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A new power xgamma distribution: statistical properties, estimation methods
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Abstract This paper introduces a novel probability distribution called the power xgamma distribution. We investigate
several statistical properties essential for its characterization, including moments, moment generating function, quantile
function, and order statistics. Estimation methods are explored to determine the parameters and characteristic functions of
this distribution through a comprehensive simulation study. To illustrate its practical applicability, a real-world data example
is provided, which demonstrates the effectiveness and relevance of the proposed model in empirical contexts.
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1. Introduction

In many disciplines, including statistics, mathematics, science, engineering, economics, and more, probability
distributions are essential, the following are some key justifications for the importance of probability distributions:

• With probability distributions, uncertainty may be modeled and quantified. Results are frequently
probabilistic rather than deterministic in real-world scenarios. Predicting stock prices, for instance, in finance
entails evaluating the probability distribution of potential price changes.

• Probability distributions serve as the foundation for inference and hypothesis testing in statistics. Through an
understanding of a dataset’s distribution, statisticians are able to infer relevant details about the population
that the data originates from.

• Predictive modeling in data science and machine learning uses probability distributions. They support the
estimation of various outcomes’ likelihood, which is crucial for tasks like regression and classification.

• Probability distributions play a vital role in risk assessment and uncertain decision-making. Making well-
informed decisions is aided by their assistance in assessing possible hazards and their likelihoods.

• Probability distributions are used to mimic random events and optimize processes in operations research and
simulation studies. This is especially crucial for industries like logistics, where efficiency can be increased
by comprehending the stochastic nature of supply and demand.

• Probability distributions are used in manufacturing and quality control to keep an eye on procedures and
make sure final goods fulfill requirements. They support the establishment of suitable quality levels and the
comprehension of variation.

• In economics and finance, probability distributions are essential for simulating asset values, interest rates,
and other economic variables. They offer perceptions of the return and risk characteristics of investments.
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Given the importance of probability distribution in lifetime data, many researchers have been intrested in studing
and appling it, like the xgamma distribution that is a mixture of exponantial and gamma distribution, [1] introduced
this distribution and give it’s different properties, also, he demonstrate the flexibility of this new distribution. Many
authors have been interested in new distributions based on xgamma ditribution, [2] studied the inference of a new
distribution called the log-xgamma distribution. [3] considered the weighted xgamma distribution that is an other
vesrion of xgamma distribution. A generalisation and application in bladder cancer data were proposed by [4]
named quasi xgamma distributin. [5] presented the different mathematical and statistical properties of the new
inverse xgamma distribution. The bivariate xgamma distribution is defined by [6] and the truncated version of this
distribution is introduced by [7], Another variant, known as the xgamma Exponential distribution, is validated by
[8].
In another way, several works have dealt with the estimation of the xgamma distribution by Bayesian method, [9]
calculate the Bayesian estimators of xgamma distribution under type II hybrid censored data, Also, under type
I hybrid censored data and assymetric loss function [10] found the Bayesian estimators of the parameters and
reliability function of the xgamma distribution.
we have decided to examine the power xgamma distribution due to its significant properties, considering that:

• The flexibility of its PDF allows it to assume a diverse array of forms (negative skewed, symmetrical skewed,
positively skewed, J-shaped) depending on the choice of parameters. This flexibility enables the distribution
to model a range of variation of data sets.

• This novel distribution provides several advantages, including a range of parameters (2) that can be utilized
for modeling in survival analysis and others fields.

• • This distribution has a closed CDF form and this facilitates calculations and analysis making simulation
more efficient.

• • This distribution can accommodate both monotonic and non-monotonic hazard function, making it
applicable to a wide range of real world data.

• • This distribution provides better adjustment than some well-known distribution as: xgamma, gamma,
Weibull, gamma-Lindley, Lomax and Lindley distributions.

We consider Y a random variable follows the one-parameter xgamma distribution, whose the cumulative
distribution function is given by the following formula

G(y, θ) = 1−
1 + θ + θy + θ2

2 y
2

1 + θ
e−θy, y > 0, θ > 0.

Let the following transformationX =
(

1
Y

)β
, therefore, the variableX follows the new power xgamma distribution

with two parameters θ and β, and its cumulative distribution function (CDF) is

F (x; θ, β) = 1−
1 + θ + θxβ + θ2

2 x
2β

1 + θ
e−θxβ

, x > 0, θ, β > 0. (1)

For more details (see [20]), by deriving F (x; θ, β) with respect to x, we obtain the formula for the probability
density function (PDF) given by

f(x; θ, β) =
θ2β

1 + θ
xβ−1

(
θ2

2
x2β + 1

)
e−θxβ

, x > 0, θ, β > 0. (2)

The following graphs present the probability density function (PDF) of the power xgamma distribution with
different values of θ and β.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



2 A NEW POWER XGAMMA DISTRIBUTION

Figure 1. The PDF of power xgamma for different values of θ and β

The rest of this paper is organized as follows: The survival carachteristics functions are calculated in section 2.
Differents moments are presented in section 3. Order statistics and quantile function are considered in sections 4
and 5 respectively. Lorenz and Bonferroni curves are discussed in section 6. The Renyi entropy function is obtained
in section 7. Section 8 addressed the differents estimation methods of the parameters, reliability and failure rate
functions. A simulation study is applied in section 10 to illustrate the results obtained in section 9. We ended by an
exemple to demonstrate the application of the new power xgamma distribution with real data.

2. Survival analysis

The reliability function R(x; θ, β) of the new power-xgamma distribution is given by

R(x; θ, β) = 1− F (x; θ, β)

Replacing F with its expression given in (1), we obtain

R(x; θ, β) =
1 + θ + θxβ + θ2

2 x
2β

1 + θ
e−θxβ

, x > 0, θ, β > 0. (3)

The failure rate function h(x; θ, β) of the new power xgamma distribution calculate using the following formula:

h(x; θ, β) =
f(x; θ, β)

1− F (x; θ, β)
=

f(x; θ, β)

R(x; θ,b eta)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



K. BOUDJERDA 3

Replacing f and R with the expressions (2) and (3) respectively, we obtain

h(x; θ, β) =
θ2βxβ−1

(
θ2

2 x
2β + 1

)
1 + θ + θxβ + θ2

2 x
2β

, x > 0, θ, β > 0. (4)

The following graphs presents the reliability function of the new power xgamma distribution for differents values
θ and β.

Figure 2. The reliability function of power xgamma for different values of θ and β

3. Moments and other measures

In this section, we present the moments and some other statistical properties as inverse moments, moment
generating function,... of the new power xgamma distribution.

