1.204 1.305 1.311 1.308 1.371
ĉ 0.399 0.399 0.399 0.399 0.200 0.191 0.233 0.197

500 ς̂ 0.718 0.699 0.699 0.699 0.918 0.898 0.912 0.892
ψ̂ 0.100 0.100 0.109 0.104 0.100 0.112 0.099 0.181
ϑ̂ 0.800 0.799 0.799 0.799 0.299 0.292 0.300 0.295

5.1. Value at Risk (VaR)

Practitioners widely use the measure VaR as a standard financial risk instrument in the context of actuarial sciences.
Alternatively, VaR is referred to as the quantile risk measure, and it is expressed with a confidence level, say
ρ (usually 90%, 95%, or 99%). VaR of a random variable X is the ρth quantile of the CDF [16]. If X ∼KAP-
Lomax(x; Π) for Π = (a, c, ς , ψ, ϑ)

′
, then the VaR of X at the 100ρ% level denoted by V aRρ(X) is the value of

πρ satisfying

Pr(X > πρ) = 1− ρ, 0 < ρ < 1.

Using the quantile function, the VaR can be derived as

V aRρ(X) =
1

ς

{(
log(a)

log(a)− log(1 + (a− 1)[1− (1− ρ)
1
c ]

1
ψ )

) 1
ϑ
}
, (31)

where 0 < ρ < 1, a, c, ς , ϑ, ψ > 0 and a ̸= 1.
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Table 2. MSE of KAP-Lomax for two combinations of parameters.

a = 1.2, c = .4, ς = .7, ψ = .1, ϑ = .8 a = 1.3, c = .2, ς = .9, ψ = .1, ϑ = .3
n Par. MLE LSE WLSE CVME MLE LSE WLSE CVME

â 36.4921 0.3814 56.1600 0.1707 15.2810 52.2201 1.6151 0.1513
ĉ 0.1303 0.0712 0.1186 0.1066 0.3127 0.0283 19.2595 0.0326

25 MSE ς̂ 61.4131 0.2321 0.3547 1.2049 59.2047 0.5709 1.4043 0.2256
ψ̂ 0.0303 0.4864 71.0723 44.8242 0.4477 69.2420 0.0076 77.5708
ϑ̂ 0.4169 0.2869 0.4695 0.8053 0.0775 0.0638 0.0777 0.0731

â 22.7268 0.2015 43.5974 0.2703 8.6613 38.6851 2.4447 0.3490
ĉ 0.0307 0.0385 0.0894 0.0795 0.2176 0.0223 16.0506 0.0277

50 MSE ς̂ 45.7978 0.1231 0.2713 0.8425 51.2157 0.4132 1.3433 0.3904
ψ̂ 0.0009 0.2554 55.1782 20.4117 0.0866 50.0867 0.0060 44.1435
ϑ̂ 0.2803 0.1528 0.3550 0.6936 0.0304 0.0501 0.289 0.0376

â 11.1614 1.9646 23.3094 0.5596 3.4120 16.9694 1.9424 0.8511
ĉ 0.0071 0.0401 0.0477 0.0473 0.0599 0.0187 9.5190 0.0195

100 MSE ς̂ 24.9619 0.0135 0.1465 0.1381 36.6469 0.1812 0.8051 0.2128
ψ̂ 0.0003 2.4792 29.5009 8.8903 0.0022 21.9724 0.0033 25.8080
ϑ̂ 0.1152 0.0203 0.1914 0.0748 0.0099 0.0238 0.0091 0.0218

â 2.3528 0.0175 5.5756 0.4907 0.1868 2.3788 1.5153 1.0191
ĉ 0.0016 0.0120 0.0114 0.0127 0.0000 0.0092 3.7155 0.0085

200 MSE ς̂ 5.7930 0.0005 0.0351 0.0088 2.2346 0.0254 0.2806 0.0649
ψ̂ 0.0000 0.0194 7.0567 1.9231 0.0000 3.0800 0.0013 7.7787
ϑ̂ 0.0216 0.0016 0.0459 0.0180 0.0000 0.0031 0.0016 0.0148

