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Abstract In this study, we introduce two methods for estimation of the unknown parameters of the Odd Lomax
Exponential(OLE) distribution are Least Squares Estimation (LSE) and Maximum Likelihood Estimation (MLE).
Some statistical functions and mathematical properties were derived for which investigated from distribution’s
flexibility . Through Monte Carlo simulations we investigated the performance of the estimate for these parameters,
and us comparison these estimations in terms of bias and mean squared error (MSE) for various sample sizes and
four different scenarios of initial parameter values for two methods. Our analysis revealed that least square estimation
consistently outperformed on MLE, yielding lower MSE values. Additionally, both two methods demonstrated
decreasing in criteria values with increasing sample size, indicating improved accuracy for larger datasets. To evaluate
the applicability of the OLE distribution, we applied it to two types of dataset in the reliability engineering field. All
computational and graphics in this work were performed in a Matlab,23b code.
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1. Introduction

Distributions provide us with high flexibility in building structural statistical models for real phenomena,
which is often difficult. Additionally, these mixed distributions are easy and flexible to deals with new
applications, and their purpose is to develop statistical properties such as the probability density function,
cumulative distribution function, survival function, hazard rate function, and moments, to be compatible
with other fields of knowledge. Statistical distributions have played an important role in theoretical statistics
and its applications. Our objective in this paper was to introduce a new probability distribution family called
the Odd Lomax Exponential (OLE) distribution, which is a mixture of the Lomax and Odd Exponential
distributions. This distribution is also very useful in describing real data in many fields. There are many
researchers who have developed various distributions in this filed, and they working in this area. The
article [16] introduced the Generalized Odd Lomax-G (GOL−G) family, a flexible family of probability
distributions that can be used to model various types of data. It is formed by adding three additional
parameters to any continuous baseline distribution. [26] proposed four different methods for estimating the
parameters of the Exponentialed Lomax (EL) distribution. He conducted a numerical study to compare
these methods and identify the best one for estimating the distribution’s parameters. [31] introduced a
new probability distribution called the Weibull-Lomax distribution. This distribution is a combination of
the Weibull and Lomax distributions, resulting in a flexible model with various shapes for the hazard
rate function. [24] introduces an estimate of the parameters of the Lomax distribution when the available
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observations are described by fuzzy information. Sometimes, information about an underlying system might
be imprecise, which can be represented using fuzzy sets. [7] introduced a new class of model called the
Exponentialed Weibull Lomax, they suggested three procedures for estimating the parameters of this new
model,and in an applied, they compared it with several other new models. [3] proposed a new family of
continuous distributions called the odd Lomax-G class, with four special models. They used the maximum
likelihood and least squares methods to estimate the model parameters. [9] presented a new modification
of the Lomax distribution consisting of two parameters called Lomax exponential Distribution(LE) and
he was introduced the statistical properties for the LE distribution are obtained including moments,
Furthermore, asymptotic confidence intervals of the parameters, based on maximum likelihood estimation
method. [17] introduced a new four-parameter distribution, called the truncated Weibull power Lomax
distribution(TWPL). [18] introduced a compound continuous distribution with four parameters for modeling
life data, titled the odd generalized exponential inverse Lomax distribution,in this paper, they presented the
distribution in detail, Simulation was used to verify the behavior of the proposed distribution and to use the
possibility estimation method for verifying correct parameter estimation. [8] studied a new version of the
Poisson Lomax distribution. The probability density function of this new distribution expresses a mixture of
Lomax densities. They demonstrated that the failure rate function of the new model is steadily increasing,
The new model provided a good and appropriate combination. [2] introduced new probability distribution
that is mixed between Lomax distribution and Rayleigh distribution. [14] proposed the Exponential Flexible
Lomax Distribution and studied some of its basic statistical properties to demonstrate its flexibility. [36]
proposed a new Odd Lomax Exponential distribution, the structural properties of this model were derived and
studied, and three applications were presented to illustrate the model. [28] suggested a univariate continuous
probability distribution having four parameters named odd Lomax generalized exponential distribution. [22]
proposed of a new extension to a new generalized family of continuous distributions from type Odd Lomax-
G(OLG) derived based on the T −X family and the Lomax distribution. [32] studied a new exponentialized
Generalized Odd Lomax Exponential distribution, using another formula, the Odd Lomax Generator of
the exponential distribution. [27] they studies The Lomax distribution, and by properly redefining its
scale parameter, it was applied to wireless fading modeling, Relevant performance indicators were derived,
including the amount of fading, channel capacity, outage probability, and error rate. [29] introduces a new
Beta Exponentialed Lomax –Expoential distribution. [33] introduced four parameter continuous distribution
using Odd Lomax Generator and exponential distribution. [15] Odd Lomax-Dagum distribution has been
studied for Some characteristics of the distribution such as the quantile and hazard functions. [11] proposed
the application of the Odd Lomax Log-Logistic distribution, adding flexibility and allowing it to capture
all characteristics by using the T −X class of distribution. The aim of this paper is to explain the method
of deriving the odd exponential Lomax distribution in detail, as well as its structural properties and two
methods for estimating its parameters, and we considered this through the following: In the section 1, we
review the relevant literature on the research topic. In the second 2, we explained the method of deriving
the probability density function and the cumulative distribution function and verifying the validity property
as well as some special model additional, the survival function and the failure rate function. The section 3,
introduced some mathematical properties, which include useful expansion, moments, and some statistical
measurements. in section 4, consider two methods for estimating distribution parameters. the section 5, we
presented a study of simulation experiments for different samples. In the section 6, we studied two sets of
real data related to reliability engineering, in addition, conclusions reached by the research.