3.1. The kth moments

Proposition 1
The kth moment of the new power xgamma distribution is given by

mk =
θ1−

k
β

(1 + θ)
Γ(
k

β
+ 1)

[
1

2

(
k

β
+ 2

)(
k

β
+ 1

)
+ 1

]
, k = 1, 2, 3, ...
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4 A NEW POWER XGAMMA DISTRIBUTION

Proof
Using the definition of the kth moment we have:

mk =

∫ +∞

0

xkf(x; θ, β)dx

=
θ2β

1 + θ

∫ +∞

0

xk+β−1

(
θ2

2
x2β + 1

)
e−θxβ

dx

=
θ2β

1 + θ

[
θ2

2
I1 + I2

]
,

by the following change of variables Y = xβ , we obtain

I1 =
1

β

∫ +∞

0

y
k
β+2e−θydy =

1

β

Γ
(

k
β + 3

)
θ

k
β+3

.

and

I2 =
1

β

∫ +∞

0

y
k
β e−θydy =

1

β

Γ
(

k
β + 1

)
θ

k
β+1

.

So

mk =
θ2β

1 + θ

θ2
2

1

β

Γ
(

k
β + 3

)
θ

k
β+3

+
1

β

Γ
(

k
β + 1

)
θ

k
β+1


=

θ1−
k
β

(1 + θ)
Γ(
k

β
+ 1)

[
1

2

(
k

β
+ 2

)(
k

β
+ 1

)
+ 1

]

Thus, the first four moments of the power xgamma distribution are obtained when we replace k with 1, 2, 3, 4
respectively, so

k = 1, E(x) =
θ1−

1
β

(1 + θ)
Γ(

1

β
+ 1)

(
1

2

(
1

β
+ 2

)(
1

β
+ 1

)
+ 1

)
k = 2, E(x2) =

θ1−
2
β

(1 + θ)
Γ(

2

β
+ 1)

(
1

2

(
2

β
+ 2

)(
2

β
+ 1

)
+ 1

)
k = 3, E(x3) =

θ1−
3
β

(1 + θ)
Γ(

3

β
+ 1)

(
1

2

(
3

β
+ 2

)(
3

β
+ 1

)
+ 1

)
k = 4, E(x4) =

1− θ
4
β

(1 + θ)
Γ(

4

β
+ 1)

(
1

2

(
4

β
+ 2

)(
4

β
+ 1

)
+ 1

)
The variance (V ar(x)), the skewness (

√
δ1), the kurtosis (δ2) and the coefficient of variation (c.v) of the new power

xgamma distribution are:

V ar(x) =
θ1−

2
β

(1 + θ)

[
Γ(

2

β
+ 1)

(
1

2

(
2

β
+ 2

)(
2

β
+ 1

)
+ 1

)
− 1

1 + θ
Γ(

2

β
+ 1)2ψ(θ, β)

]

√
δ1 =

E(x3)

var(x)
3
2

=
(1 + θ)

1
2Γ( 3β + 1)

(
1
2

(
3
β + 2

)(
3
β + 1

)
+ 1
)

[
Γ( 2β + 1)

(
1
2

(
2
β + 2

)(
2
β + 1

)
+ 1
)
− 1

1+θΓ(
2
β + 1)2ψ(θ, β)

] 3
2

Stat., Optim. Inf. Comput. Vol. x, Month 202x



K. BOUDJERDA 5

δ2 =
E(x4)

var(x)2
=

(1 + θ)Γ( 4β + 1)
(

1
2

(
4
β + 2

)(
3
β + 1

)
+ 1
)

[
Γ( 4β + 1)

(
1
2

(
2
β + 2

)(
2
β + 1

)
+ 1
)
− 1

1+θΓ(
2
β + 1)2ψ(θ, β)

]2

c.v =

√
var(x)

E(x)
=

√
(1 + θ)(Γ( 2β + 1)

(
1
2

(
2
β + 2

)(
2
β + 1

)
+ 1
)
− 1

1+θΓ(
2
β + 1)2ψ(θ, β))

Γ( 1β + 1)
(

1
2

(
1
β + 2

)(
1
β + 1

)
+ 1
)

Where ψ(θ, β) =
(

1
4

(
2
β + 2

)2 (
2
β + 1

)2
+ 1 +

(
2
β + 2

)(
2
β + 1

))
.

The following graphs shows some values of skewness and kurtosis for different values of θ and β.

Figure 3. The skewness and the kurtosis of the new power xgamma distribution for different values of θ and β

3.2. The inverse moment

Proposition 2
Let X be a real random variable following the new power xgamma distribution. The inverse moment is given by

µk =
θ

k
β+1

1 + θ
Γ

(
1− k

β

)[
1

2

(
2− 2

k

)(
1− k

β

)
+ 1

]
, k = 1, 2, 3, ...

Proof
Using the definition of the inverse moment, we have

µk = E(x−k) =

∫ +∞

0

x−kf(x; θ, β)dx
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6 A NEW POWER XGAMMA DISTRIBUTION

replacing f by the expression (2), we obtain

µk =
θ2β

1 + θ

[
θ2

2

∫ +∞

0

x3β−k+1e−θxβ

dx+

∫ +∞

0

xβ−k−1e−θxβ

dx

]
=

θ2

1 + θ

[
θ2

2

∫ +∞

0

y2−
k
β e−θydy +

∫ +∞

0

y−
k
β e−θydy

]
, y = xβ

=
θ2

1 + θ

[
θ2

2

Γ(3− k
β )

θ3−
k
β

+
Γ(1− k

β )

θ1−
k
β

]

=
θ

k
β+1

1 + θ
Γ

(
1− k

β

)[
1

2

(
2− 2

k

)(
1− k

β

)
+ 1

]
, k = 1, 2, 3, ...

3.3. Moment generating function

Proposition 3
The moment generating function , of the new power xgamma distribution is

ϕ(x, s) =
1

1 + θ

∞∑
k=0

sk

k!
θ1−

k
β Γ(

k

β
+ 1)

(
1

2

(
k

β
+ 2

)(
k

β
+ 1

)
+ 1

)
, k = 1, 2, 3...

Proof
We have

ϕ(x, s) =

∫ +∞

0

esxf(x; θ, β)dx,

we know that esx =
∑+∞

k=0
(sx)k

k! , so, we can write

ϕ(x, s) =

∞∑
k=0

sk

k!

∫ +∞

0

xkf(x; θ, β)dx

=
1

1 + θ

∞∑
k=0

sk

k!
θ1−

k
β Γ(

k

β
+ 1)

(
1

2

(
k

β
+ 2

)(
k

β
+ 1

)
+ 1

)
.