â 0.0990 0.0003 0.0774 0.0188 0.0211 0.0030 0.0496 0.2997
ĉ 0.0000 0.0001 0.0001 0.0001 0.0000 0.0017 0.1658 0.0005

500 MSE ς̂ 0.1729 0.0000 0.0004 0.0001 0.1656 0.0000 0.0441 0.0032
ψ̂ 0.0000 0.0004 0.0980 0.0236 0.0000 0.0037 0.0000 0.3887
ϑ̂ 0.0000 0.0000 0.0006 0.0003 0.0000 0.0011 0.0001 0.0012

5.2. Tail Value at Risk (TVaR)

TVaR of X at the 100ρ% security level, also named as conditional tail expectation, conditional-value at-risk, and
expected shortfall and denoted by TV aRρ(X) is the mean of all VaR values that are higher than the security
threshold ρ, where 0 < ρ < 1 [19]. That is

TV aRρ(X) =

∫ 1

ρ
V aRu(X)du

1− ρ
.

Let X follow the KAP-Lomax distributions with parameters a, c, ς , ψ and ϑ, then the TVaR of the KAP-Lomax is
given by

TV aRρ(X) =
1

1− ρ

∫ 1

ρ

1

ς

{(
log(a)

log(a)− log(1 + (a− 1)[1− (1− u)
1
c ]

1
ψ )

) 1
ϑ
}
du, (32)
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Table 3. AB of KAP-Lomax for two combinations of parameters.

a = 1.2, c = .4, ς = .7, ψ = .1, ϑ = .8 a = 1.3, c = .2, ς = .9, ψ = .1, ϑ = .3

n Par. MLE LSE WLSE CVME MLE LSE WLSE CVME

â 4.3913 5.0591 6.4154 0.2260 1.8861 6.4474 0.0880 0.3471
ĉ 0.0143 0.1945 0.2972 0.2678 0.1289 0.1502 3.8434 0.1642

25 AB ς̂ 6.6618 0.3863 0.5107 0.1551 6.7628 0.6753 0.4394 0.4247
ψ̂ 0.0291 5.7221 7.2162 5.1177 0.1749 7.4368 0.0771 7.9491
ϑ̂ 0.1667 0.3966 0.5908 0.0252 0.0988 0.2255 0.1986 0.2089

â 2.9055 3.0936 4.9543 0.3028 1.2261 5.0452 0.3151 0.4479
ĉ 0.0443 0.1286 0.2243 0.1996 0.0484 0.1240 3.1270 0.1396

50 AB ς̂ 4.9584 0.2394 0.3902 0.2516 5.7633 0.5215 0.2788 0.4319
ψ̂ 0.0088 3.4835 5.5736 3.0047 0.0597 5.7404 0.0608 5.2087
ϑ̂ 0.1610 0.2582 0.4466 0.3425 0.0636 0.1863 0.0977 0.1005

â 1.5019 0.3077 2.6488 0.3911 0.6483 1.9943 0.2573 0.6049
ĉ 0.0328 0.1029 0.1195 0.1190 0.0143 0.0950 1.7971 0.0982

100 AB ς̂ 2.7058 0.0357 0.2099 0.0192 4.0818 0.2071 0.1458 0.3040
ψ̂ 0.0034 0.3370 2.9798 1.5783 0.0205 2.2657 0.0340 3.3466
ϑ̂ 0.0771 0.0507 0.2400 0.0134 0.0301 0.0984 0.0424 0.0920

â 0.3290 0.0281 0.6336 0.1990 0.0544 0.2898 0.2019 0.4672
ĉ 0.0087 0.0304 0.0287 0.0321 0.0003 0.0467 0.7061 0.0451

200 AB ς̂ 0.6324 0.0063 0.0503 0.0262 0.2456 0.0306 0.0613 0.1173
ψ̂ 0.0004 0.0280 0.7128 0.3946 0.0009 0.3283 0.0133 1.2942
ϑ̂ 0.0186 0.0109 0.0575 0.0349 0.0004 0.0061 0.0103 0.0590

â 0.0134 0.0006 0.0088 0.0043 0.0059 0.0116 0.0087 0.0713
ĉ 0.0002 0.0003 0.0003 0.0003 0.0000 0.0089 0.0338 0.0029

