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Abstract Given the increasing focus on sustainability and environmental policy constraints, companies are
required to redesign their supply chains. This paper explores the optimization of a closed loop supply chain
(CLSC) network under both economic and environmental considerations. To achieve this, a bi-objective mixed
integer linear model was developed. The proposed model identifies the optimal selection of CLSC facilities and
manages both forward and reverse flows between them. The economic objective is reached by minimizing the total
CLSC costs, while the environmental objective is satisfied by reducing CO2 emissions throughout the network.
Products can be returned throughout their entire life cycle, which is why our model incorporates a dynamic aspect
by considering product life cycle phases as time periods for the decision horizon. The model was tested through
numerical experiments using a meta-heuristic approach based on the non-dominated sorting genetic algorithm
NSGA-II. This algorithm produces a set of Pareto-optimal solutions that balance both objectives effectively. The
results showed good performance in terms of computational time and optimization. Pareto solutions offered various
options for managers and decision makers aiming for a sustainable closed loop supply chain design.
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1. Introduction

With the growing awareness of natural resource scarcity and the increasing imposition of environmental
regulations, companies must rethink their strategies to achieve sustainable operations. This involves
redesigning supply chains to incorporate both environmental and economic factors. Consequently, reverse
logistics activities, such as the collection and recovery of used products, are added to the traditional supply
chain to create a closed loop supply chain (CLSC) [1]. Manufacturers benefit from CLSC by profiting
through the remanufacture of returned consumer products. Remanufacturing is often more energy-efficient
and can be more profitable and quicker than producing new items in some scenarios [2].

The reverse logistics network exerts considerable impact on the forward logistics network and vice versa,
thus necessitating the integrated design of both forward and reverse logistics networks [3]. In fact, the
performance of CLSC is directly influenced by the design of the CLSC network, and much of the existing
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literature has focused on addressing the issue of effective CLSC network design [4, 5, 6]. Recent studies
have particularly emphasized sustainable CLSC design, evaluating both economic and environmental
aspects simultaneously [7, 8]. Within this context, this paper aims to propose a CLSC network design
model that integrates forward and reverse flows and considers two optimization criteria: the total cost of
the CLSC and the reduction of CO2 emissions throughout the network. Considering the product lifecycle,
the CLSC structure is cyclic, with materials and information flowing bidirectionally between network
partners. This establishes a value loop that encompasses all stages of the product lifecycle, considered to
be the decision-making horizon in our proposed model.

In the realm of supply chain design decisions, the proposed model encompasses both strategic and
tactical aspects. Strategic choices involve optimally selecting which facilities to establish and determining
which distribution and recycling centers to operate. Tactical choices focus on optimizing the flow of
products in both forward and reverse logistics, including product allocation, processing quantities, and
the addition or removal of machines or technologies at the operational facilities.

Reviewing the literature on CLSC, various methods have been employed to tackle optimization problems
with competing objectives. One of the most commonly used techniques involves transforming a multi-
objective problem into a single-objective one using the ϵ-constraint method [9]. To produce an efficient
set of Pareto front solutions, the value of ϵ is adjusted within a range that is pertinent to each objective
function. Another method is the weighted sum approach, where solutions are derived by optimizing a
single-objective problem formed by the weighted sum of different objectives. The weights for each objective
are varied multiple times to approximate the Pareto front [10, 11]. This paper adds to the limited number
of studies addressing multi-objective CLSC network design problems with metaheuristic approaches by
applying the non-dominated sorting genetic algorithm NSGAII. In NSGAII, solutions are evaluated based
on non-dominated sorting and crowding distance. Various experiments with different genetic algorithm
parameters were conducted to assess the algorithm’s performance.

The remainder of the paper is organized as follows. In section 2, Literature review on reverse logistics
and closed loop supply chain design is presented. In section 3, the problem definition is described.
In section 4, the closed loop supply chain network design optimization model is formulated including
assumptions, sets, parameters, objectives and decision variables. Section 5 provides numerical experiments
and computational results discussions. Conclusion and future scope are reached in section 6.

2. Literature review

Traditionally, supply chain design focused only on economic aspects (cost minimization or profit
maximization), with few or no regards to its environmental impacts [12, 13]. Moreover, in most of works,
the supply chain network design is basically studied as location-allocation problem [14, 15]. As result
of increasing environmental concerns, traditional supply chains are transformed to green supply chains
by integrating reverse logistics processes. Therefore, not only economic aspects are considered but also
environmental ones. For instance, Fahimnia et al. (2015) have developed an MINLP model to determine
optimal values for products manufactured at different stages of supply chains, the rate of carbon emission
and fuel consumption. The model investigated both economic and environmental trade-offs through several
scenarios in the manufacturing sector [16]. Bouchery et al. (2017) used multi-objective optimization to
tackle the coordination in supply chain in order to reduce the carbon emissions and costs [17]. Kwak and
Kim have developed a decision-support model for determining optimal design of new and remanufactured
products simultaneously and number of returned products in which the trade-off between total profit and
environmental-impact saving was examined [18].