3.4. Mean and median deviation

The dispersion or spread of data points around a central value, such as the mean or median, is quantified using the
mean and median deviation.
A central value, typically the mean x of the data collection, is used to calculate the average absolute distance of
data points from the mean deviation, also called average absolute deviation. The mean of the new power xgamma
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distribution provided by:

ηm =

∫ +∞

0

|x−m|f(x; θ, β)dx

=

∫ m

0

(m− x)f(x; θ, β)dx+

∫ +∞

x

(x−m)f(x; θ, β)dx

= 2mF (m)− 2

∫ x

0

xf(x; θ, β)dx

=
2

1 + θ

[(
2 (1 + θ)−

(
1 + θ + θmβ +

θ2

2
m2β

)
e−θmβ

)
−
(
1

θ

) 1
β+1(

1

θ
γ

(
1

β
+ 3, θmβ

)
+ γ

(
1

β
+ 1, θmβ)

))]
The median absolute difference between each data point and the median of the data set is measured by the median
deviation. The median deviation of new power xgamma distribution is:

ςm = m− 2

∫ m

0

xf(x; θ, β)dx

=
1

1 + θ

[
(m+mθ)− 2

(
1

θ

) 1
β+1(

1

2θ
γ(

1

β
+ 3, θmβ) + γ(

1

θ
+ 1, θmβ)

)]

4. Order statistics

The sample X = (x1, x2, ..., xn) is assumed to be independent and identically distributed according to the
new power xgamma distribution of probability density function f(x; θ, β) and cumulative distribution function
F (x; θ, β), then the density of the density of jth order statistics is

fX(j)
(x) =

n!

(j − 1)!(n− j)!
F (x; θ, β)j−1R(x; θ, β)n−jf(x; θ, β),

by replacing f , F and R with its formulas, we obtain

fX(j)
(x) =

n!

(j − 1)!(n− j)!

(
1−

1 + θ + θxβ + θ2

2 x
2β

1 + θ
e−θxβ

)(j−1)(
1 + θ + θxβ + θ2

2 x
2β

1 + θ
e−θxβ

)(n−j)

θ2β

1 + θ
xβ−1

(
θ2

2
x2β + 1

)
e−θxβ

Using the binomial theorem, we have(
1−

1 + θ + θxβ + θ2

2 x
2β

1 + θ
e−θxβ

)(j−1)

=

j−1∑
i=1

(
j − 1

i

)(
−
1 + θ + θxβ + θ2

2 x
2β

1 + θ
e−θxβ

)j−1−i

so

fX(j)
(x) =

n!(1 + θ + θxβ + θ2

2 x
2β)n−jθ2βxβ−1( θ2x

2β + 1)

(j − 1)!(n− j)!(1 + θ)n−j+1

j−1∑
i=1

(
j − 1

i

)(
−
1 + θ + θxβ + θ2

2 x
2β

1 + θ

)j−1−i

e−θ(j−1−i)x.
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8 A NEW POWER XGAMMA DISTRIBUTION

The density of the first and last order statistics of the new power xgamma distribution are respectively given by

fX(1)
(x) =

n!(1 + θ + θxβ + θ2

2 x
2β)n−1θ2βxβ−1( θ2x

2β + 1)

(1 + θ)n

and

fX(n)
(x) =

nθ2βxβ−1( θ2x
2β + 1)

(1 + θ)

j−1∑
i=1

(
j − 1

i

)(
−
1 + θ + θxβ + θ2

2 x
2β

1 + θ

)j−1−i

e−θ(j−1−i)x.

5. Quantile function

Let X be a random variable following the new power xgamma distribution, the quantile function G(p), 0 < p < 1
is the solution of the nonlinear equation F (G(p)) = p i.e

log

(
1 + θ + θG(p)p +

θ2

2
G(p)2β

)
− θG(p)β − log(1− p)− log(1 + θ) = 0

The next table give some values of the quantile function for different values of θ and β and p.
We notice that when the values of p increases, the values of the quantile function also increases.

Table 1. Values of the quantile function

p (θ, β) = (1, 2) (θ, β) = (2, 3) (θ, β) = (3, 1) (θ, β) = (0.5, 0.8) (θ, β) = (2, 0.5)

0.1 1.425089 0.988775 0.627785 6.099662 0.934587
0.2 1.482162 1.016072 0.6823365 6.70388 1.100476
0.3 1.543113 1.044821 0.7431316 7.388059 1.301038
0.4 1.609393 1.075625 0.8120622 8.177857 1.548626
0.5 1.682972 1.10927 0.8920671 9.112839 1.862998
0.6 1.767178 1.147149 0.9882328 10.25961 2.27865
0.7 1.868082 1.191671 1.109698 11.74379 2.863885
0.8 1.998698 1.248082 1.277218 13.84912 3.779497
0.9 2.19868 1.331929 1.556013 17.49044 5.583355
0.95 2.37734 1.404591 1.827815 21.18894 1.678944
0.99 2.737779 1.54557 2.441297 29.99929 13.6303

6. Lorenz and Bonferroni curves

In statistics, two distinct graphical tools are used: Lorenz and Bonferroni curves. In conclusion, the Bonferroni
curve helps to control the total type I error rate in multiple hypothesis testing, while the Lorenz curve aids in
visualizing income or wealth inequality. The Lorenz curve of the new power xgamma distribution is calculated as:
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L(p) =
1

m

∫ k

0

xf(x; θ, β)dx

=
1

m

∫ k

0

θ2β

1 + θ
xβ
(
θ2

2
x2β + 1

)
exp(−θxβ)dx

=
θ2β

m(1 + θ)

[
θ2

2

∫ k

0

x3βexp(−θxβ)dx+

∫ k

0

xβexp(−θxβ)dx

]

=
θ2β

m(1 + θ)

[
θ2

2
I1 + I2

]
where

I1 =

∫ k

0

x3βexp(−θxβ)dx =
1

βθ
1
β+3

∫ θkβ

0

u
1
β+2exp(−u)du

=
1

βθ
1
β+3

γ(θkβ ,
1

β
+ 3), u = θxβ

I2 =
1

βθ
1
β+1

γ(θkβ ,
1

β
+ 1)

Consequently, the Lorenz curve of the new power xgamma is

L(p) =
θ−

1
β−1

m(1 + θ)

[
γ

(
θkβ ,

1

β
+ 3

)
+ θ2γ

(
θkβ ,

1

β
+ 1

)]
In the same way, we calculate the Bonferroni curve, we obtain

B(p) =
1

pm

∫ k

0

xf(x; θ, β)dx

=
θ−

1
β−1

pm(1 + θ)

[
γ

(
θkβ ,

1

β
+ 3

)
+ θ2γ

(
θkβ ,

1

β
+ 1

)]

7. Renyi entropy

Renyi entropy is a quantity that is highly significant, particularly in the ecology and statistics domains. [17]
introduced it, and the expression its formula is

