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Abstract In this paper our software solutions are delivered and installed in field conditions that are either identical to or
comparable to development and test environments. As a result, they can also be used in a variety of settings that differ from
the ones in which they were created and tested. Software dependability can be difficult to increase for a variety of reasons,
including a particular environment or a flaw in the code. In this research, we offer a novel software reliability model that
considers operating environment unpredictability. It has been explained the proposed model and other models of the non-
homogeneous Poisson process (NHPP) is demonstrated with examples. Has been used two sets of defect data from software
applications. We estimated all models’ parameters by using the Cuckoo Search algorithm (CS) technique. We also conducted
a simulation process to determine the good model. Through the results and their comparison with other NHPP models used,
the proposed model is better than the other models and fits the data better.
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1. Introduction

Software reliability growth models (SRGMs) typically assume NHPP and identical testing and operating
environments with independent failures [1, 2]. Studies like this address imperfect debugging in NHPP models.
Researchers [3, 4] proposed SRGMs accounting for fluctuating error counts during debugging.

Uncertain operational environments comprise a range of potential situations and circumstances, encompassing
elements like the operating system, ambient settings, and hardware requirements in which users utilize the program.
A model that takes into account variable operating settings and incorporates a Testing coverage function’s S-
shaped inflection was presented by [5, 6, 7]. Both internal and exterior elements, including voltage, regulation,
programming tools, test settings, and hardware requirements, are examples of Environmental Factors (EFs). As
demonstrated by [8], who took into account variables such as testing effort, abilities, and coverage, testing
environments might differ. Randomness in the effort was investigated by [9] under uncertain testing and operational
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conditions. Although NHPP SRGMs generally presume separate failures, software failures can happen in a
dependent manner due to how EFs interact. Researchers [10, 11] considered dependent failure occurrences.

SRGMs inform release and warranty policies in addition to evaluating dependability. An ideal release strategy
that takes into account poor debugging was presented by [12]. Release rules based on change-point models were
presented by [13, 14]. Research such as [15, 16, 17] combined entropy principles with pre-existing measurements
to generate criteria for evaluating the goodness of fit of SRGMs.[18] provided sophisticated reliability ideas for
hardware and software systems and suggested maintenance plans, whereas [19], gave multi-criteria decision-
making techniques for comparing SRGMs. Software reliability analysis has been used for machine learning and
deep learning methods in recent work [20, 21, 22].

The proposed model effectively addresses key challenges by explicitly incorporating environmental
unpredictability, leading to more accurate and realistic reliability predictions. It also accounts for dependent
failures, providing a more comprehensive understanding of failure dynamics and improving risk management
[23, 24, 25]. By utilizing the Cuckoo Search algorithm for parameter estimation, the model handles complex
data sets with enhanced accuracy, even when data quality is limited. Its user-friendly design simplifies parameter
application, encouraging adoption among practitioners [26, 27]. Furthermore, the empirical validation of the model
with real software defect data demonstrates its effectiveness and reliability in practical scenarios [28].

This paper aims to accomplish two goals: first, it presents a unique SRGM that tackles dependent failures
as well as unpredictable operating situations. Although previous studies have concentrated on fault dependency
or unpredictable settings, our model combines the two for a more thorough examination. Second, we evaluate
our model’s performance using real-world datasets. Our suggested approach outperforms models that only take
dependent failures or uncertain surroundings into account, according to numerical studies, and produces more
accurate failure predictions. In Section 2, we provide an overview of the fundamentals of NHPP SRGMs, present
the models that are already in use, and describe the model that is suggested in this work. In Section 3, the cuckoo
search (CS) algorithm’s process is explained. In Section 4, the datasets and benchmarks utilized for this numerical
investigation are presented. The simulation research is presented in Section 5, and the specifics of the numerical
example using actual data are shown in Section 6. Lastly, the study’s conclusions are presented in Section 7.

2. SRGM

2.1. Non-homogeneous Poisson Process

The NHPP, which is assumed by the majority of SRGMs, is described by the following equation

p [N (t) = y] =
[m (t)]

y
e−m (t)

y!
, y = 1, 2, 3, . . . (1)

It describes the total number of failures up to a specific execution time t, shown as N(t) (t > 0). The predicted
cumulative number of failures at time t is represented by the mean value function m(t). As follows:

m(t) =

t∫
0

λ (u) du, 0 < τ < ∞ (2)

With m(t) [23], the NHPP-based dependability function may be stated as follows. The likelihood of no failures
in the time interval (0, t) is defined as the reliability function R(t), which is provided by:

R(t) = p {N(t) = 0} = e−m (t) (3)

Reliability R(y/t) generally indicates the likelihood that there won’t be any failures during the period. [t, t + y]
is given by:

R
(y
t

)
= p {N (t+ y)−N(t) = 0} = e−[m(t+y)−m(t)] (4)
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Equation 4 is called the SRGM or software reliability based on a non-homogeneous Poisson process (NHPP).
The probability density functions as follows:

f (y) = λ (t+ y) e−[m(t+y)−m(t)] (5)

2.2. Current Software Reliability Growth Models (SRGMs)

When we solve a differential equation, we notice that its form changes depending on the assumptions specified,
and this is done by creating the mean value function m(t) in NHPP SRGM is generated. This is the expression of
the differential equation in the following [24]:

d

dt
m (t) = b (t) [a (t)−m (t)] (6)

The function b(t) represents the failure detection rate for each fault, and the function a(t) also represents the
expected number of original failures [24].