500 AB ς̂ 0.0186 0.0001 0.0006 0.0003 0.0182 0.0014 0.0123 0.0074
ψ̂ 0.0000 0.0006 0.0099 0.0048 0.0001 0.0128 0.0006 0.0812
ϑ̂ 0.0002 0.0002 0.0007 0.0005 0.0000 0.0072 0.0000 0.0046

where 0 < ρ < 1, a, c, ς , ψ, ϑ > 0 and a ̸= 1.
Alternatively, using the PDF of KAP-Lomax distribution, we can derive TV aRρ(X) as follows

TV aRρ(X) =
1

1− ρ

∫ ∞

V aRρ

xg(x)dx =
1

1− ρ

∫ ∞

V aRρ

x

[ ∞∑
♭=0

∞∑
ℓ=0

v♭,ℓ(Π, 1)dℓ(x, a, ς, ϑ, 1)

]
dx

=

∞∑
♭=0

∞∑
ℓ=0

v♭,ℓ(Π, 1)
1

1− ρ

∫ ∞

V aRρ

xdℓ(x, a, ς, ϑ, 1)dx.

We have

∫ ∞

V aRρ

xdℓ(x, a, ς, ϑ, 1)dx =

∫ ∞

V aRρ

x (1 + ςx)−(ϑ+1)a(ℓ+1)[1−(1+ςx)−ϑ]dx.
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6(a) MLEs plots

0 200 400 600 800 1000

0
1

0
2

0
3

0
4

0
5

0
6

0

n

M
S

E

Plot of MSE vs n

a 
c 
ς
ψ
ϑ

6(b) MSEs plots for MLE

Figure 6. Plots of MLEs and MSEs of the KAP-Lomax for a = 1.3, c = 0.2, ς = 0.9, ψ = 0.1, ϑ = 0.3.
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7(a) LSEs plots
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Figure 7. Plots of LSEs and MSEs of the KAP-Lomax for a = 1.2, c = 0.4, ς = 0.7, ψ = 0.1, ϑ = 0.8.

Putting y = (1 + ς x)−ϑ, x = 1
ς (y

−1
ϑ − 1) and ∂x = −1

ς ϑ y
1
ϑ

+1
∂y,

where 0 < y <
(
1 + ς V aRρ

)−ϑ
, it follows that

∫ ∞

V aRρ

x (1 + ς x)−(ϑ+1)a(ℓ+1)[1−(1+ς x)−ϑ]dx =
−aℓ+1

ϑς2

∫ (1+ς V aRρ)−ϑ
0

(y
1
ϑ − 1)

ay(ℓ+1)
∂y.
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8(a) LSEs plots

0 200 400 600 800 1000

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

n

M
S

E

Plot of MSE vs n

α
c 
γ
ψ
θ

8(b) MSEs plots for LSE

Figure 8. Plots of LSEs and MSEs of the KAP-Lomax for a = 1.3, c = 0.2, ς = 0.9, ψ = 0.1, ϑ = 0.3.
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9(a) WLSEs plots
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Figure 9. Plots of WLSEs and MSEs of the KAP-Lomax for a = 1.2, c = 0.4, ς = 0.7, ψ = 0.1, ϑ = 0.8.

Using az =
∑∞

k=0
(log(a))k

k! Zk, the above expression is equal to

−aℓ+1

ϑς2

∞∑
k=0

(log(a))k

k!
(ℓ+ 1)k

∫ (1+ς V aRρ)−ϑ
0

(y
1
ϑ − 1)

yk
∂y.

=
−aℓ+1

ϑς2

∞∑
k=0

(log(a))k

k!
(ℓ+ 1)k

(
(ς V aRρ + 1)−ϑ

)1−k (
ϑ (k − 1)

((
(ς V aRρ + 1)−ϑ

)1/ϑ − 1
)
+ 1
)

(k − 1)(ϑ (k − 1)− 1)
.
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10(a) WLSEs plots
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Figure 10. Plots of WLSEs and MSEs of the KAP-Lomax for a = 1.3, c = 0.2, ς = 0.9, ψ = 0.1, ϑ = 0.3.
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11(a) CVMEs plots
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Figure 11. Plots of CVMEs and MSEs of the KAP-Lomax for a = 1.2, c = 0.4, ς = 0.7, ψ = 0.1, ϑ = 0.8.