Rλ =
1

1− λ
log(f(x; θ, β))λdx

The Renyi entropy of the new power xgamma distribution is

R1−λ =
1

1− λ
log

[∫ +∞

0

θ2λβλ

(1 + θ)λ

(
xβ−1

(
θ2

2
x2β + 1

))λ

exp(−λθxβ)dx

]

=
1

1− λ
log

[
θ2λβλ

(1 + θ)λ

[∫ +∞

0

(
θ2

2
x3β−1 + xβ−1

)λ

exp(−λθxθ)dx

]]
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10 A NEW POWER XGAMMA DISTRIBUTION

Using the binomial theorem(
θ2

2
x3β−1 + xβ−1

)λ

=

λ∑
j=0

(
λ

j

)(
θ2

2
x3β−1

)λ−j

(xβ−1)jexp(−λθxβ)

Rλ =
1

1− λ
log

[
θ2λβλ

(1 + θ)λ

λ∑
j=0

(
λ

j

)
θ2(λ−j)

2λ−j

∫ +∞

0

x3βλ−2βj−λexp(−λθxθ)dx

]

=
1

1− λ
log

[
θ2λβλ

(1 + θ)λ

λ∑
j=0

(
λ

j

)
θ2(λ−j)

2λ−j

∫ +∞

0

y3λ−2j−λ−1
β −1exp(−λθy)dy

]
, y = xβ

=
1

1− λ
log

[
βλ−1

(1 + θ)λ

λ∑
j=0

(
λ

j

)
θλ+

λ−1
β 2j−λλ2j−3λ+λ−1

β Γ

(
3λ− 2j − λ− 1

β

)]

8. Estimation methods

In this section, we consider two estimation methods: the maximum likelihood method and the Bayesian method
with two loss functions (squared loss function and Linex loss funtion), to estimate the parameters (θ, β), the
raliability function and the failure rate function of the new power xgamma distribution.

8.1. Maximum likelihood estimation method

Let x = (x1, x2, ..., xn) be an n-sample of the new power xgamma distribution with two parameters θ and β. The
likelihood function is :

L(x; θ, β) =

n∏
i=1

f(xi; θ, β)

=
θ2nβn

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)
e−θ

∑n
i=1 xβ

i

The log likelihood function is

l(x; θ, β) = 2nlog(θ) + nlog(β)− nlog(1 + θ) + (β − 1)

n∑
i=1

log(xi) +

n∑
i=1

log

(
θ2

2
x2βi + 1

)
− θ

n∑
i=1

xβi .

θ̂mle and β̂mle the maximum likelihood of the parameters θ and β are the solutions of the system of equations
2n
θ + n

1+θ +
∑n

i=1

(
θx2β

i
θ2

2 x2β
i +1

)
−
∑n

i=1 x
β
i = 0

n
β +

∑n
i=1 log(xi) +

∑n
i=1

(
θ2log(xi)x

2β
i

θ2

2 x2β
i +1

)
− θ

∑n
i=1 log(xi)x

β
i = 0

We apply numerical methods like EM (Expectation-Maximisation) algorithm (for more details see [14]), to obtain
the numerical values of the estimators for the parameters α and β
The maximum likelihood estimators of the reliability and failure rate functions are obtain when we replace θ and
β by θ̂mle and β̂mle in the expressions (3) and (4) respectively, so

R̂mle(t) =
1 + θ̂mle + θ̂mlet

β̂mle +
θ̂2
mle

2 t2β̂mle

1 + θ̂mle

e−θ̂mlex
β̂mle

Stat., Optim. Inf. Comput. Vol. x, Month 202x



K. BOUDJERDA 11

ĥmle(t) =
θ̂2mleβ̂mlet

β̂mle−1
(

θ̂2
mle

2 t2β̂mle + 1
)

1 + θ̂mle + θ̂mletβ̂mle +
θ̂2
mle

2 t2β̂mle

.

8.2. Bayesian estimation

In this subsection, we consider the Bayesian estimation of the parameters θ and β, the reliability funtcionR(x; θ, β)
and the failure rate function h(x; θ, β), using a symmetrical loss function (squared loss function) then asymmetric
loss function (Linex loss function).
Let X = (X1, X2, ..., Xn) an n-sample from new power xgamma distribution. The posterior density is calculated
as follows:

π(θ, β|x) = L(x; θ, β)π(θ, β)∫ ∫
L(x; θ, β)π(θ, β)dθdβ

= K−1L(x; θ, β)π(θ, β)

Where K =
∫ ∫

L(x; θ, β)π(θ, β)dθdβ is the normalisation constant.
We assume that the parameters θ and β are independent, and we take a natural conjugate prior distribution those of
gamma

θ ∼ Gamma(a1, b1) ⇒ π(θ) =
ba1
1

Γ(a1)
θa1−1exp(−b1θ)

β ∼ Gamma(a2, b2) ⇒ π(β) =
ba2
2

Γ(a2)
βa2−1exp(−b2β)

The prior distribution of (θ, β) is

π(θ, β) = π(θ)π(β) =
ba1
1 b

a2
2

Γ(a1)Γ(a2)
θa1−1βa2−1exp(−a1θ − b2β)

So, the posterior density is

π(θ, β|x) = K−1 θ
2n+a1−1βn+a2−1

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)
exp

(
−θ

(
n∑

i=1

xβi + b1

)
− b2β

)
Bayesian estimation under squared loss function
This loss function is defined by Ls(t, δ) = (t− δ)2, under this loss function, the Bayesian estimator is the posterior
mean:

δ̂B = Eπ(t|x).
The Bayesian estimators of the parameters, reliability and failure rate functions of the new power xgamma
distribution undthe er squared loss function are

θ̂BS = Eπ(θ|x)

=

∫ +∞

0

∫ +∞

0

θπ(θ, β|x)dθdβ

= K−1

∫ ∫
θ2n+a1βn+a2−1

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)
exp

(
−θ

(
n∑

i=1

xβi + b1

)
− b2β

)
dθdβ

β̂BS = Eπ(β|x)

=

∫ +∞

0

∫ +∞

0

βπ(θ, β|x)dθdβ

= K−1

∫ ∫
θ2n+a1−1βn+a2

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)
exp

(
−θ

(
n∑

i=1

xβi + b1

)
− b2β

)
dθdβ
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R̂BS(t) = Eπ(R(t)|x)

=

∫ +∞

0

∫ +∞

0

R(t)π(θ, β|x)dθdβ

= K−1

∫ ∫
θ2n+a1−1βn+a2−1

(1 + θ)n+1

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)(
1 + θ + θtβ +

θ2

2
t2β
)

∗ exp

(
−θ

(
n∑

i=1

xβi + b1 + tβ

)
− b2β

)
dθdβ

ĥBS(t) = Eπ(h(t)|x)

=

∫ +∞

0

∫ +∞

0

h(t)π(θ, β|x)dθdβ

= K−1

∫ ∫
θ2n+a1+1βn+a2

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

) tβ−1
(

θ2

2 t
2β + 1

)
1 + θ + θtβ + θ2

2 t
2β

∗ exp

(
−θ

(
n∑

i=1

xβi + b1

)
− b2β

)
dθdβ

Bayesian estimation under Linex loss function
Introduced by [16], this loss function almost exponentially on one side of zero, given by:

Ll(t, δ) ∝ exp(w(t− δ))− w(t− δ) + 1, w ̸= 0.