2. Odd Lomax Exponential Distribution

In this section, we introduce some characteristic properties of Odd Lomax Exponential (OLE) distribution,
In addition, we derived The cumulative density function, probability density function, Survival function and
Hazard function and plots the shapes of the distribution. The formula for mixing two distributions by the
inserting the CDF of baseline distribution within the limits of integration of the other distribution and it
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2 ESTIMATING THE PARAMETERS OF THE ODD LOMAX EXPONENTIAL DISTRIBUTION

called Lomax-X family.
Let X has an exponential distribution with parameter 1/b, And we interested in the cdf and pdf of this
distribution as follows[20].

G(x) = 1− exp(
−x

b
). (1)

And g(x) = (
1

b
)exp(

−x

b
). (2)

where (x > 0) , (b > 0)is the scale parameter,[20]. Also, a random variable X is said to have Lomax
distribution if it has cdf and pdf are given by [24]

F (x) = 1− (1 + λx)−α (3)

And f(x) = αλ(1 + λx)−(α+1) (4)

where (x > 0) and (α, λ > 0) are the shape and scale parameters, respectively,[2].
Now, The cdf of OLE distribution can be obtained by using the following, [3], [25] and [36] :

F (x;α, λ, φ) =

∫ W (G(x,φ))

0

f(x)dx (5)

F (x;α, λ, φ) =

∫ W (G(x,φ))

0

αλ(1 + λx)−(α+1) dx

= − (1 + λx)
−α

∣∣∣∣W (G(x,φ))

0

= −
(
[1 + λW (G(x, φ))]

−α − 1
)

F (x;α, λ, φ) = 1− (1 + λW (G(x, φ)))
(−α)

(6)

where W (G(x), φ) = G(x,φ)
1−G(x,φ) ) is the Odd function [11],[19]. we obtain,

F (x;α, λ, φ) = 1−
(
1 + λ

G(x, φ)

1−G(x, φ)

)−α

(7)

We know
(
sincef(x) = d

dxF (x)
)
, We can obtained the probability density function of the OLE distribution

as following :

f(x;α, λ, φ) = α

(
1 + λ

G(x, φ)

1−G(x, φ)

)−(α+1)
d

dx

(
1 + λ

G(x, φ)

1−G(x, φ)

)
,

f(x;α, λ, φ) = α

(
1 + λ

G(x, φ)

1−G(x, φ)

)−(α+1)(
0 + λ

g(x, φ)

(1−G(x, φ))2

)
,

f(x;α, λ, φ) =
αλg(x, φ)

(1−G(x, φ))2

(
1 + λ

G(x, φ)

1−G(x, φ)

)−(α+1)

. (8)

when G(x, φ) and g(x, φ) are represented cdf and pdf of the baseline(exponential)distribution in equations
(1) , (2) respectively,[23],[29];[36] We obtained following:

F (x;α, λ, φ) = 1−

(
1 + λ

1− exp(−x
φ )

1− (1− exp(−x
φ ))

)−α
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F (x;α, λ, φ) = 1−
(
1 + λ(exp(

x

φ
)− 1)

)−α

(9)

and, we can find the pdf from cdf (sincef(x;α, λ, φ) =) = d
dxF (x;α, λ, φ) as follows:

f(x;α, λ, b) =
αλ 1

φ exp
(
− x

φ

)
(
1−

(
1− exp

(
− x

φ

)))2
1 + λ

1− exp
(
− x

φ

)
1−

(
1− exp

(
− x

φ

))
−α

then,

f(x;α, λ, φ) =
αλ

φ
exp(

x

φ
)

(
1 + λ(exp(

x

φ
)− 1)

)−(α+1)

(10)

where (x > 0) and λ, φ > 0 are two scale parameters, And α > 0 is the shape parameter.

2.1. Validity of the Model

In this subsection, a random variable which it has the probability distribution is achieve the integral in
equation (11) as following[11] : ∫ ∞

−∞
f(x) dx = 1 (11)

Proof. By substituting equation (11),∫ ∞

0

f(x;α, λ, b) dx =

∫ ∞

0

αλ

b
exp

(x
b

)(
1 + λ

(
exp

(x
b

)
− 1
))−(α+1)

dx. (12)

Now

Let : y = exp(
x

b
)− 1 ⇒ x = b ln(y + 1) ⇒ dx =

b

y + 1
dy∫ ∞

0

αλ

b
(y + 1) (1 + λy)

−(α+1) b

y + 1
dy = 1 (13)

−1

(1 + λy)α

∣∣∣∣∞
0

= 1 ⇒ − [0− 1] = 1.

the Figures (1) and (2) represents pdf and cdf of the OLE distribution, respectively. .
.