Finally, we get

TV aRp(X) =

∞∑
♭=0

∞∑
ℓ=0

∞∑
k=0

v♭,ℓ(Π, 1)
1

1− ρ

−aℓ+1

ϑς2
(log(a))k

k!
(ℓ+ 1)k

(
(ς V aRρ + 1)−ϑ

)1−k (
ϑ (k − 1)

((
(ς V aRρ + 1)−ϑ

)1/ϑ − 1
)
+ 1
)

(k − 1)(ϑ (k − 1)− 1)
.
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12(a) CVMEs plots
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Figure 12. Plots of CVMEs and MSEs of the KAP-Lomax for a = 1.3, c = 0.2, ς = 0.9, ψ = 0.1, ϑ = 0.3.

6. Practical Illustration of the Proposed Model

We illustrate a new heavy-tailed distribution by analyzing four real data sets with one of its special models (KAP-
Lomax).
Data set 1: Home insurance data (Theft data Nagarjuna et al. [17]) represents the 120 theft claims made in a home
insurance portfolio.
Data set 2: Unemployment insurance data set represents monthly metrics on unemployment insurance from July
2008 to April 2013, including 58 observations, as reported by the Department of Labor, Licensing and Regulation,
State of Maryland, USA, which was primarily used by Afify et al. [18]. There are 21 variables in the data, and we
focus on analyzing variable number 12. The data are available at: https://catalog.data.gov/dataset/
unemployment-insurance-data-july-2008-to-april-2013.
Data set 3: Strength data represent measures for 69 single-carbon fibers (and impregnated 1000-carbon fiber tows)
Bader and Priest [35].
Data set 4: GDP growth data of 31 observations for GDP growth (% per year) of Egypt discussed by [36].

KAP-Lomax distribution is compared with some other well-known distributions, including Kum-G power
Lomax (KPL) [17], alpha power Lomax (APL) [20], Marshall-Olkin alpha power Lomax (MOAPL) [3], Kum alpha
power inverted exponential (KAPIE) [2], Kum-G power Weibull (KGPW) [31], Kum modified inverse Weibull
(KMIW) [32], Marshall-Olkin alpha power inverse Weibull (MOAPIW) [33], alpha power inverse Weibull (APIW)
[23] and Kum exponentiated inverse Rayleigh (KEIR) [34]. The following are the rival distributions’ CDFs:
(1) KPL Distribution

G(x) = 1−
[
1−

(
1−

(
λ

λ+ xβ

)a)ψ]c
, x > 0, a, β, c, λ, ψ > 0. (33)

(2) APL Distribution

G(x) =
a1−
(
1+ x

λ

)−β
− 1

a− 1
, x > 0, a, β, λ > 0. (34)
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(3) MOAPL Distribution

G(x) =
a1−
(
1+ x

λ

)−β
− 1

(a− 1)

(
ϑ+ (1−ϑ)

(a−1)

(
a1−(1+ x

λ )
−β − 1

)) , x > 0, a, β, λ, ϑ > 0. (35)

(4) KAPIE Distribution

G(x) = 1−
[
1−

(
ae

−λ
x − 1

a− 1

)ψ]c
, x > 0, a, c, λ, ψ > 0, a ̸= 1. (36)

(5) KGPW Distribution

G(x) = 1− [1− (1− e(1−(1+( xλ )
a)ϑ))ς ]c, x > 0, ς, c, a, λ, ϑ > 0. (37)

(6) KMIW Distribution

G(x) = 1− [1− e−β(
λ
x+

ϑ
xa )]c, x > 0, β, c, a, λ, ϑ > 0. (38)

(7) MOAPIW Distribution

G(x) =
(ae

−λx−β − 1)

(a− 1)ϑ− (ϑ− 1)(ae−λx
−β − 1)

, x > 0, a, β, λ, ϑ > 0. (39)