Recently, research studies dealing with reverse logistics and closed-loop supply chain network design
have known a significant increase. They highlighted the important value of integrating forward and
reverse flows in a CLSC model to achieve more effective reduction in emissions [19]. These studies could
be classified in two main categories [20]. A first category involves works that address reverse logistics
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and CLSC network designing and planning [21, 22]. A second one considered that remanufactured and
new products should not be considered separately because of price advantages and included studies on
determining optimum products price and return price decision of CLSC [2, 3, 23, 24].

In fact, works of the two categories share the use of multiobjective CLSC models that combine an
economic objective with an environmental one. For instance, Ghahremani et al. (2020) proposed a multi-
objective model for closed-loop green supply chain network design for multi-products and multi-periods.
They addressed the variability in the modeling of CLSC network design considering demand uncertainty
and discount [25]. Hasani et al. (2021) provided a comprehensive model to maximize the total profit
and minimize the centralization of facilities and amounts of CO2 emission. They considered the tactical
level of supply chain design through the selection of transportation modes [26]. Seydanlou et al. (2022),
developed a multi-objective optimization framework for a sustainable closed-loop supply chain network
in the case of olive industry supply chain. They considered three objectives, namely, minimizing cost,
minimizing CO2 emissions and maximizing job opportunities [27].

Regarding uncertainties consideration, few recent works addressed uncertain environment for modeling
CLSC network design. Dehshiri et al. (2022) proposed a novel robust fuzzy approach for closed-loop
supply chain network design where hybrid uncertainties and flexibility of constraints in the problem were
examined. They considered sustainability issues including targets of cost, transport time, and carbon
emissions [28]. Han et al. (2024) addressed demand uncertainty in their CLSC model considering an
inventory-sharing strategy with continuous approximation approach to solve uncertain demand in their
network design [29]. Kchaou-Boujelben et al. (2023) included three types of uncertainties namely: return
quantity, return quality and remanufacturing costs. To solve their bi-objective CLSC design problem,
they combined the use of NSGA-II genetic algorithm and a linear programming (LP) relaxation [30].

Generally, to solve these complex multi-objective optimization problems, several methods were
conducted in the CLSC literature. The most popular method adopted is to convert the problem to single
objective optimization using multi-criteria decision-making methods, the ϵ-constraint method [31, 32]
or weighted sum and goal programming [11, 15]. Another approach is to use directly multi-objective
evolutionary algorithms to find a set of solutions verifying the notion of Pareto optimum [33, 34]. In
this paper, we opted for a bi-objective modeling of a CLSC design optimization where a multi-criterion
genetic algorithm (GA) of NSGA II type is used to solve the model proposed. Unlike several literature
works that have used this type of GA to solve the CLSC design problem, our work study the effects
of all GA parameters variation on the objective functions’ values conducting several computational
simulations. This is for seeking the optimal values of GA parameters leading to solution optimization.

This paper differs from the previous works by the following considerations:

• Forward and reverse flow are simultaneously integrated for the CLSC design.

• Returned products could be either final products or components and they are integrated into the
forward chain to cover final demands.

• The model proposed covers the strategic and tactical levels at once.

• The suggested model is dynamic and considers product life cycle phases as time periods for Horizon
decision. This is for considering the variability of demand during the entire lifecycle of the product.

3. Problem description

We considered a four-level supply chain network consisting of components’ suppliers at the first level,
production and remanufacturing plants at the second level, distribution centres at the third level and
customers at the fourth level (figure 1). In the forward channel, the supply chain consists of suppliers,
production plants, distribution centres and customers. In the reverse channel, products at the end of
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their life cycle are returned by end customers and received in remanufacturing plants where they are
sorted then recovered through recycling and remanufacturing. It is assumed that products coming out
remanufacturing plants could be either final products or components.

Figure 1. Structure of CLSC network considered.

Given that there are sets of potential suppliers, production plants, distribution centers and
remanufacturing plants, the objective at the strategic of the model proposed is to seek for the optimal
selection of those to be opened and operated. At the tactical level, the aim of the model is to
precise products allocation with amounts produced at each facility and to determine manufacturing and
remanufacturing machines to be added or removed. These decisions are taken in a way to minimize the
total costs and the carbon emission from forward and reverse flows. The model formulation is detailed in
the next section.

4. Model formulation

In this section, we first present the problem assumptions, define input parameters and decision variables
then explain the objective functions and constraints.

4.1. Problem assumptions

The considered assumptions are as follows:

• Demand for components and final products is known.

• Only one mode of transportation is considered.

• Distribution centers assure storage, holding and transportation of finished products.