2.2. Some Special Model

Some of the sub-model of the OLE distribution are given in the section2 (10) :
1.When α = 1, we obtain the pdf as following :

f(x;λ, b) =
λ

b
exp(

x

b
)
(
1 + λ(exp(

x

b
)− 1)

)−(2)
(14)

If λ = 1, then

f(x; b) =
1

b
exp(

−x

b
) (15)

The OLE distribution will be reduce to Standard exponential distribution, [20]with the parameter (b).
2.When b = 1, We obtain the pdf as following :

f(x;α, λ) = αλ exp(x)
(
1 + λ(exp(x)− 1)

)−(α+1)
(16)
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Figure 1. The Probability Density Function of the OLE Distribution
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Figure 2. The Cumulative Distribution Function of the OLE Distribution
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If λ = 1, then

f(x;α) = α exp(x) (1 + exp(x)− 1)
−(α+1)

f(x;α) = α exp(−αx) for α > 0 (17)

The OLE distribution will be reduce to Negative exponential distribution (SeeDeffinition(12), pp.112, [20]),
with parameter ( 1

α ).
3.When α = b = 1, we obtain,

f(x;λ) = λ exp(x)
(
1 + λ(exp(x)− 1)

)−2
. (18)

.

2.3. Survival function

In this subsection, we have derived the survival function S(x) of the OLE distribution by using cdf , it can
be written as :

S(x;α, λ, b) = 1− FX(x;α, λ, φ) (19)

by substituting equation (9) in to (19). hence, [4].

S(x;α, λ, b) = 1−

1−(1 + λ
1− exp

(
−x

b

)
1−

(
1− exp

(
−x

b

)))−α
 ,

=

(
1 + λ

1− exp
(
−x

b

)
1−

(
1− exp

(
−x

b

)))−α

.

We obtain,

S(x;α, λ, b) =
(
1 + λ

(
exp

(x
b

)
− 1
))−α

. (20)

.

2.4. Hazard function

The hazard function of the OLE distribution is derived from this definition:

h(x;α, λ, b) =
fX(x;α, λ, φ)

1− FX(x;α, λ, φ)
=

fX(x;α, λ, φ)

S(x;α, λ, b)
(21)

by substituting ((9)),((10)), into the ((21)). [12],[4].hence,

h(x;α, λ, b) =
1(

1 + λ(exp(xb )− 1)
)−α

αλ

b
exp(

x

b
)
(
1 + λ(exp(

x

b
)− 1)

)−(α+1)

We obtain,

h(x;α, λ, b) =
αλ

b
exp(

x

b
)
(
1 + λ(exp(

x

b
)− 1)

)−1
(22)

where : FX(x) and fX(x) are the cdf and pdf of OLE distribution in ((9)),((10)),respectively. .
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Figure 3. The Survival Function
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3. Some Mathematical Properties

In this section, we will present five subsections to obtain simplest useful expansion of pdf , rth moments,
skewness and kurtosis, the mode; the median and quantile:

3.1. Useful Expansion

The expansion for pdf of the OLE distribution are derived, the pdf in equation (10), [34] which is : The
expansion for pdf of the OLE distribution are derived, the pdf in equation (10) which is :

f(x;α, λ, b) =
αλ 1

b exp
(
−x

b

)(
1−

(
1− exp

(
−x

b

)))2
(
1 + λ

1− exp
(
−x

b

)
1−

(
1− exp

(
−x

b

)))−(α+1)

(23)

In other words,

f(x;α, λ, b) = αλ
1

b
exp

(x
b

)(
1− λ

(
1− exp

(x
b

)))−(α+1)

.

If we putting,

z = 1− exp
(x
b

)
⇒ 1− z = exp

(x
b

)
, then

f(z;α, λ, b) = αλ
1

b
(1− z) (1− λz)

−(α+1)
, (24)

Consider the power series as following [8],[34]:

(1− λz)
−(α+1)

=

∞∑
i=0

Γ(α+ 1 + i)

i!Γ(α+ 1)
(λz)

i
for α > 0 is real non-integer and |λz| < 1

Then, by applying the power series for the exponential function in equation (24) ,We obtain

f(z;α, λ, b) = αλ
1

b
(1− z)

∞∑
i=0

(
α+ i

i

)
(λz)

i
(25)

We rewritten the pdf by z = 1− exp(xb ) yield,

f(x;α, λ, b) = αλ
1

b
exp(

x

b
)

∞∑
i=0

λi

(
α+ i

i

)(
1− exp(

x

b
)
)i

Also, It is know that series expansion, in [1],[7] which is:(
1− exp(

x

b
)
)i

=

∞∑
j=0

−1j

j!

Γ(1 + i)

Γ(i+ 1− j)

(
exp(

x

b
)
)j

for i > 0

By applying the last term of the expansion series to the equation (25) yield,

f(x;α, λ, b) = αλ
1

b
exp(

x

b
)

∞∑
i=0

λi

(
α+ i

i

) ∞∑
j=0

−1j

j!