(8) APIW Distribution

G(x) =
ae

−λx−β − 1

(a− 1)
, x > 0, a, β, λ > 0, a ̸= 1. (40)

(9) KEIR Distribution
G(x) = 1− [1− (e

−ϑ
x2 )ςa]β , x > 0, ς, β, a, ϑ > 0. (41)

Some commonly used analytical measures called the Akaike Information Criterion (AIC = 2k − 2l), Bayesian
Information Criterion (BIC = k log(n)− 2l), and consistent Akaike information criterion (CAIC= 2nk

n−k−1 − 2l)
have been considered to decide which distribution fits the data better. Here l is the log-likelihood function assessed
at MLEs, n denotes the sample size, and k denotes the number of model parameters. The statistics Cramer-von
Mises (W), Anderson-Darling (A) and Kolmogorov Smirnov (KS) with corresponding p-values (p) are also applied
for testing goodness of fit.

In the practical illustration of the proposed model, Tables 4 and 5 show the MLEs of the model parameters,
whereas Tables 6 and 7 give the analytical measures of the competing models for all data sets. The results
reported that the KAP-Lomax distribution has the lowest analytical measures and highest p-values. Furthermore,
the estimated PDF, CDF, and Kaplan-Meier survival plots of the KAP-Lomax model are sketched in Figures (13-
18) for the four data sets. The plots in the figures confirm the close fitting of the KAP-Lomax. The goodness of fit
tests and all the criteria of model selection indicate that the KAP-Lomax beats all other models for all data sets.

It is evident that while modeling data, a model becomes heavier-tailed as its risk value rises. We have computed
the VaR and TVaR measures of the KAP-Lomax, KGPW, KMPLo, and NEHTW distributions using the estimated
parameter values of data sets 1 and 2. The numerical results are reported in Tables 8 and 9 and displayed graphically
in Figures 19 and 20. A model with higher risk measure values is said to have a heavy tail. From the numerical
values for the actuarial measures (VaR and TVaR) of the proposed model and other heavy-tailed distributions
provided in Tables 8 and 9, it is clear that the KAP-Lomax distribution has a heavier tail than KGPW, KMPLo, and
NEHTW distributions and is a good candidate for modeling heavy-tailed insurance data sets.
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Table 4. The values of the MLEs using data set 1 & data set 2.

Models â β̂ ĉ ς̂ λ̂ ψ̂ ϑ̂

Data set 1

KAP-Lomax 17.8899 - 3.8174 0.0038 - 1.1087 0.5007
KPL 2.0004 0.2402 13.8810 - 6.5333 7.8513 -

KGPW 0.3573 - 4.0192 6.1828 6.8133 - 0.4594
MOAPL 9.0375 1.0022 - - 14.2705 - 19.8844
KMIW 0.3352 3.9199 5.4181 - 2.4977 - 4.9520

MOAPIW 8.8117 0.9227 - - 14.6178 - 11.4620
APIW 17.0288 0.6817 - - 21.2967 - -
KAPIE 160.533 - 0.6611 - 93.2676 0.5281 -

APL 19.9285 0.5102 - - 22.0490 - -
KEIR 7.9914 0.1188 - 5.7977 - - 0.2247

Data set 2

KAP-Lomax 12.8144 - 1.6655 0.0299 - 20.0383 3.6878
KPL 1.2330 0.9388 9.0901 - 12.0027 17.9278 -

KGPW 1.4404 - 2.4876 10.0530 11.1282 - 0.4215
MOAPL 20.6517 4.4780 - - 39.1408 - 19.3499
KMIW 0.9158 11.3262 12.9967 - 2.5875 - 10.0618

MOAPIW 14.4257 1.8008 - - 19.9610 - 24.2016
APIW 15.6162 1.0901 - - 21.9568 - -
KAPIE 13.6907 - 13.2632 - 4.5774 15.5154 -

APL 17.4612 1.7587 - - 37.1871 - -
KEIR 7.9004 2.2513 - 22.1024 - - 29.4476
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Figure 13. Estimated PDFs of KAP-Lomax distribution for data sets 1 and 2.
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Table 5. The values of the MLEs using data set 3 & data set 4.