The Bayesian estimator under this loss function is

δ̂ =
−1

w
log(Eπ(exp(−wθ)|x))

The Bayesian estimators of the parameters, reliability and failure rate functions pf the new power xgamma
distribution under Linex loss function are given by:

θ̂BL =
−1

w
log(Eπ(exp(−wθ)|x))

=
−1

w
log

(∫ +∞

0

∫ +∞

0

exp(−wθ)π(θ, β|x)dθdβ
)

=
−1

w
log

(
K−1

∫ +∞

0

∫ +∞

0

θ2n+a1−1βn+a2−1

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)

exp

(
−θ

(
n∑

i=1

xβi + b1 + w

)
− b2β

)
dθdβ

)

β̂BL =
−1

w
log(Eπ(exp(−wβ)|x))

=
−1

w
log

(∫ +∞

0

∫ +∞

0

exp(−wβ)π(θ, β|x)dθdβ
)

=
−1

w
log

(
K−1

∫ +∞

0

∫ +∞

0

θ2n+a1−1βn+a2−1

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)

exp

(
−θ

(
n∑

i=1

xβi + b1

)
− (b2 + w)β

)
dθdβ

)
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R̂BL(t) =
−1

w
log(Eπ(exp(−wR(t))|x))

=
−1

w
log

(∫ +∞

0

∫ +∞

0

exp(−wR(t))π(θ, β|x)dθdβ
)

=
−1

w
log

(
K−1

∫ +∞

0

∫ +∞

0

θ2n+a1−1βn+a2−1

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)

exp

(
−θ

(
n∑

i=1

xβi + b1

)
− b2β

)
exp

(
−w

1 + θ + θtβ + θ2

2 t
2β

1 + θ
exp(−θtβ)

)
dθdβ

)

ĥBL(t) =
−1

w
log(Eπ(exp(−wh(t))|x))

=
−1

w
log

(∫ +∞

0

∫ +∞

0

exp(−wh(t))π(θ, β|x)dθdβ
)

=
−1

w
log

(
K−1

∫ +∞

0

∫ +∞

0

θ2n+a1−1βn+a2−1

(1 + θ)n

n∏
i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)

exp

(
−θ

(
n∑

i=1

xβi + b1

)
− b2β

)
exp

−w
θ2βtβ−1

(
θ2

2 t
2β + 1

)
1 + θ + θtβ + θ2

2 t
2β

 dθdβ



9. MCMC method

The MCMC method is employed in this section to derive the Bayesian estimators, the Metropolis-Hastings
algorithm is taken into consideration in order to produce samples from the conditional posterior distributions and
subsequenty obtained the Bayesian estimates. Samples are generated from an arbitrary proposal distibution using
the Metropolis-Hastings algorithm (for more details see [15]). The following is the intire contitional posterior PDF
of θ and β

π(∗)(θ|β) =
θ2n+a1−1

(1 + θ)n

n∏
i=1

(
θ2

2
x2βi + 1

)
e−θ

∑n
i=1 xβ

i −b1θ (5)

and

π(∗)(β|θ) = βb+a1−1
n∏

i=1

xβ−1
i

n∏
i=1

(
θ2

2
x2βi + 1

)
e−θ

∑n
i=1 xβ

i −b2β (6)

Since the full conditional posterior PDFs of θ and β cannot be reduced to a known distribution, as can be seen
from equation (5) and (6), we adopt a normal distribution as the proposal distribution.
Algorithm

1. Begin with the initial values of θ and β (we pose: θ(0) = θ̂mle and β(0) = β̂mle

2. k = 1
3. We generate θ(k) from (5) and θ(∗) follows a normal distribution (proposal distribution).
4. The acceptance probability is calculated as the following

s(θ(k−1), θ(∗)) = min

[
1,

π(∗)(θ(∗)|β(k−1))

π(∗)(θ(k−1)|β(k−1))

]
5. Let u ∼ U[0,1]
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6. {
if u < s(θ(k−1), θ(∗)) : θ(∗) = θ(k)
else θ(k−1) = θ(k)

7. generate β(k) from (6) and β(∗) follows a normal distribution.
8. Repeat steps 4 to 6 for β
9. R(t) and h(t) are calculated as

R(k)(t) =
1 + θ(k) + θ(k)x

β(k) +
θ2
(k)

2 x2β(k)

1 + θ(k)
e−θ(k)x

β(k)

and

h(k)(t) =
θ2(k)β(k)x

β(k)−1
(

θ2
(k)

2 x2β(k) + 1
)

1 + θ(k) + θ(k)x
β(k) +

θ2
(k)

2 x2β(k)

10. Repeat the steps from 3 to 10 N times.
11. The Bayesian estimators of θ, β, R(t) and h(t) under squared loss function are respectively given by

θ̂BS =
1

N −K

n∑
k=K+1

θ(k)

β̂BS =
1

N −K

n∑
k=K+1

β(k)

R̂BS() =
1

N −K

n∑
k=K+1

R(k)(t)

and

ĥBS =
1

N −K

n∑
k=K+1

h(k)(t)

12. The Bayesian estimators of θ, β, R(t) and h(t) under Linex loss functio are given by

θ̂BL =
−1

w
log

[
1

N −K

N∑
k=K+1

e−wθ(k)

]
, w ̸= 0.

β̂BL =
−1

w
log

[
1

N −K

N∑
k=K+1

e−wβ(k)

]
, w ̸= 0.

R̂BL(t) =
−1

w
log

[
1

N −K

N∑
k=K+1

e−wR(k)(t)

]
, w ̸= 0.

and

ĥBL(t) =
−1

w
log

[
1

N −K

N∑
k=K+1

e−wh(k)(t)

]
, w ̸= 0.