• Remanufacturing plants could return either components or final products to production plants.

• All manufacturing/remanufacturing technologies (machines) added must not exceed a maximum
number in a way to satisfy plants capacity and investment budgets.
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4.2. Problem sets and data

Before we present the mathematical model, we present sets definition in Table 1 then characterize the
notations of parameters that are used throughout the model in Table 2.

Table 1. Sets definition

Notation Description

C Set of components, indexed by c

S Set of suppliers, indexed by s

P Set of producing plants indexed by p

M, N Sets of production/remanufacturing machines required for processing the
product P indexed by m and n respectively

D Set of distribution centers indexed by d

K Set of customers indexed by k

R Set of recycling centers indexed by r

T Decision horizon indexed by t[2pt]

Table 2. Problem Parameters

Parameter Description

CAc,s,t Purchasing unit cost of supplier s for the component c in period
t.

CTc,s,t Transport mileage cost of supplier s for the component c in
period t.

CSc,p Storage unit cost of the component c in plant p.

Diss,p, Disp,d, Disd,k, Disk,r, Disr,p Distances between supplier s and producing plant p/producing
plant p and distribution center d/distribution center d and
client k/client k and center r/remanufacturing center r and
producing plant p.

CFs,p,t Partnership fixed cost of the supplier s with plant p in period
t.

dc,p,t Demand for component c in plant p in period t.

Capmaxs,c,t Maximum capacity of the supplier s to deliver the component
c in period t.

Chpm,t Production hourly unit cost of the product in the machine m
in period t.

CFAm,t Fixed cost of machine m implementation in period t.
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Parameter Description

CTDp,d,t Transportation mileage cost of product from plant p to a
distributor d.

CFRm,t Removal or jobless cost of the machine m in period t.

Chrn,t Recycling hourly unit cost of the product in the machine n in
period t.

Chrcc,n,t Recycling hourly unit cost of the component c in the machine
n in period t.

CFRAn,t Fixed cost of recycling technology n implementation in period
t.

CFRSn,t Removal or jobless cost of recycling technology n in period t.

Dk,t Demand of the customer k for the final product in period t.

Caprodm,t Maximum capacity of the machine m in period t.

tpum Production unit time of the product in a machine m in period
t.

NEIm,p Number of copies of a machine m originally existing at
producing plant p.

MaxNEm,p,t Maximum number allowed to be added for machine m to plant
p in period t.

Caprecyn,t Recycling maximum capacity of the machine n in period t.

CFr,p Contracting cost related to selection of recycling center r for
plant p.

tpufn Recycling unit time of the finished product in a machine n in
period t.

tpucc,n Recycling unit time of the component c in a machine n in period
t.

NIn,r Copies of a machine n originally existing at remanufacturing
plant r.

MaxNE′
n,r,t Maximum of machine n allowed to be added at remanufacturing

plant r.
CTRcc,r,p,t Transportation mileage cost of returned component c/finished

product p from remanufacturing plant r to production plant p
in period t.

CTKRk,r,t Transportation mileage cost of the returned product from
customer k to remanufacturing plant r in period t.

rc Maximum ratio allowed for recovering component c.

rf Maximum ratio allowed for recovering finished product.

CSDd,t Storage unit cost of the distribution center d in period t.
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Parameter Description

CTKd,k,t Transportation mileage cost from distribution center d to client
k in period t.

CFd,p Fixed cost related to selection of distributor d for plant p in
period t.

αs CO2 emission due to utilization of supplier s.

βp CO2 emission due to utilization of production plant p.

µd CO2 emission due to utilization of distribution center d.

ηr CO2 emission due to utilization of recycling center r.

EId CO2 emission due to holding the product at distribution center
d.

ECs,p CO2 emission due to transportation of components from
supplier to plant p.

ECp,d CO2 emission due to transportation of products to distribution
center d.

ECd,k CO2 emission due to transportation from distribution center d
to client k.

ECk,r CO2 emission due to transportation of returned product from
client k to recycling center r.

ECr,p CO2 emission due to transportation of remanufactured
components and/or finished product from remanufacturing
center r to plant p. [2pt]

4.3. Decision variables

Strategic level decision variables are mainly for the optimal selection of CLSC partners and are as follows:

• Sc,s,p,t =
{

1 if the supplier s is selected to supply production plant p at time t

0 otherwise

• Pp,t =
{

1 if production plant p is selected at time t

0 otherwise

• Dd,p,t =
{

1 if distribution center d is allocated to production plant p at time t

0 otherwise

• Rr,p,t =
{

1 if remanufacturing center r is selected at time t

0 otherwise

For tactical level, decision variables involve allocation of forward and reverse flows through the
network. Qc,s,p,t, Ic,p and QPp,t are respectively the quantity of component c ordered from supplier s for
plant p in period t, inventory of component at the plant p at the end of period t and quantity produced
of finished product at plant p.
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QTDp,d,t, QTKd,k,t and NSDd,t are quantities of final product transferred respectively from producing
plant p to distribution center d, quantity held in distribution center d and quantity of finished product
transferred from distribution center d to customer k (forward flow).