Models â β̂ ĉ ς̂ λ̂ ψ̂ ϑ̂

Data set 3

KAP-Lomax 14.8212 - 8.0254 0.1124 - 2.6468 7.9480
KPL 2.5731 2.2131 5.1902 - 6.2256 1.5795 -

KGPW 3.9477 - 4.0079 0.6661 4.5197 - 6.0166
MOAPL 5.8668 15.1809 - - 4.6536 - 24.0247
KMIW 0.8147 1.4510 7.5829 - 1.4567 - 3.5133

MOAPIW 11.5529 1.5259 - - 0.0593 - 8.1716
APIW 14.3146 1.0787 - - 0.3446 - -
KAPIE 18.9568 - 4.4446 0.1803 4.4533 -

APL 20.9860 14.4032 - - 10.4985 - -
KEIR 4.7436 0.2069 - 0.0772 - - 0.0382

Data set 4

KAP-Lomax 5.2636 - 2.9968 0.1112 - 4.9699 4.3846
KPL 3.1411 0.9235 4.2784 - 6.7270 7.8441 -

KGPW 1.0421 - 0.6819 3.5336 14.2816 - 4.0034
MOAPL 12.5092 10.3995 - - 10.2503 - 19.1395
KMIW 1.5412 2.4521 0.6086 - 1.3379 - 4.6857

MOAPIW 9.6277 3.0459 - - 4.2696 - 9.3924
APIW 20.7758 2.2517 - - 7.1376 - -
KAPIE 15.7300 - 7.4319 - 0.2571 14.2067 -

APL 13.3608 9.0779 - - 23.7491 - -
KEIR 1.9570 1.1229 - 1.8186 - - 3.7978
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Figure 14. Kaplan-Meier survival and Estimated CDF of KAP-Lomax for data set 1.
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Table 6. Analytical measures of KAP-Lomax and other competitive using data set 1 & data set 2.

Models −2l(.) AIC BIC CAIC W A KS p

Data set 1

KAP-Lomax 1012.395 2034.789 2048.727 2035.316 0.08043 0.40371 0.06063 0.7697
KPL 1012.631 2035.262 2049.200 2035.788 0.08567 0.44812 0.06067 0.7690

KGPW 1012.986 2035.972 2049.91 2036.498 0.09499 0.48340 0.06629 0.6673
MOAPL 1015.969 2039.938 2051.088 2040.286 38.3380 232.6436 0.83409 2.2e-16
KMIW 1016.36 2042.72 2056.658 2043.247 0.17470 0.90859 0.11221 0.0974

MOAPIW 1019.088 2046.177 2057.327 2046.524 0.17349 0.92550 0.10439 0.1462
APIW 1027.855 2061.71 2070.072 2061.917 0.35811 2.00469 0.11659 0.07661
KAPIE 1033.676 2075.351 2086.501 2075.699 0.49956 2.85248 0.19207 0.00028

APL 1042.307 2090.613 2098.976 2090.82 0.29323 1.58075 0.20065 0.00012
KEIR 1099.913 2207.826 2218.976 2208.174 1.58132 9.23647 0.3402 1.728e-12

Data set 2

KAP-Lomax 265.8054 541.6108 551.913 542.7647 0.14600 0.81043 0.11532 0.4235
KAPIE 268.2448 544.4895 552.7313 545.2442 0.17533 0.97139 0.12332 0.341
KEIR 268.7409 545.4817 553.7235 546.2364 0.20700 1.18970 0.1422 0.1914

KGPW 267.9163 545.8326 556.1348 546.9864 0.21648 1.17109 0.23894 0.0026
KMIW 267.9986 545.9973 556.2995 547.1511 0.20439 1.10553 0.13118 0.271
KPL 268.9099 547.8198 558.122 548.9736 0.20719 1.12167 0.11719 0.4032

MOAPL 278.002 564.004 572.2457 564.7587 18.15555 114.6945 0.96342 2.2e-16
MOAPIW 295.1993 598.3986 606.6404 599.1533 0.17771 0.96570 0.32781 7.714e-06

APL 306.882 619.764 625.9454 620.2085 0.19814 1.07392 0.35934 6.252e-07
APIW 309.1480 624.2959 630.4773 624.7404 0.16909 0.92228 0.32585 8.951e-06
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15(a) Kaplan-Meier survival plot
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Figure 15. Kaplan-Meier survival and Estimated CDF of KAP-Lomax for data set 2.
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Table 7. Analytical measures of KAP-Lomax and other competitive using data set 3 & data set 4.