N stand for the total number of draws and K is a burn-in phase that is optional.
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10. Simulation study

In this section, we examine how well the estimation procedures employed in this paper perform. To achieve this
goal, we generate N = 1000 samples of differents size (n = 10, 30, 50, 100, 250, 500) of the new power xgamma
distribution with the parameters (θ, β) = (0.8, 0.5) then, (θ, β) = (3, 0.8). For each estimator, we calculate
The average biais

AV (θ̂) =
1

N

N∑
i=1

(θ̂i − θ), AV (β̂) =
1

N

N∑
i=1

(β̂i − β)

AV (R̂(t)) =
1

N

N∑
i=1

(R̂i(t)−R(t)), AV (ĥ(t)) =
1

N

N∑
i=1

(ĥi(t)− h(t))

and the mean squared error

MSE(θ̂) =
1

N

n∑
i=1

(θ̂i − θ)2, MSE(β̂) =
1

N

n∑
i=1

(β̂i − β)2

MSE(R̂(t)) =
1

N

n∑
i=1

(R̂i(t)−R(t))2, MSE(ĥ(t)) =
1

N

n∑
i=1

(ĥi(t)− h(t))2

The results obtained from the maximum likelihood estimators, Bayesian estimators under squared and Linex loss
functions are summarized in the following tables

Table 2. Maximum likelihood estimation of θ, β, R and h when (θ, β) = (0.8, 0.5)

n Criteria θ̂mle β̂mle R̂mle(t) ĥmle(t)

n=10 Estimator 1.0201 0.4085 0.7012 0.2815
AV -0.2201 0.0915 0.1781 0.1197
MSE 0.0212 0.0075 0.0143 0.0261

n=30 Estimator 0.9941 0.4114 0.7186 0.3041
AV -0.1941 0.0887 0.1607 0.0971
MSE 0.0203 0.0072 0.0101 0.0198

n= 50 Estimator 0.9405 0.4331 0.7305 0.3200
AV -0.1405 0.0669 0.1488 0.0812
MSE 0.0118 0.0065 0.0090 0.0105

n=100 Estimator 0.9018 0.4501 0.7771 0.3754
AV -0.1018 0.0499 0.1022 0.0258
MSE 0.0091 0.0057 0.0081 0.0091

n=250 Estimator 0.8844 0.4809 0.8001 0.4043
Av -0.0844 0.0191 0.0729 -0.0031
MSE 0.0074 0.0032 0.0067 0.0078

n=500 Estimator 0.8284 0.5081 0.8118 0.4241
AV -0.0284 -0.0081 0.0675 0.0229
MSE 0.058 0.0021 0.0047 0.0051
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Table 3. Bayesian estimation of θ, β, R and h under squared loss function when (θ, β) = (0.8, 0.5)

n Criteria θ̂BS β̂BS R̂BS(t) ĥBS(t)

n=10 Estimator 0.9789 0.4181 0.7911 0.3028
AV -0.1789 0.0819 0.0882 0.0984
MSE 0.0184 0.0071 0.0108 0.0186

n=30 Estimator 0.9501 0.4309 0.7984 0.3119
AV -0.1501 0.0691 0.0809 0.0893
MSE 0.0172 0.0067 0.0096 0.0145

n= 50 Estimator 0.9108 0.4513 0.8042 0.3418
AV -0.1108 0.0487 0.0373 0.0594
MSE 0.0128 0.0061 0.0095 0.0093

n=100 Estimator 0.8814 0.4824 0.8488 0.3801
AV -0.0814 0.0176 0.0305 0.0211
MSE 0.0086 0.0054 0.0083 0.0088

n=250 Estimator 0.8209 0.5016 0.8801 0.4012
AV -0.0209 -0.0016 -0.0008 -0.0100
MSE 0.0058 0.0026 0.0060 0.0065

n=500 Estimator 0.7845 0.5310 0.9009 0.4187
AV 0.0155 -0.0310 -0.0054 -0.0175
MSE 0.0040 0.0019 0.0035 0.0032

Table 4. Bayesian estimation of θ, β, R and h under Linex loss function when (θ, β) = (0.8, 0.5)

n Criteria θ̂BL β̂BL R̂BL(t) ĥBL(t)

n=10 Estimator 1.1877 0.3214 0.6810 0.2595
AV -0.3877 0.1786 0.1989 0.1417
MSE 0.0338 0.0107 0.0209 0.0288

n=30 Estimator 1.1058 0.3542 0.7001 0.2708
AV -0.3058 0.1458 0.1792 0.1304
MSE 0.0319 0.0097 0.0191 0.0242

n=50 Estimator 1.0187 0.3941 0.7454 0.3785
AV -0.2187 0.1059 0.1336 0.0827
MSE 0.0203 0.0080 0.0095 0.0132

n=100 Estimator 0.9728 0.4185 0.7901 0.3488
AV -0.1728 0.0814 0.0892 0.0524
MSE 0.0203 0.0080 0.0095 0.0132

n=250 Estimator 0.9104 0.4312 0.8122 0.3881
AV -0.1104 0.0688 0.0671 0.0130
MSE 0.0138 0.0068 0.0074 0.0118

n=500 Estimator 0.8704 0.4627 0.8289 0.4028
AV -0.0704 0.0373 0.0504 -0.0016
MSE 0.0107 0.0061 0.0060 0.0099
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Table 5. MLE estimation of θ, β, R and h when (θ, β) = (3, 0.8)

n Creteria θ̂mle β̂mle R̂mle ĥmle

n=10 Estimator 2.6482 0.9948 0.5124 3.1427
AV 0.3518 -0.1948 -0.1908 -0.2915
MSE 0.0192 0.0181 0.0218 0.0394

n=30 Estimator 2.6904 0.9788 0.4874 3.0908
AV 0.3096 -0.1788 -0.1658 -0.2399
MSE 0.0178 0.0161 0.0186 0.0307

n=50 Estimator 2.8008 0.8844 0.4616 2.9112
AV 0.1992 -0.0844 -0.1400 -0.0603
MSE 0.0141 0.0130 0.0144 0.0274

n=100 Estimator 2.8955 0.8202 0.4100 2.8922
AV 0.1045 -0.0202 -0.0884 -0.0413
MSE 0.0102 0.0100 0.0108 0.0221

n=250 Estimator 2.9344 0.8198 0.3755 2.8748
AV 0.0656 -0.0198 -0.0539 -0.0239
MSE 0.0088 0.0081 0.0094 0.0193

n=500 Estimator 3.0031 0.8001 0.3234 2.8033
AV 0.0031 -0.0001 -0.0021 0.0476
MSE 0.0042 0.0073 0.0070 0.0124