QTk,r,t, QTRcc,r,p,t and QTRfr,p,t are respectively quantity returned from client k to remanufacturing
plant r, quantity of remanufactured component c and quantity of finished product transferred from
remanufacturing plant r to producing plant p (reverse flow).

NEAm,p,t, NEA′
n,r,t, NESm,p,t and NES′

n,r,t are respectively number of copies added of machine m
and n at production plant p and remanufacturing plant r and those removed from them.

4.4. Objective functions and constraints

The model proposed involves two objective functions: minimizing total CLSC costs (F1) and minimizing
expected CO2 emissions (F2).

F1 =
∑
t∈T

∑
c∈C

∑
s∈S

∑
p∈P

((CAc,s,t + CTc,s,t) · Diss,p · Qc,s,p,t)

+
∑
t∈T

∑
c∈C

∑
s∈S

∑
p∈P

CFs,p,t · Sc,s,p,t +
∑
t∈T

∑
c∈C

∑
p∈P

CSc · Ic,p,t (a)

+
∑
t∈T

∑
m∈M

∑
p∈P

(Chpm,t · QPp,t + CFAm,t · NEAm,p,t + CFSm,t · NESm,p,t) · Pp,t (b)

+
∑
t∈T

∑
p∈P

∑
d∈D

(CTDp,d · Disp,d · QTDp,d,t + CFd,p · Dd,p,t)

+
∑
t∈T

∑
d∈D

CSDd,t · NSDd,t +
∑
t∈T

∑
d∈D

∑
k∈K

CTKd,k,t · Disd,k · QTKd,k,t (c)

+
∑
t∈T

∑
k∈K

∑
r∈R

CTKRk,r,t · Disk,r · QTk,r,t (d)

+
∑
t∈T

∑
r∈R

∑
p∈P

(CTRcc,r,p,t · Disr,p · QTRcc,r,p,t + CTRfr,p,t · Disr,p · QTRfr,p,t + CFr,p · Rr,p,t) (e)

+
∑
t∈T

∑
r∈R

∑
p∈P

(Chrr,t · QTRfr,p,t + Chrcc,r,t · QTRcc,r,p,t)

+
∑
t∈T

∑
n∈N

∑
r∈R

CFRAn,t · NEA′
n,r,t + CFRSn,t · NES′

n,r,t (f)

(1)
F2 =

∑
t∈T

∑
c∈C

∑
s∈S

∑
p∈P

αs · Sc,s,p,t +
∑
t∈T

∑
p∈P

βp · Pp,t

+
∑
t∈T

∑
d∈D

∑
p∈P

µd · Dd,p,t +
∑
t∈T

∑
p∈P

∑
r∈R

ηr · Rr,p,t (g)

+
∑
t∈T

∑
s∈S

∑
p∈P

ECs,p,t · Diss,p · Sc,s,p,t +
∑
t∈T

∑
p∈P

∑
d∈D

ECp,d,t · Disp,d · Pp,t

+
∑
t∈T

∑
d∈D

∑
k∈K

ECd,k,t · Disd,k · Dd,p,t +
∑
t∈T

∑
k∈K

∑
r∈R

ECk,r,t · Disk,r · Rr,p,t

+
∑
t∈T

∑
r∈R

∑
p∈P

ECr,p,t · Disr,p · Rr,p,t (h)

+
∑
t∈T

∑
d∈D

EId · NSDd,t (i)

(2)
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The first part (a) of the economic objective F1 (Equation 1) consists of supply, transportation costs of
components, Fixed costs paid to open new suppliers and components’ holding costs at production plant.
The second part (b) takes into account production, addition and removal of production machines costs.
The third term (c) includes transportation costs from production plants to distribution centers, fixed
costs paid to open distribution centers, finished products holding costs and transportation costs from
distribution centers to customers. Transportation costs of returns from customers to remanufacturing
plants are considered in the fourth term (d). Processing and transportation costs of remanufactured
components and products are represented in terms (e) and (f) respectively.