Models −2l(.) AIC BIC CAIC W A KS p

Data set 3

KAP-Lomax 54.701 119.402 130.573 120.355 0.1033 0.7267 0.0771 0.8054
KPL 56.107 122.214 133.384 123.166 0.1237 0.8646 0.0814 0.7493

KGPW 59.303 127.607 138.778 128.56 0.1831 0.9103 0.0826 0.6333
MOAPL 61.201 129.112 142.542 131.235 0.2105 0.9314 0.0907 0.5492
KMIW 78.814 167.628 178.799 168.581 0.6518 3.9757 0.1817 0.02099

MOAPIW 100.208 208.416 217.353 209.041 1.2004 6.9448 0.2828 3.198e-05
APIW 110.753 227.506 234.208 227.875 1.5395 8.6172 0.2863 2.439e-05
KAPIE 90.827 189.654 198.590 190.279 1.0482 6.1159 0.2158 0.003229

APL 74.703 155.407 162.109 155.776 0.19628 1.3044 0.2692 9.04e-05
KEIR 160.468 328.937 337.873 329.562 3.0225 15.5482 0.4756 5.489e-14

Data set 4

KAP-Lomax 66.212 142.424 149.594 144.824 0.0248 0.2007 0.0543 0.9999
KAPIE 68.753 145.506 151.242 147.044 0.0804 0.5707 0.1214 0.7052
KEIR 74.936 157.873 163.609 159.412 0.2435 1.5741 0.2044 0.1296

KGPW 66.502 143.172 151.178 146.814 0.0415 0.2618 0.0916 0.9742
KMIW 67.892 145.785 152.955 148.185 0.1255 0.8404 0.1520 0.4282
KPL 66.426 142.852 150.022 145.252 0.0306 0.2414 0.0806 0.9778

MOAPL 67.102 145.665 153.163 147.894 0.0568 0.2869 0.1324 3.331e-16
MOAPIW 68.743 145.486 151.222 147.025 0.0735 0.5362 0.1258 0.6643

APL 75.051 156.102 160.404 156.991 0.0187 0.1608 0.2491 0.03502
APIW 71.417 148.834 153.136 149.723 0.1408 0.9459 0.1496 0.4482
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Figure 16. Estimated PDFs of KAP-Lomax distribution for data sets 3 and 4.
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Figure 17. Kaplan-Meier survival and Estimated CDF of KAP-Lomax for data set 3.
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18(a) Kaplan-Meier survival plot
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Figure 18. Kaplan-Meier survival and Estimated CDF of KAP-Lomax for data set 4.
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Table 8. Results for the actuarial measures for data set 1.

Models Par. Level of sig VaR TVaR

â = 17.8899 .700 1677.057 6501.807
ĉ = 3.8174 .750 2054.646 7430.88

KAP-Lomax ς̂ = 0.0038 .800 2580.921 8713.156
ψ̂ = 1.1087 .850 3378.910 10634.58
ϑ̂ = 0.5007 .900 4776.742 13951.08

.950 8133.276 21754.62

.975 13201.138 33301.71

.990 23929.533 57303.88

ς̂ = 5.5622 .700 1321.159 4692.764
ĉ = 4.0192 .750 1651.513 5335.712

KGPW â = 0.3573 .800 6202.705 5547.104
λ̂ = 6.8133 .850 2802.546 7459.937
ϑ̂ = 0.4594 .900 3982.853 9524.003

.950 6648.923 13957.72

.975 10297.091 19741.01

.990 17003.221 29927.28

α̂ = 0.7442 .700 128.2814 2791.397
KMPLo β̂ = 0.5597 .750 122.5606 3353.100

λ̂ = 28.2418 .800 117.2805 4195.351
.850 112.3947 5598.733
.900 107.8632 8404.996
.950 103.6507 16822.87
.975 101.6544 32057.99
.990 100.4897 41672.88