Γ(i+ 1)

Γ(i+ 1− j)

(
exp(

x

b
)
)j

, (26)

Now we obtain,

f(x;α, λ, b) = αλ
1

b
exp(

x

b
)

∞∑
i,j=0

λi(−1)j
(
α+ i

i

)(
i

j

)(
exp(

x

b
)
)j

. (27)
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8 ESTIMATING THE PARAMETERS OF THE ODD LOMAX EXPONENTIAL DISTRIBUTION

3.2. The Moments

The rth moment of the OLE distribution [4],[13]and [26] as following:

E (xr) =

∫ ∞

0

xrdx, (28)

E (xr) =

∫ ∞

0

αλ
1

b
xr exp(

x

b
)

( ∞∑
i,j=0

λi(−1)j
(
α+ i

i

)(
i

j

)(
exp(

x

b
)
)j)

dx,

E (xr) = αλ
1

b

∞∑
i,j=0

(
α+ i

i

)(
i

j

)
(−1)jλi

(∫ ∞

0

xr exp(
x

b
)
(
exp(

x

b
)
)j

dx

)
, (29)

Where

∫ ∞

0

xr exp
(x
b

)(
exp

(x
b

))j
dx =

1(
j+1
b

)r+1Γ(r + 1).

then,

E (xr) = αλ
1

b

∞∑
i,j=0

(
α+ i

i

)(
i

j

)
(−1)jλi br+1

(j + 1)r+1
Γ(r + 1), ∀r = 1, 2, ... (30)

E (xr) = αλ

∞∑
i,j=0

(
i

j

)
λi

(
α+i
i

)
(−1)jbr

(j + 1)r+1
Γ(r + 1). where Vi,j =

(
α+i
i

)
(−1)jbr

(j + 1)r+1

E (xr) = αλ

∞∑
i,j=0

(
i

j

)
λi Vi,j Γ(r + 1) (31)

If r = 1 then,

µ1
′ = E

(
x1
)
= αλ

∞∑
i,j=0

(
i

j

)
λi

(
α+i
i

)
(−1)jb

(j + 1)2
Γ(2). (32)

And,If r = 2 then,

µ2
′ = E

(
x2
)
= αλ

∞∑
i,j=0

(
i

j

)
λi

(
α+i
i

)
(−1)jb2

(j + 1)3
Γ(3). (33)

and from equations (32)and (33) we obtain,

V ar(x) = µ2
′ − (µ1

′)
2

(34)

Additionally, the moment generating function of the OLE distribution [36] can be written by ;

M (t)
r =

∞∑
r=1

tr

r!
E (xr) = αλ

∞∑
i,j=0

∞∑
r=1

tr

r!

(
i

j

)
λiVi,jΓ(r + 1),

M (t)
r = αλ

∞∑
i,j=0

∞∑
r=1

tr
(
i

j

)
λiVi,j . (35)

(To find the order statistics, for more details See [23] )
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3.3. Skewness and Kurtosis

The Bowley’s quanlite skewness [18] as following,

Sk =
q(0.75) − 2q(0.5) + q(0.25)

q(0.75) − q(0.25)
. (36)

And the Octiles based kurtosis [33] defined as following:

Ku =
q(0.875) − q(0.625) + q(0.375) − q(0.125)

q(0.75) − q(0.25)
. (37)

3.4. The Mode

The mode function can be found by using survival and hazard functions, we know that the mode is X − value
which corresponding first derivative to equal zero (f ′(x) = 0):

d

dx

(
αλ

b
exp(

x

b
)
(
1 + λ(exp(

x

b
)− 1)

)−(α+1)
)

= 0, (38)

d

dx

(
αλ

b
exp

(x
b

)(
1 + λ

(
exp

(x
b

)
− 1
))−1

·
(
1 + λ

(
exp

(x
b

)
− 1
))−α

)
= 0, (39)

where, h(x;α, λ, b) =
αλ

b
exp(

x

b
)
(
1 + λ(exp(

x

b
)− 1)

)−1
and S(x;α, λ, b) =

(
1 + λ

(
exp

(x
b

)
− 1
))−α

Since,
d

dx
(h(x;α, λ, b) ∗ S(x;α, λ, b)) = 0,

h′(x;α, λ, b) ∗ S(x;α, λ, b) + (h(x;α, λ, b))
2
S(x;α, λ, b) = 0,

then, (
h′(x;α, λ, b) + h2(x;α, λ, b)

)
· S(x;α, λ, b) = 0. (40)

from (39) and (40) we obtain,

[λb
(
1− exp(xb ) + λ

(
exp(xb )− 1

))
+ αλ

b exp(xb )](
1 + λ

(
exp(xb )− 1

)) αλ

b
exp(

x

b
)
(
1 + λ(exp(

x

b
)− 1)

)−(α+1)

= 0 (41)

3.5. Quantile and Median

The quantile and median of theOLE distribution can be to derived by using the explicit formula[21] following:

F (xq) = q 0 < q < 1 (42)

and the cdf of the OLE distribution is given by equation (9), We can be that find the quantile [4] as follows,

1−
(
1 + λ

(
exp(

x

b
)− 1

))−α

= q(
1 + λ

(
exp(

x

b
)− 1

))−α

= 1− q

1 + λ
(
exp(

x

b
)− 1

)
= (1− q)

−1
α

λ
(
exp(

x

b
)− 1

)
= (1− q)

−1
α − 1

exp(
x

b
) =

(1− q)
−1
α − 1

λ
+ 1
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Therefore,

xq = b ∗ ln

(
(1− q)

−( 1
α ) − 1

λ
+ 1

)
. (43)

by setting q = 1
2 ,

xq = b ∗ ln

(1− 1
2

)−( 1
α ) − 1

λ
+ 1

 , (44)

The median of the OLE distribution can be obtain by setting q = 1
2 in equation (44),

Med = xq = b ∗ ln

( 12)−( 1
α ) − 1

λ
+ 1

 . (45)

4. Estimation Methods

In this section, we introduce two estimate methods of parameters of the OLE distribution,to compare the
best method for finding the best fit to the distribution curve in our experimental simulation.