Table 6. Bayesian estimation of θ, β, R and h when θ = 3, β = 0.8 under squared loss function when (θ, β) = (3, 0.8)

n creteria θ̂BS β̂BS R̂BS ĥBS

n=10 Estimator 2.7248 0.9879 0.4813 3.0202
AV 0.2752 -0.1879 -0.1597 -0.1693
MSE 0.0134 0.0128 0.0184 0.0212

n=30 Estimator 2.7828 0.9650 0.4646 2.9870
AV 0.2172 -0.1650 -0.1430 -0.1361
MSE 0.0120 0.0112 0.0134 0.0195

n=50 Estimator 2.8992 0.9001 0.4309 2.9013
AV 0.1008 -0.1001 -0.1093 -0.0504
MSE 0.0095 0.0107 0.0105 0.0148

n=100 Estimator 3.0032 0.8605 0.4008 2.8791
AV 0.0032 -0.0605 -0.0792 -0.0282
MSE 0.0041 0.0084 0.0091 0.0123

n=250 Estimator 3.1080 0.8010 0.3641 2.8516
AV -0.1080 -0.0010 -0.0425 -0.0007
MSE 0.0022 0.0070 0.0072 0.0104

n=500 Estimator 3.2237 0.7907 0.3392 2.8304
AV -0.2237 0.0093 -0.0176 0.0205
MSE 0.0018 0.0061 0.0067 0.0098
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Table 7. Bayesian estimation of θ, β, R and h when θ = 3, β = 0.8 under Linex loss function when (θ, β) = (3, 0.8)

n creteria θ̂BL β̂BL R̂BL ĥBL

n=10 Estimator 2.5288 1.0020 0.5322 3.2809
AV 0.4712 -0.2020 -0.2106 -0.4300
MSE 0.0204 0.0198 0.0304 0.0408

n=30 Estimator 2.6010 0.9702 0.5048 3.1207
AV 0.3990 -0.1702 -0.1832 -0.2698
MSE 0.0198 0.0173 0.0207 0.0388

n=50 Estimator 2.7404 0.9001 0.4841 2.9705
AV 0.2596 -0.1001 -0.1625 -0.1196
MSE 0.0143 0.0125 0.0188 0.0346

n=100 Estimator 2.8424 0.8802 0.4595 2.9108
AV 0.1776 -0.0802 -0.1379 -0.0599
MSE 0.0094 0.0098 0.0145 0.0298

n=250 Estimator 3.0076 0.8101 0.4287 2.8890
AV -0.0076 -0.0101 -0.1071 -0.0381
MSE 0.0054 0.0082 0.0125 0.0243

n=500 Estimator 3.0012 0.7905 0.4001 2.8402
AV 0.0012 0.0095 -0.0785 0;0107
MSE 0.0039 0.0055 0.0010 0.0204

Results The previous tables present the estimators of the parameters θ, β, the reliability function R(t), and the
failure rate function using the maximum likelihood method, as well as the Bayesian method under both the sqaured
and Linex loss functions. They also include the values of corresponding Av and MSE.

• for the tables 2, 3 and 4 we took the parameter values (θ, β) = (0.8, 0.5), we note that for large values of n
, the value of MSE tends towards 0 for all the estimators, and this indicates that the estimators obtained are
consistent.

• for tables 5, 6 and 7, we took the values of parameters (θ, β) = (3, 0.8). From these tables we can notice that
the estimators are very close to the true values of the parameters, and also that the values of AV and MSE
decrease when the size of sample increases, therefore, also in this case the estimators are consistent.

• According to the results appearing in the previous tables, we can notice that the smallest values of AV and
MSE are obtained when we apply the Bayesian method with the squared loss function, therefore this method
is the most powerful method among the methods used.

11. Application with real data

The analysis of three real data sets is conducted to demonstrate the applicability of the proposed distribution in
modeling various phenomena and to assess the performance of the methods used for estimating the unknown
parameters.
The suggested distribution is compatible with xgamma, gamma, Weibull, gamma-Lindley, Lomax, and Lindley.
The R software is used to compute the analytical metrics for identifying the best-fitting model, which depends on:
Akkaike information criterion:

AIC = −2l + 2p
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Corrected akaike information criterion

CAIC = −2l +
2p

n− p− 1

Bayesian information criterion:
BIC = −2l + plog(n)

Hannan-Quin information criterion:
HQIC = −2l + 2plog(log(n))

Whith l is the log likelihood function and p is the number of parameter.
then, the Anderson-Darling (AD) and the Cramer-Von-Mises (CVM) statistics are used to compare the fitted
distributions. Also, for each distribution, we calculate the Kolmogorov statistics (K.S) , the maximum likelihood
estimators of the parameters with their associated squared errors.

11.1. First data set: repair times for an airborne communication transceiver

In this subsection, we consider the real data present by [11], The 40 observations are given by:
0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80,1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 2.00,2.00,
2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70,5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

Table 8. The statistics AIC, CAIC, BIC, HQIC, AD and CVM for the fisrt data set

Distribution AIC CAIC BIC HQIQ AD CVM
Power xgamma 249.2266 245.334 252.6043 250.4479 0.105 0.815
xgamma 454.2786 450.3867 457.6564 455.4999 0.145 0.890
gamma 324.556 320.447 328.678 236.4423 0.210 0.995
Weibull 317 320.8919 313.6222 315.7787 0.190 0.940
Gamma-Lindley 276.3694 272.4775 279.7471 277.5906 0.270 1.155
Lomax 391.335 393.4056 400.0087 398.3467 0.235 1.120
Lindley 274.3694 272.422 276.0582 274.98 0.255 1.135

Table 9. Mle of the parameters for the proposed distribution based on first data set

Distribution K.S p-value θ̂mle SE(θ̂mle) β̂mle SE(β̂mle)
Power xgamma 0.225 0.570 1.2319 0.001 0.4240 0.141
xgamma 0.275 0.515 1.5452 0.4287
gamma 0.375 0.490 1.8909 0.6008 1.4217 0.4048
Weibull 0.355 0.510 2.9639 3.1113 2.0024 1.4457
Gamma-Lindley 0.525 0.310 1.2927 0.0085 1.1170 0.1783
Lomax 0.455 0.470 0.5689 0.3699 0.9675 0.4674
Lindley 0.475 0.390 0.4242 0.6018

The following graph give the histogramm with the probability density function, the cumulative distribution
function, reliabilty function and the p-p plots of the first real data set.
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Figure 4. The histogramm with pdf, cdf, reliability function and p-p plots for the first real data set

11.2. secod data set: Times of failure of fatigue fracture of Kevlar 373/epoxy

In this subsection, we present the data set used by [18], the observations are: 1.2985, 1.3211, 1.3503, 1.3551,
1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 0.0251, 0.0886, 0.0891, 0.2501,
0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645,
0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 2.2100, 3.7455, 3.9143, 4.8073, 5.4005,
5.4435, 5.5295, 6.5541, 9.0960, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678,
3.4045, 3.4846, 3.7433, 1.2766, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903,
2.1093, 2.1330. The different mle of the parameters for the proposed distribution are in the folowwing table

Table 10. The statistics AIC, CAIC, BIC, HQIC, AD and CVM for the second data set