The environmental objective F2 (Equation 2) contains three parts: the first part (g) involves carbon
emission due to the utilization of suppliers, production and remanufacturing plants and distribution
centers. The second part (h) represents carbon emission due to transportation between all facilities.
The last part (i) consists of emission due to holding products at distribution centers. Considering the
following constraints, the model is formalized as follows:

Minimize F1 and F2 under the following 19 constraints:

• (c1) Qc,s,p,t ≤ capmaxc,s,t · Sc,s,p,t , ∀c, s, p, t

• (c2) Ic,p,t−1 +
∑

s∈S Qc,s,p,t +
∑

r∈R QTRcc,r,p,t ≥ dc,p,t , ∀c, p, t

• (c3) Ic,p,t =
∑

s∈S Qc,s,p,t +
∑

r∈R QTRcc,r,p,t + Ic,p,t−1 − dc,p,t , ∀c, s, r, t

• (c4)
∑

r∈R

∑
p∈P QTRfr,p,t +

∑
p∈P QPp,t ≥

∑
k∈K Dk,t , ∀t

• (c5) QPp,t · tpum ≤ Capprodm,t · (NEIm,p + NEAm,p,t − NESm,p,t) , ∀m, p, t

• (c6) NEIm,p + NEAm,p,t − NESm,p,t ≤ MaxNEm,p,t , ∀m, p, t

• (c7)
∑

d∈D QTKd,k,t ≥ Dk,t , ∀k, t

• (c8) NSDd,t = NSDd,t−1 +
∑

p∈P QTDd,p,t −
∑

k∈K QTKd,k,t , ∀d, t

• (c9) QTRcc,r,p,t · tpucm + QTRfr,p,t · tpufm ≤ Caprecyn,t · Rr,p,t · (NIn,r + NEA′
n,r,t − NES′

n,r,t) ,
∀n, r, t

• (c10) NIn,r + NEA′
n,r,t − NES′

n,r,t ≤ MaxNE′
n,r,t , ∀n, r, t

• (c11)
∑

k∈K

∑
r∈R QTk,r,t ≤

∑
p∈P QPp,t

• (c12)
∑

k∈K

∑
r∈R QTk,r,t · rc ≤

∑
p∈P QTRcc,r,p,t , ∀t

• (c13)
∑

k∈K

∑
r∈R QTk,r,t · rf ≤

∑
p∈P QTRfr,p,t , ∀t

• (c14) F2 ≤ maxC , ∀t

• (c15) Qc,s,p,t, Ic,p ≥ 0

• (c16) QPp,t, QTDd,p,t, QTKd,k,t, NSDd,t ≥ 0
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• (c17) QTk,r,t, QTRcc,r,p,t, QTRfr,p,t ≥ 0

• (c18) NEAm,p,t, NESm,p,t, NEA′
n,r,t, NES′

n,r,t ∈ N

• (c19) Zc,s,p,t, Ps,t, Dd,p,t, Rr,p,t ∈ {0, 1}

Constraint (c1) shows that purchased quantity of the component c is limited by the production capacity
of its supplier s. This is valid for each component at any planning period. Constraint (c2) is for components
demand satisfaction. It shows that the sum of amounts of a component received from all suppliers and
those recovered from all remanufacturing plant in a period added to inventory of the previous period
must meet the forecasted demand for this component at plant p in this period. Constraint (c3) shows
that inventory for a component in the end of period (t) at plant p is a function of quantity in stock
at the end of the previous period (t-1), purchased and recovered quantities minus the expected demand
for period (t). Constraint (c4) is for finished product demand satisfaction. It ensures that quantities
produced at all plants and those recovered must meet its estimated demand for each period. Constraint
(c5) ensures that quantities produced of finished product at a plant p respect production capacity of all
available machines in each period at this plant. Constraint (c6) limits number of machines implemented.
Constraint (c7) responds to customer demand satisfaction. It shows that quantities of finished product
delivered from all distribution centers should meet customer demand. Constraint (c8) reflects the flow
conservation at distribution centers. they must receive enough finished product from production plant in
order to meet all demands. Constraint (c9) respects capacities of remanufacturing plants. It shows that
components and finished products ‘quantities that have been recovered at remanufacturing plant respect
their available machines capacities. Constraint (c10) is for the limitation of remanufacturing machines
implementation. Constraint (c11) guarantee that forward channel is greater than reverse one. Constraints
(c12) and (c13) respect returned product ratios. Constraint (c14) is for respecting the carbon policy.
It shows that the amount of carbon being emitted across the CLCS network mustn’t exceed the CO2
emission allowed by legal restrictions. Non negativity and binary constraints are presented in constraints
(c15) to (c19).

5. Experimentation

Before presenting numerical experiments, the metaheuristic solution method adopted with its different
parameters, namely, chromosome representation, fitness evaluation and genetic operators are presented
in the following subsections. The ”gamultiobj” solver in MATLAB is employed to solve our MILP. It is
designed specifically to address such problems using genetic algorithms, which are inspired by the process
of natural selection, to search for a set of Pareto optimal solutions. The solver iterates through generations
of solutions, using operators such as selection, crossover, and mutation to evolve the population towards
optimality.