4.1. Maximum Likelihood Estimation (MLE)

A random sample X is taken from the OLE distribution with probability density function (pdf) [4], [13]
given as :

f(x;α, λ, b) =
αλ

b
exp(

x

b
)
(
1 + λ

(
exp(

x

b
)− 1

))−(α+1)

. (46)

By definition, the likelihood function of OLE is given by [13]:

f(x;α, λ, b) =

(
αλ

b

)n

exp

(∑n
i=1 xi

b

) n∏
i=1

[
1 + λ

(
exp

(xi

b

)
− 1
)]−(α+1)

(47)

and the log-likelihood function [35] is given by:

∂L

∂b
=

−n

b
−
∑n

i=1 xi

b2
+

λ(α+ 1)

b2

(
n∑

i=1

xi ∗ exp(xi

b )

1 + λ
(
exp(xi

b )− 1
)) = 0. (48)

∂L

∂α
=

n

α
−

n∑
i=1

ln
(
1 + λ

(
exp(

xi

b
)− 1

))
= 0. (49)

∂L

∂λ
=

n

λ
− (α+ 1)

(
n∑

i=1

exp(xi

b )− 1

1 + λ
(
exp(xi

b )− 1
)) = 0. (50)

By solving equations (48),(49);(50). We can obtain the MLE for OLE distribution, The parameters
α, λ and b, represented as αmle, λmleand bmle, respectively. The Newton-Raphson algorithm has use
an iterative procedure to solve numerically.
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4.2. Least Square Estimation (LSE)

Initially, the least square estimation were introduced to estimate the parameters of OLE distribution,,[4][10];
[30] This technique has been used to estimate unknown parameters of the OLE distribution by minimizing
the concerning parameters α, λ and b, represented, which is :

U(x; k, λ, b) =

n∑
i=1

(
F (xi)−

i

n+ 1

)2

=

n∑
i=1

([
1−

(
1 + λ(exp(

xi

b
)− 1)

)−α]
− i

n+ 1

)2

. (51)

The parameter’s values are obtained from the least square method by partial differentiation in (51) concerning
corresponding parameters, [5].

Let : ξi = exp(
xi

b
), νi = exp(

xi

b
)− 1; τi = 1 + λ

(
exp(

xi

b
)− 1

)
∂U

∂α
= 2

n∑
i=1

τ−α
i ln 1 + λνi

(
1− τ−α

i − i

n+ 1

)
, (52)

∂U

∂λ
= 2α

n∑
i=1

νiτ
−(α+1)
i

(
1− τ−α

i − i

n+ 1

)
, (53)

∂U

∂b
=

−2αλ

b2
(

n∑
i=1

xiξiτ
−(α+1)
i

(
1 + τ−α

i − i

n+ 1

)
. (54)

We solve non-linear equations ∂U
∂α = 0, ∂U

∂λ = 0; ∂U
∂b = 0. to estimate the unknown parameters of the proposed

distribution by minimizing the function concerning parameters α, λ and b.

5. Simulation Experiments

The Monte Carlo simulations were conducted on various datasets, and we estimated the parameters
of the Odd-Lomax-Exponential (OLE) distribution using maximum likelihood estimation and least squares
estimation methods. The bias (Bias) and mean square error (MSE) were calculated for different random
sample sizes (n = 20, 50, 80, 120, 160, 200, 300, 400, 500), which were generated with a replication number

of L = 1000, and for different parameters
(
θ̂ = [α̂, λ̂; b̂]

)
Too. Four different scenarios were performed

with various correct initial values for cases (α = [2.0, 1.5, 1.5, 1.6], λ = [0.5, 1.0, 0.8, 1.8]; b = [0.5, 0.5, 1.0, 0.2]).
These simulation experiments aimed to discover the behavior of the densities function and compare the two
estimation methods (MLE) and (LSE) as following.
Tables [1, 2, 3; 4] represent four scenarios of the results of the simulation study to calculate estimates for

parameters, bias (Bias), and the mean square errors (MSEs) criterion for each experiment with different
initial correct values of the parameters . Table.[1] The Least Squares Estimator (LSE) method For the (α)
shape parameter and the (λ) scale parameter consistently outperforms the Maximum Likelihood Estimator
(MLE) method in terms of bias and the MSEs estimates for all sample sizes, while The (MLE) method
For the (b) scale parameter provides superior estimates of bias and MSEs for all sample sizes, Furthermore
For both methods and all estimators, the MSEs estimates decrease as the sample size increases. The results
in Table.[2] are similar to those in table[1] . However, the estimates converge to zero more slowly, and the
differences in MSEs estimates between sample sizes (n=20) and (n=500) are noticeable. Also in Table. [3],
The (LSE) method consistently outperforms the (MLE) method in terms of bias and MSEs estimates
for all sample sizes. These estimates decrease with increasing sample size, and there are clear differences in
MSEs values between the two methods. As previously stated, The estimates in Table.[4] follow a pattern
similar to those in tables[1] and [2]. But, the MSEs estimates decrease more rapidly with increasing sample
size.
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12 ESTIMATING THE PARAMETERS OF THE ODD LOMAX EXPONENTIAL DISTRIBUTION

Table 1. Estimation, Bias and Mean Square Error for the parameters by (MLE) and (LSE) methods of the
(α = 2.0, λ = 0.5, b = 0.5) for different samples size.