α̂ = 0.7181 .700 74.51406 189.0991
NEHTW β̂ = 7.4567 .750 91.49947 210.3863

θ̂ = 0.0052 .800 113.62808 237.4741
.850 174.14560 273.9729
.900 290.59615 328.2158
.950 478.23049 427.849
.975 774.97520 535.3441
.990 985.08940 688.2603
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Table 9. Results for the actuarial measures for data set 2.

Models Par. Level of sig VaR TVaR

â = 17.8899 .700 77.60296 104.5675
ĉ = 3.8174 .750 82.24932 109.5091

KAP-Lomax ς̂ = 0.0038 .800 87.90038 115.6437
ψ̂ = 1.1087 .850 95.20923 123.7334
ϑ̂ = 0.5007 .900 105.69642 135.5623

.950 124.51739 157.2066

.975 144.91706 181.0136

.990 175.01004 216.4705

ς̂ = 5.5622 .700 80.24081 104.3642
ĉ = 4.0192 .750 84.97115 108.7274

KGPW â = 0.3573 .800 90.56114 113.9897
λ̂ = 6.8133 .850 97.53779 120.6862
ϑ̂ = 0.4594 .900 107.08347 130.0237

.950 122.99248 145.893

.975 138.72625 161.8248

.990 159.62274 183.1913

α̂ = 0.7235 .700 13.94220 58.46644
KMPLo β̂ = 0.9156 .750 14.03639 70.09191

λ̂ = 32.3267 .800 14.19679 87.4700
.850 14.53106 106.2412
.900 14.88462 116.2214
.950 15.25918 123.7864
.975 15.65672 135.7659
.990 16.07942 152.7621

α̂ = 0.0041 .700 13.62591 18.39873
NEHTW β̂ = 20.8835 .750 14.68742 19.24919

θ̂ = 41.5084 .800 15.90025 20.24189
.850 17.35183 21.45562
.900 19.23105 23.06224
.950 22.11224 25.58821
.975 24.69207 27.90114
.990 27.77287 30.71215

Stat., Optim. Inf. Comput. Vol. x, Month 202x



W. FIKRE, H.S. KAPOOR AND K. JAIN 27

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

Significance level

V
a

R

VaR_KAP−Lomax
VaR_KGPW
VaR_KMPLo
VaR_NEHTW

19(a) VaR plots

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
1

0
0

0
0

3
0

0
0

0
5

0
0

0
0

Significance level

T
V

a
R

TVaR_KAP−Lomax
TVaR_KGPW
TVaR_KMPLo
TVaR_NEHTW

19(b) TVaR plots

Figure 19. Graphical sketching of VaR and TVaR for the home insurance data.
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Figure 20. Graphical sketching of VaR and TVaR for the unemployment insurance data.
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7. Conclusion

In this paper, a KAPT family has been introduced. Introducing the new family aims to improve the distributional
flexibility of the fundamental/modified distributions for modeling data. The modified version of the Lomax model,
the KAP-Lomax, is studied in depth. Four estimation methods are used to estimate the KAP-Lomax model
parameters. The performance of the estimates is assessed using a simulation study. Four real data sets related
to insurance, finance, and reliability have been analyzed. The heavy-tailed characteristics of the KAP-Lomax
using KGPW, KMPLo, and NEHTW distributions are examined through actuarial measures for data sets 1 and
2. The Wolfram Mathematica software version 12.0 and packages such as AdequacyModel, rootSolve, uniroot,
optim, nlminb, L-BFGS-B, ggplot2 from R software are used for numerical implementation. The performance of
KAP-Lomax has been compared with nine other well-known competitors. The behavior of the tail using actuarial
measures shows that the KAP-Lomax outperforms. The proposed method is recommended to have extensive
applications in the actuarial sciences, insurance industries, financial sectors, reliability, and other related areas.
The suggested family is also expected to be an addition to the construction of widely applicable probability models.
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