5.1. NSGA-II solution method

The non-dominated sorting genetic algorithm NSGA-II method was firstly introduced by (Deb et al.,
2002). It maintains the convergence and diversity of the Pareto set by using non-dominated sorting and
crowding distance measure, respectively [35]. The Pareto front represents a set of non-dominated solutions
where no single objective can be improved without degrading another. In the context of bi-objective
optimization, the Pareto Front provides a visual and analytical representation of the trade-offs between
the two objectives. Each point on the Pareto Front signifies a solution where improving one objective
would necessitate a compromise in the other.

The optimization process using gamultiobj involves several key steps:
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i. Initialization: A population of candidate solutions is randomly generated.

ii. Evaluation: Each solution is evaluated based on the defined objective functions.

iii. Selection: Solutions are selected for reproduction based on their dominance status. Non-dominated
solutions are preferred, contributing to the formation of the next generation.

iv. Crossover and Mutation: Genetic operators are applied to create new solutions. Crossover
combines parts of two solutions, while mutation introduces random variations.

v. Pareto Front Update: After each generation, the solutions are evaluated, and the Pareto Front
is updated to include new non-dominated solutions while discarding dominated ones.

vi. Convergence: This process repeats until a stopping criterion is met, such as a maximum number
of generations or convergence to a stable Pareto Front.

Next subsections adapt the NSGA-II to our problem.

5.1.1. Chromosome representation The encoding of the problem to be solved into a chromosome is an
essential part of any GA implementation. Optimization in our problem consists on seeking optimal set of
CLSC partners with allocation of forward and reverse flows. Therefore, a chromosome represents a model
solution where each gene corresponds to a decision variable.

5.1.2. Fitness function and selection method NSGA evaluates chromosomes based on fitness function
value. Since we aim to minimize the overall costs and carbon emissions, the smaller fitness value is the
better. In this work, fitness function is the two objective functions with the corresponding constraints.
According to NSGA-II requirements, the tournament selection technique is used in this work.

5.1.3. Tuning GA parameters To enhance optimization performance and solution quality, tuning the
parameters of the genetic algorithm is crucial. This task is complex due to the non-trivial interactions
among the parameters. In this study, we adopted a step-by-step approach. First, we identified the key
parameters: population size, crossover rate, mutation function, and Max Generation (stopping criteria).
We then proceeded with progressive tuning by modifying one parameter at a time to understand its
individual impact on the algorithm’s performance. For each parameter, we selected a reasonable range
of values to test. After each adjustment, we conducted a visual evaluation to determine the best value
to set for the parameter in question. This evaluation was based on selecting the Pareto Front that best
approached both axes simultaneously, indicating an optimal balance between the objectives.

5.2. Numerical experiments data

To test our model, we consider a CLSC network consisting of two components suppliers, one production
plant, two distribution centers, two remanufacturing plants and two customers. The product plant has 3
machines (1 machine type M1 and 2 machines type M2). Remanufacturing plants have 2 types of machines
N1 and N2. We studied a finished product assembled from two components C1 and C2. Parameters setting
are illustrated in Table 3.
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Table 3. Parameters setting of the numerical experiment

Parameter Notation Value

Components’ costs CAc,s,t

CTc,s,t

CSc,p

7,6,5,7
5,6
3,4

Production/remanufacturing costs Chpm,t

Chrn,t , Chrcc,n,t

CSDd,t

3,1
5,6
3,4

Fixed costs CFAm,t , CFRm,t

CFRAn,t , CFRSn,t

90,100,40,50
100,90,40,30

Transportation costs CTDp,d,t

CTKd,k,t

CTKRk,r,t

CTRcc,r,p,t, CTRfr,p,t

8,9
9,8
7,6
5,6

CO2 released by facilities αs , βp , µd, ηr

EId

3,4,5,2,2,2,3
8,9

CO2 emission due to transportation ECs,p

ECp,d

ECd,k

ECk,r

ECr,p

0.3,0.4
0.2,0.2
0.2,0.1,0.1,0.2
0.3,0.2,0.1,0.3
0.2,0.1

Distance between facilities Diss,p , Disp,d

Disd,k

Disk,r , Disr,p

10,70,50,20
120,80,60,100
70,90,120,100,20,30

Demand dc,p,t

Dk,t

160,160
90,70

Capacities Capmaxs,c,t

Caprodm,t, Caprecyn,t

MaxNEm,p,t, MaxNE′
n,r,t

100,160,120,140
300,200,100,200
8,10,6,5

Return ratios rc, rf 0.1,0.15,0.3

5.3. Computational results

As mentioned before, we proceeded with progressive tuning of GA parameters by modifying one parameter
at once to highlight its individual impact on algorithm performance and Pareto front solution. Next
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subsections show the computational results according to tuning of the following GA parameters: population
size, crossover rate, mutation function, and Max Generation (stopping criteria).

5.3.1. Population size impact We tested the following values for population size: 100, 200, 300 and 400.
Results depicted in figures (2, 3, 4 and 5) show that the more population size is great, the more values of
overall costs F1 (objective 1) and CO2 expected emission F2 (objective 2) are minimal. This is true for
population size from 100 up to 300.