Sample Size parameters(θ̂) Estimation(MLE) Bias(θ̂) MSE(θ̂) Estimation(LSE) Bias(θ̂) MSE(θ̂)

n=20 α̂ 0.0315 1.9685 3.8749 0.2322 1.7678 3.1250

λ̂ 0.0014 0.4986 0.2486 0.7238 0.2238 0.0501

b̂ 0.1395 0.3605 0.1299 1.0664 0.5664 0.3208

n=50 α̂ 0.0006 1.9994 3.9976 0.2381 1.7619 3.1042

λ̂ 0.0004 0.4996 0.2496 0.7855 0.2855 0.0815

b̂ 0.0584 0.4416 0.1950 1.0734 0.5734 0.3288

n=80 α̂ 0.0002 1.9998 3.9991 0.2623 1.7377 3.0195

λ̂ 0.0029 0.4971 0.2471 0.8589 0.3589 0.1288

b̂ 0.0340 0.4660 0.2172 1.1883 0.6883 0.4738

n=120 α̂ 0.0011 1.9989 3.9955 0.2520 1.7480 3.0555

λ̂ 0.0063 0.4937 0.2438 0.8302 0.3302 0.1091

b̂ 0.0185 0.4815 0.2318 1.1380 0.6380 0.4070

n=160 α̂ 0.0001 2.0000 3.9999 0.2443 1.7557 3.0824

λ̂ 0.0062 0.4938 0.2438 0.8074 0.3074 0.0945

b̂ 0.0124 0.4876 0.2377 1.1018 0.6018 0.3622

n=200 α̂ 0.0004 1.9996 3.9984 0.2396 1.7604 3.0988

λ̂ 0.0050 0.4950 0.2450 0.7950 0.2950 0.0870

b̂ 0.0100 0.4900 0.2401 1.0786 0.5786 0.3348

n=300 α̂ 0.0002 1.9998 3.9993 0.2447 1.7553 3.0812

λ̂ 0.0033 0.4967 0.2467 0.8068 0.3068 0.0941

b̂ 0.0067 0.4933 0.2434 1.1041 0.6041 0.3649

n=400 α̂ 0.0001 1.9999 3.9996 0.2484 1.7516 3.0681

λ̂ 0.0025 0.4975 0.2475 0.8200 0.3200 0.1024

b̂ 0.0050 0.4950 0.2450 1.1204 0.6204 0.3849

n=500 α̂ 0.0001 2.0000 4.0000 0.2424 1.7576 3.0891

λ̂ 0.0015 0.4985 0.2485 0.8013 0.3013 0.0908

b̂ 0.0045 0.4955 0.2456 1.0922 0.5922 0.3507

.
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Table 2. Estimation, Bias and Mean Square Error for the parameters by (MLE) and (LSE) methods of the
(α = 1.5, λ = 1.0, b = 0.5) for different samples size.

Sample Size parameters(θ̂) Estimation(MLE) Bias(θ̂) MSE(θ̂) Estimation(LSE) Bias(θ̂) MSE(θ̂)

n=20 α̂ 0.0138 1.4862 2.2089 0.3096 1.1904 1.4170

λ̂ 0.0037 0.9963 0.9926 0.3371 0.6629 0.4395

b̂ 0.2082 0.2918 0.0852 0.9289 0.4289 0.1840

n=50 α̂ 0.0032 1.4968 2.2404 0.3175 1.1825 1.3983

λ̂ 0.0068 0.9932 0.9864 0.3711 0.6289 0.3955

b̂ 0.1048 0.3952 0.1562 0.9525 0.4525 0.2048

n=80 α̂ 0.0021 1.4979 2.2436 0.3498 1.1502 1.3230

λ̂ 0.0037 0.9963 0.9926 0.4046 0.5954 0.3545

b̂ 0.0693 0.4307 0.1855 1.0493 0.5493 0.3017

n=120 α̂ 0.0032 1.4968 2.2405 0.3360 1.1640 1.3549

λ̂ 0.0002 0.9998 0.9997 0.3919 0.6081 0.3698

b̂ 0.0458 0.4542 0.2063 1.0080 0.5080 0.2580

n=160 α̂ 0.0004 1.4996 2.2489 0.3258 1.1742 1.3788

λ̂ 0.0001 0.9999 0.9998 0.3815 0.6185 0.3826

b̂ 0.0350 0.4650 0.2162 0.9773 0.4773 0.2278

n=200 α̂ 0.0012 1.4988 2.2463 0.3195 1.1805 1.3935

λ̂ 0.0006 0.9994 0.9987 0.3760 0.6240 0.3893

b̂ 0.0290 0.4710 0.2218 0.9586 0.4586 0.2103

n=300 α̂ 0.0006 1.4994 2.2482 0.3262 1.1738 1.3778

λ̂ 0.0001 1.0000 1.0000 0.3810 0.6190 0.3832

b̂ 0.0193 0.4807 0.2311 0.9787 0.4787 0.2291

n=400 α̂ 0.0001 1.5000 2.2499 0.3312 1.1688 1.3661

λ̂ 0.0001 1.0000 1.0000 0.3873 0.6127 0.3754

b̂ 0.0146 0.4854 0.2356 0.9936 0.4936 0.2436

n=500 α̂ 0.0001 1.5000 2.2500 0.3232 1.1768 1.3848

λ̂ 0.0001 1.0000 1.0000 0.3788 0.6212 0.3859

b̂ 0.0117 0.4883 0.2384 0.9697 0.4697 0.2206

.
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Table 3. Estimation, Bias and Mean Square Error for the parameters by (MLE) and (LSE) methods of the
(α = 1.5, λ = 0.8, b = 1.0) for different samples size.