Distribution AIC CAIC BIC HQIQ AD CVM
Power xgamma 276.1246 266.1794 274.8761 271.9876 0.3241 0.7121
xgamma 343.8371 339.892 348.4986 345.7001 0.3708 0.7708
gamma 381.2435 377.2014 386.9087 383.0867 0.4118 0.8102
Weibull 427.217 431.1622 422.5556 425.3541 0.3945 0.7924
Gamma-Lindley 407.8128 403.8689 412.4762 409.6777 0.5314 0.9132
Lomax 504.7896 501.8456 509.5632 506.7332 0.5524 0.9314
Lindley 624.0857 622.1127 626.4164 625.0171 0.5208 0.8912
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Table 11. Mle of the parameters for the proposed distribution based on second data set

Distribution K.S p-value θ̂mle SE(θ̂mle) β̂mle SE(β̂mle)
Power xgamma 0.02631 0.8944 1.2310 0.0009 0.7138 0.0070
xgamma 0.03289 0.8322 1.0331 0.0270
gamma 0.04502 0.7841 0.7880 0.0514 0.5213 0.0180
Weibull 0.04342 0.8017 2.3099 1.2318 2.0901 1.6643
Gamma-Lindley 0.05921 0.6523 1.3358 0.0184 1.0204 0.2204
Lomax 0.06902 0.6192 1.1589 0.0897 1.44003 0.5687
Lindley 0.04605 0.7081 0.7947 0.1642

Figure 5. The histogramm with pdf, cdf, reliability function and p-p plots of the second real data set

11.3. Third data set: The lengths of remission times

In this subsection, we used the data set present by [19], the observations are: 0.08, 4.87, 6.94, 8.66, 2.09, 3.48,
13.11, 23.63, 0.20, 13.80, 25.74, 0.50, 2.23, 3.52, 4.98, 6.97, 9.02, 3.88, 5.32, 7.39, 10.34, 13.29, 0.40, 2.26, 9.22,
2.46, 3.64, 5.09, 7.26, 0.51, 2.54, 14.76, 26.31, 0.81, 3.70, 5.17, 7.28, 9.47, 14.24, 25.82, 9.74, 2.62, 3.82, 5.32,
2.69, 4.23, 5.41, 7.62, 7.32, 10.06, 14.77, 32.15, 2.64, 14.83, 34.26, 4.33, 5.49, 7.66, 0.90, 5.34, 7.59, 10.66, 15.96,
2.69, 4.18, 36.66, 12.05, 10.75, 16.62, 43.01, 5.41, 7.63, 11.25, 17.14, 79.05, 17.12, 46.12, 4.40, 5.85, 8.26, 1.26,
2.83, 1.35, 2.87, 5.62, 1.19, 2.75, 4.26, 7.87, 11.64, 4.34, 5.71, 7.93, 11.79, 17.36, 1.40, 3.02, 18.10, 1.46, 11.98,
19.13, 12.02, 2.02, 3.31, 1.76, 3.25, 12.03, 20.28, 2.02, 4.50, 6.25, 8.37, 4.51, 6.54, 8.53, 3.36, 6.76, 8.65, 12.63,
22.69, 12.07, 21.73, 3.57, 5.06, 7.09, 2.07, 3.36, 6.93
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Table 12. The statistics AIC, CAIC, BIC, HQIC, AD and CVM for the third real data set

Distribution AIC CAIC BIC HQIQ AD CVM
power xgamma 1078.027 1074.059 1083.344 1080.344 0.5004 0.0614
xgamma 3816.778 3812.81 3822.482 3820.096 0.6187 0.0887
gamma 4231.763 4225.809 4234.897 4232.543 0.5128 0.0722
Weibull 14935.95 14939.91 14930.24 14933.63 0.5209 0.0836
Gamma-Lindley 4254.786 4250.818 4260.49 4257.104 0.6769 0.1278
Lomax 9876.2234 9871.315 9882.543 1989.6345 0.6304 0.1088
Lindley 6538.435 6536.451 6541.287 6539.593 0.6547 0.1220

Table 13. Mle of the parameters for the proposed distribution based on third data set

Distribution K.S p-value θ̂mle SE(θ̂mle) β̂mle SE(β̂mle)
Power xgamma 0.67188 0.1203 1.2378 0.0163 0.6401 0.0255
xgamma 0.82811 0.3405 0.8571 0.1108
gamma 0.7203 0.2388 0.6578 0.0897 0.8801 0.2089
Weibull 0.73438 0.2707 1.6015 0.1612 1.9194 1.2530
Gamma-Lindley 0.89844 0.3813 1.4846 0.0809 1.0494 0.0622
Lomax 0.83451 0.3486 1.6734 0.2322 1.7098 0.3002
Lindley 0.83594 0.3622 0.9943 0.0423

Figure 6. The histogramm with pdf, cdf, reliability function and p-p plots of the real data set

The tables 8, 10 and 12 present the AIC, CAIC, BIC, HQIC, AD and CVM statistics for the different distributions
based on first, second and third real data set respectively. The numerical values of this statistics shows that the power
xgamma model provides the smallest values of AIC, CAIC, BIC, HQIC, AD and CVM, so, the power xgamma
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model can be selected as the preferred model for the tree real data sets.
The tables 9, 11 and 13 present the K.S statistics (p-value) thus the the mle of the parameters with their squared
errors. We note that power xgamma model has the lowest values of K.s, SE(θ̂mle), SE(β̂mle) and the biggest
p-value compared to the other models, which confirms that the power xgamma model fits this tree data sets better
that all other models.

12. Conclusion

In this study, we explored the new power xgamma distribution, an extension of the xgamma distribution, focusing
on its survival characteristics and statistical properties. We presented and demonstrated various aspects of this
distribution to understand its applicability in statistical modeling.

To estimate the parameters of the power xgamma distribution, we employed two estimation methods:
maximum likelihood estimation (MLE) and Bayesian methods utilizing squared loss and linex loss functions. Our
comparative analysis revealed that the Bayesian method with the linex loss function yielded the smallest errors
among the methods considered. This result highlights the effectiveness of incorporating the linex loss function in
Bayesian estimation for optimizing parameter estimation accuracy.

Furthermore, we applied the power xgamma distribution to a real dataset, illustrating its practical utility in
modeling real-world data scenarios. This empirical validation underscores the robustness and relevance of the new
distribution in statistical applications.

In conclusion, the power xgamma distribution emerges as a promising extension of the xgamma distribution,
offering enhanced flexibility and statistical properties. The preference for the Bayesian method with the
linex loss function underscores the importance of choosing appropriate estimation techniques tailored to the
characteristics of the data and the distribution under study. Future research can further explore advanced Bayesian
methodologies and expand the application domains of the power xgamma distribution in diverse fields of study.
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