Figure 2. Pareto front for population size 100. Figure 3. Pareto front for population size 200.

Figure 4. Pareto front for population size 300 Figure 5. Pareto front for population size 400

As shown in figure 5 , the performance starts to degrade at population size 400 in which the first
objective is ranged from 1.54509×105 to 1.54515×105 after being ranged from 1.534×105 to 1.539×105

for population size 300. The same remark is observed for the second objective which is ranged from
3.636×103 to 3.368×103 after being ranged from 2.8822×103 to 2.8826×103 for population size 300.

Comparing the four figures, population size 300 is the best value that gave a good Pareto front. This
value is kept then as optimal one for next simulations.

5.3.2. Maximum generation impact Now, we set the population size to 300 and we vary the value of
the maximum number of generations as a stopping criterion for the genetic algorithm. We tested the
following values: 20, 50, 100, 200, 300 and 400. Simulation results are depicted in figures (6, 7, 8, 9, 10
and 11). The Pareto front improves up to 300 where it begins to deteriorate for 400 as maximum number
of generations. The good value is therefore equal to 300.

5.3.3. Crossover rate impact We fixed optimized values of the previous parameters (population size=300,
max generation =300) and we vary the value of crossover rate. The crossover operator means that two
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Figure 6. Pareto front for number of generations 20. Figure 7. Pareto front for number of generations 50.

Figure 8. Pareto front for number of generations 100. Figure 9. Pareto front for number of generations 200.

Figure 10. Pareto front for number of generations 300. Figure 11. Pareto front for number of generations 400.

parent chromosomes are randomly chosen to exchange part of their genes with a certain probability
or rate. We experiment the following values of crossover rate : 0.6, 0.7, 0.8, and 0.9. Pareto solutions
obtained are illustrated in figures (12, 13, 14 and 15).

Comparing these results, the Pareto front that best optimized the two objective is that provided by
crossover rate 0.8.
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Figure 12. Pareto front for crossover rate 0.6 Figure 13. Pareto front for crossover rate 0.7

Figure 14. Pareto front for crossover rate 0.8 Figure 15. Pareto front for crossover rate 0.9

5.3.4. Mutation impact the same logic is conducted for mutation type. We kept population size at
300, maximum number of generations at 300 and crossover rate at 0.8 and we varied the mutation
type. The Matlab gamultiobj solver gives the possibility of choosing between several types of mutation:
Mutationgaussian, Mutationadaptfeasible, MutationPower, mutationpositivebasis and MutationUniform.

The mutationgaussian function adds a random value from a normal distribution, suitable for
continuous variables requiring small adjustments. The mutationpositivebasis function uses a positive
basis to systematically explore positive directions in the solution space, particularly useful for balanced
exploration (figures 16 and 17).

The mutationadaptfeasible function adapts mutations to remain within limits and satisfy problem
constraints, ideal for complex non-linear constraints. The mutationpower function applies a mutation
based on a power distribution, modifying individual elements according to a power parameter, ideal for
non-linear changes (figures 18 and 19).

Finally, the mutationuniform function replaces elements with uniformly distributed values, useful when
variables can take any value within a defined range. These functions increase the diversity of solutions
and enhance the chances of finding optimal solutions (figure 20) .

Comparing these results, the mutationpower provides then the best Pareto front obtained with all
optimized GA operators.
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Figure 16. Pareto front for Mutationgaussian Figure 17. Pareto front for Mutationpositivebasis

Figure 18. Pareto front for Mutationpower Figure 19. Pareto front for Mutationadaptfeasible

Figure 20. Pareto front for MutationUniform

Table 4. Impact of deviation in input model parameters

Change in % in parameter value -50 -20 +20 +50

Demand effect

Objective 1 (F1) -48.13% -13.28% +20.68% +59.06%
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Change in % in parameter value -50 -20 +20 +50

Objective 2 (F2) -44.06% -10.49% +32.96% +88.61%

Costs effect

Objective 1 (F1) -51.69% -25.37% +16.75% +42.28%
Objective 2 (F2) -1.44% -3.26% -3.75% -2.12%

Distance effect

Objective 1 (F1) -48.42% -21.78% +18.74% +41.77%
Objective 2 (F2) -2.52% -1.18% +1.05% +5.45%

5.4. Sensitivity analysis

The aim of this section is to conduct a sensitive analysis of input parameters having practical impact
on the optimal problem solution for our model. We studied the impact of the deviation in the following
parameters: demand, costs and distance between facilities. We explored then how the total CLSC cost
(F1) and CO2 emission (F2) changed with these deviations. Results of the corresponding computations
are presented in Table 4.