Sample Size parameters(θ̂) Estimation(MLE) Bias(θ̂) MSE(θ̂) Estimation(LSE) Bias(θ̂) MSE(θ̂)

n=20 α̂ 0.0068 1.4932 2.2297 0.3096 1.1904 1.4170

λ̂ 0.0051 0.7949 0.6319 0.4213 0.3787 0.1434

b̂ 0.1505 0.8495 0.7216 0.4864 0.5136 0.2637

n=50 α̂ 0.0001 1.4999 2.2498 0.3175 1.1825 1.3983

λ̂ 0.0064 0.7936 0.6298 0.4639 0.3361 0.1130

b̂ 0.0589 0.9411 0.8856 0.4958 0.5042 0.2542

n=80 α̂ 0.0005 1.4995 2.2485 0.3498 1.1502 1.3230

λ̂ 0.0117 0.7883 0.6213 0.5057 0.2943 0.0866

b̂ 0.0298 0.9702 0.9413 0.5472 0.4528 0.2050

n=120 α̂ 0.0121 1.4879 2.2137 0.3360 1.1640 1.3549

λ̂ 0.0080 0.7920 0.6273 0.4898 0.3102 0.0962

b̂ 0.0198 0.9802 0.9608 0.5251 0.4749 0.2256

n=160 α̂ 0.0112 1.4888 2.2164 0.3258 1.1742 1.3788

λ̂ 0.0048 0.7952 0.6324 0.4768 0.3232 0.1044

b̂ 0.0161 0.9839 0.9680 0.5089 0.4911 0.2412

n=200 α̂ 0.0090 1.4910 2.2231 0.3195 1.1805 1.3935

λ̂ 0.0001 0.8000 0.6400 0.4700 0.3300 0.1089

b̂ 0.0167 0.9833 0.9669 0.4988 0.5012 0.2512

n=300 α̂ 0.0060 1.4940 2.2321 0.3262 1.1738 1.3778

λ̂ 0.0019 0.7981 0.6370 0.4762 0.3238 0.1048

b̂ 0.0093 0.9907 0.9816 0.5097 0.4903 0.2404

n=400 α̂ 0.0045 1.4955 2.2366 0.3312 1.1688 1.3661

λ̂ 0.0001 0.8000 0.6400 0.4841 0.3159 0.0998

b̂ 0.0084 0.9916 0.9833 0.5173 0.4827 0.2330

n=500 α̂ 0.0036 1.4964 2.2392 0.3232 1.1768 1.3848

λ̂ 0.0006 0.7994 0.6390 0.4734 0.3266 0.1066

b̂ 0.0061 0.9939 0.9879 0.5047 0.4953 0.2453

.
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Table 4. Estimation, Bias and Mean Square Error for the parameters by (MLE) and (LSE) methods of the
(α = 1.6, λ = 1.8, b = 0.2) for different samples size.

Sample Size parameters(θ̂) Estimation(MLE) Bias(θ̂) MSE(θ̂) Estimation(LSE) Bias(θ̂) MSE(θ̂)