The sensitivity analysis conducted for demand change shows that as far as demand increases
(respectively decreases) the total cost and the total emission increase (respectively decrease). This could
be explained by the fact that demand increase enhances the need for more amounts of products to be
supplied, produced and transported which leads to the overall cost increase and that of total emission as
well. This proportionality is also true when the demand decreases.

The same observation is noted for change in distance between facilities and for costs change for the
first objective. For the second objective, the linearity is not observed since total emission is affected
mainly by facilities activity and distances traveled rather than costs.

To sum up, for the three parameters changes, the two objective functions change proportionally. This
is logic since the objective functions and all constraints are linear in the model proposed.

5.5. Comparative analysis with weighted sum method

The weighted sum method aims to convert the multi-objective problem to a single objective one by
assigning different weights to the objective functions. In general, Weights values are attributed by decisions
makers according to their expertise. In our bi-objective optimization problem case, there are two weights
(w1 and w2) to be assigned to objective function F1 and F2 respectively. It is noticeable that w1, w2 ≥ 0
and w1 + w2 = 1. Therefore, the weighted sum formula adapted to our case is as follows:{

Min {F = w1 · F1 + w2 · F2}
Subject to constraints (c1) to (c19)

(3)

Table 5. Weighted sum method results

Weights configuration Objective (F) Objective (F1) Objective (F2)

(w1 = 0.75; w2 = 0.25) 143191 189010 5735
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Weights configuration Objective (F) Objective (F1) Objective (F2)

(w1 = 0.65; w2 = 0.35) 122009 184900 5210
(w1 = 0.6; w2 = 0.4) 110836 182400 3490
(w1 = 0.4; w2 = 0.6) 70322 167960 5230
(w1 = 0.8; w2 = 0.2) 90190 111590 4590

The problem has been programmed and resolved using the MATLAB GA optimtool. The model was
run for different values of w1 and w2 (see Table 5). For each weights’ configuration, values of the two
objective functions F1 and F2 are calculated based on decision variables values given by the solution
and registered in order to be compared to values obtained using the NSGA-II method. As illustrated in
Table 5, assigning values to weights w1 and w2 gives us an idea of the solution for a single and particular
situation. Therefore, we must run a very large number of the two weights combinations to test different
possible scenarios. In fact, the weighted sum method allows only to approach the Pareto front but does
not allow falling on the exact points that constitute it.

By comparing these results with those obtained from NSGA-II, we conclude that NSGA-II surpassed
the weighted sum method in terms of performance, ease of use, and effectiveness of the solutions.
Evaluating the Objective F1 and F2 values for both methods, the weighted sum method still falls short of
the Pareto front values achieved by the NSGA-II algorithm (Objective F1 ranged from 154500 to 154560
and objective F2 ranged from 2890 to 2920). This method requires running the maximum number of
possible weight configurations.

This comparative example clearly shows the good performance of the NSGA-II genetic algorithm for
solving the bi-objective problem.

6. Conclusion and future scope

In this paper, we attempt to provide a four-echelons CLSC network design model integrating forward
and reverse flows. The main objective of the model is to seek an optimal selection of facilities, namely
suppliers, production plants, distribution centers, and remanufacturing plants, as well as optimal product
flows and machine allocation in both direct and reverse channels.

Given that decision makers need to assess the trade-off between costs and environmental impact within
a CLSC system, we have implemented a bi-objective optimization. The first objective function seeks
to minimize costs associated with supply, transportation, remanufacturing, and storage of components.
Additionally, it aims to reduce costs related to the production, remanufacturing, and transportation of
returned products, as well as the costs of adding or removing production and remanufacturing machinery.
The second objective function focuses on minimizing CO2 emissions arising from the use of CLSC facilities
and the transportation between them.

To solve the bi-objective problem, the NSGA-II multi-criteria genetic algorithm was adopted. It
contributes to generate a set of Pareto-optimal solutions that best meet both optimization criteria. Since
GA operators have a significant impact on their performance, we have investigated, through computational
experiments, the impact of each operator on the fitness functions in order to determine the optimal
combination of these parameters that offers the best Pareto front solutions. In addition to the numerical
experiment, the effectiveness of the suggested model is illustrated through a sensitive analysis in which
the impact of the deviation of significant input parameters on the two objectives was investigated. This
analysis showed how much the model proposed is adapted to tackle sources of supply chain flexibility,
such as demand variability through different product life cycles, costs changes, and facilities location.
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Several extensions are worthy of analysis. For example, this paper does not consider uncertainties such
as stochastic demand, it would be interesting to develop in further work a fuzzy multi-criteria decision-
making model with advanced stochastic programming algorithms to handle more realistic scenarios.
Another possible application of our research is to include in our model constraints on the quality of
returned components and products to ensure that returns could be integrated to the forward channel
without any quality concerns. Another extension to pursue is to consider other important emissions such
as NO2 and SO2 for the facilities and transportation network. For all these possibilities, future research
directions would explore other advanced optimization techniques.
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