n=20 α̂ 0.0205 1.5795 2.4947 0.2903 1.3097 1.7153

λ̂ 0.0103 1.7897 3.2030 0.1905 1.6095 2.5904

b̂ 0.3175 1.6825 2.8307 2.1008 1.9008 3.6130

n=50 α̂ 0.0032 1.5968 2.5498 0.2977 1.3023 1.6961

λ̂ 0.0041 1.7959 3.2253 0.2091 1.5909 2.5311

b̂ 0.1481 1.8519 3.4297 2.1905 1.9905 3.9620

n=80 α̂ 0.0014 1.5986 2.5554 0.3279 1.2721 1.6182

λ̂ 0.0018 1.7982 3.2335 0.2281 1.5719 2.4709

b̂ 0.0965 1.9035 3.6231 2.4039 2.2039 4.8572

n=120 α̂ 0.0006 1.5994 2.5579 0.3150 1.2850 1.6513

λ̂ 0.0001 1.8000 3.2400 0.2208 1.5792 2.4939

b̂ 0.0652 1.9348 3.7434 2.3151 2.1151 4.4737

n=160 α̂ 0.0001 1.6000 2.5599 0.3054 1.2946 1.6760

λ̂ 0.0004 1.7996 3.2384 0.2149 1.5851 2.5126

b̂ 0.0501 1.9499 3.8022 2.2474 2.0474 4.1919

n=200 α̂ 0.0115 1.5885 2.5233 0.2996 1.3004 1.6911

λ̂ 0.0130 1.7870 3.1935 0.2118 1.5882 2.5225

b̂ 0.0281 1.9719 3.8885 2.2077 2.0077 4.0307

n=300 α̂ 0.0076 1.5924 2.5357 0.3058 1.2942 1.6749

λ̂ 0.0001 1.7999 3.2395 0.2146 1.5854 2.5134

b̂ 0.0272 1.9728 3.8919 2.2491 2.0491 4.1986

n=400 α̂ 0.0058 1.5942 2.5416 0.3105 1.2895 1.6628

λ̂ 0.0064 1.7936 3.2170 0.2182 1.5818 2.5021

b̂ 0.0143 1.9857 3.9431 2.2841 2.0841 4.3435

n=500 α̂ 0.0046 1.5954 2.5453 0.3030 1.2970 1.6821

λ̂ 0.0052 1.7948 3.2214 0.2133 1.5867 2.5175

b̂ 0.0114 1.9886 3.9545 2.2313 2.0313 4.1260

.
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6. Application

In this section, we considered two groups of datasets which are presented as follows:
Example (1): The first dataset comprises n = 84 observations, acquired from [31] and [17], representing
the failure times of aircraft windshield points data. A summary of the descriptive statistics for the first
group’s data is presented in Table 5. Example (2): The second dataset consists of n = 100 observations
[13] representing the fatigue life of 6061-T6 aluminum coupon points data. A summary of the descriptive
statistics for the first group’s data is presented in Table 6.

We estimated the unknown parameters of model using two methods, Maximum Likelihood Estimation
(MLE) and Least Squares Estimation (LSE), For two groups of datasets in the reliability engineering field
are the failure time of aircraft windshield and the fatigue life of 6061− T6 aluminum coupon. In Table [5],
we focused on descriptive statistics to provide a general understanding of sample size, data concentration,
dispersion, and normality. We tested normality using Q−Q plots as showed in Figure(5), And Provided us
estimates of unknown parameters are in Table [6]. Mean square error (MSE) is included in parentheses for
the parameters, along with goodness-of-fit statistics and quality criteria for the model as Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC). Histograms were created for the first and second
dataset after parameters estimation to visualize their distributions. Figure(6), representing the failure time
of aircraft windshield points data , closely resembles one of the distribution forms in figure 1.and representing
the fatigue life of 6061− T6 aluminum coupon points data, closely resembles one of the distribution forms
in figure 1.

Table 5. Descriptive Statistics of each groups for real-datasets

DataSet Sample Size Mean Std. Deviation Median Mode skewness kurtosis Minimum Maximum

Set1 84 2.352 1.359 2.385 1.281 0.087 2.365 0.040 4.663
Set2 100 133.780 22.613 132.500 142.000 0.372 70.000 0.04 212.000

.

7. Discussion

In this paper, we investigated the performance of the odd-lomax-exponential distribution, with another
formulas for each from exponential and lomax distribution to yield a new distribution . This distribution
has three different parameters,two scale parameter and shape parameter, It has been represented probability
density function as in Figure(1), cumulative distribution function as in Figure(2),survival function as in
Figure(3)and hazard rate function as in Figure(4). Also, we derivative more structural properties of the
model. We introduced two estimation method for parameters of the OLE distribution, and then comparison

Table 6. Estimated parameters, square error parentheses and goodness-of-fit Via MLE and LSE methods for each
groups for real-datasets

dataset Estimation method α̂ λ̂ b̂ AIC BIC

dataset1 MLE
183.8849
(2.560)

140.7923
(3.2387)

535.8905
(0.040)

3293.918 3301.246

LSE
0.2795
(1.744)

0.1931
(2.5819)

2.0622
(3.4677)

3293.920 3301.250

dataset2 MLE
72.319
(2.560)

68.761
(3.240)

595.703
(0.041)

7589.171 7596.986

LSE
0.0062
(2.541)

0.008
(3.237)

0.045
(0.238)

1918.159 1925.975
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Figure 5. Represented the Expected Normal Values versus Observed Values (Normal Q-Q plot).

performance between them by Monte-Carlo simulation for four different scenarios in terms of correct initial
values for the parameters is presented. And, we found through the analysis that the least squares method
gives the (MSE) values less than from the maximum likelihood method for compared with a regular increase
in sample sizes. We applied the model on two type datasets in the reliability engineering field which are the
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OLE distribution, alHad = 0.127822, lamHad = 0.14638137, bHad= 0.29
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Figure 6. Plots of the histogram and fit pdfs of the failure times of aircraft windshield points data.

.

OLE distribution, alHad = 0.016514, lamHad = 0.05922055, bHad= 0.29
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Figure 7. Plots of the histogram and fit pdfs the fatigue life of 6061-T6 aluminum coupon points data.

.
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failure time of aircraft windshield and the fatigue life of 6061− T6 aluminum coupon to evaluation the
distribution.We created a Matlab,23 code to analyze the data and display the graphs.

8. Conclusion

We conclude through the study that this distribution is a flexible distribution and is well-suited for analyzing
reliability engineering data. What distinguishes the distribution is that it contains three parameters to control
its mathematical structure. In simulation experiments and at different initial values of the parameters, the
estimates decrease with increasing sample size, and there are clear differences in MSEs values between the
two methods, in the applied side. The results also showed the advantages of the LSE method showed a
relative advantages over using in estimation with different sample sizes.
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