Generally, A well-known differential equation that is industry standard describes the NHPP SRGM. The
following is the derivation of the suggested model’s mean value function [25], in order to take into account, the
unpredictable operating circumstances taken into consideration in this study:

d

dt
m (t) = γ b (t) [a (t)−m (t)] (7)

This equation takes into account the unpredictable working environment by including the random variable η,
which follows a generalized Gamma distribution γ (α, β).

2.3. Proposed Model

Many existing NHPP SRGMs operate under the assumption of identical testing and operating environments, with
failures occurring independently. However, in reality, software failures can be interdependent and operational
settings often differ from testing conditions. For example, an error in one code segment may trigger issues in
related components, and background processes might interfere with software functionality. These scenarios result
in dependent failures. In addition, creating test environments that accurately mimic all operational conditions poses
challenges for testers. The operating environment encompasses various factors like operating systems (Windows,
Mac, Linux), and hardware specs (CPU, GPU, RAM), alongside concurrent background processes. Our proposed
model addresses both dependent errors and erratic working conditions. Numerically quantifying these habitats
is complex; hence Equation 7 introduces the random variable η to represent uncertain operating conditions. We
introduce NHPP reliability model that takes operational environment unpredictability into account. Additionally,
the ensuing presumptions [26] suggested to be:

a (t) = N & b (t) =
1

b2
t, b > 0 (8)

Where b(t) is represented as the fault detection rate per fault unit of time. Equation 7 may be used to derive the
mean value function m(t) in the following manner [16]:

m (t) =

∫
N

1− e
−γ

t∫
0

b(x)dx

 dg (γ) (9)

A thorough software reliability model that incorporates the uncertainty related to the defect detection rate per
unit of time in operational settings was recently proposed [24]. In this case, the random variable is described by a
generalized probability density function g which has two positive parameters: α and β. The Equation 9 gives the
mean value function, which may be represented as follows:
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m(t) = N

1− β

α+
t∫
0

b (x) dx


α

= N

1− β

α+
t∫
0

1
b2xdx


α

(10)

By simplifying Equation 10, we obtain the proposed model:

m (t) = N

(
1− β

α+ 1
2b2 t2

)α

(11)

3. Cuckoo Search Algorithms (CS)

In this section, a new bio-inspired optimization algorithm, namely the Cuckoo Search (CS) algorithm is proposed
in (2014) by [27, 29, 30]. It mimics the hierarchal order in the Cuckoo search and the Behaviour of the Cuckoo
swarm. The Cuckoo Search algorithm is particularly effective for solving complex optimization problems due to
its simplicity and efficiency. The algorithm operates based on key principles derived from the natural behaviors of
cuckoos [31, 32].

Optimization can be defined as a branch of knowledge, dealing with the discovery or investigation of optimal
solutions to a particular problem within a set of alternatives [33], or it can be considered one of the key quantitative
tools in a decision-making network where decisions must be made to optimize one or more objectives in a specific
set of Circumstances. The cuckoo i, a Levy flight is performed, [27]:

xi
(i+1) = xi

i + β ∗ Levy (λ) (12)

Here β is the step size that should be related to the scales. Cuckoo Search has been successfully applied to
a wide range of optimization problems, including function optimization, parameter estimation, feature selection,
and machine learning model tuning. Its simplicity, effectiveness, and ability to handle multimodal and non-convex
optimization problems make it a popular choice for optimization tasks [34].

Nesting and Replacement: In the Cuckoo Search algorithm, each cuckoo lays its eggs in the nests of other
birds. The nests represent potential solutions to the optimization problem. If a host bird discovers an egg that is not
its own (i.e., a poor solution), it may abandon that nest, allowing the cuckoo to take over. This process introduces
a mechanism to replace the less optimal solutions with better ones.

Selection of Best Solutions: The algorithm iteratively evaluates the quality of the nests (solutions) based on
a predefined fitness function. The best solutions are retained, while poorer solutions are replaced, leading to an
overall improvement in the search for optimal parameters.

3.1. Application to the Proposed Model

In the context of the proposed software reliability growth model, the Cuckoo Search algorithm is utilized for
parameter estimation. The methodology involves the following steps:

Step 1. Model Formulation: The proposed model is based on a non-homogeneous Poisson process (NHPP) that
accounts for dependent failures and unpredictable operating conditions. The mean value function m(t) is derived
analytically, which serves as the foundation for parameter estimation.

Step 2. Parameter Estimation: The Cuckoo Search algorithm is employed to estimate the parameters of the
proposed model. This involves:

• Initializing a population of nests (potential parameter sets).
• Evaluating the fitness of each nest using the root mean square error (RMSE) between the observed defect data

and the predicted values from the model.
• Iteratively updating the nests based on the Cuckoo Search principles, where nests are replaced or improved

based on their fitness scores.
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Table 1. MVF for the suggested model as well as the current NHPP SRGMs

No. Model m (t)
1 DPF1 [10] a

1+

(
a
b

(
b+c

c+b ebt

) a
b

)
2 DPF2 [11] a

1+
(

a
b

(
1+c

c+ ebt

)a)
3 DS [28] a

(
1− (1 + bt) e−bt

)
4 GO [29] a

(
1− e−bt

)
5 IS [30]

a(1−e−bt)
1+β e−bt

6 YID [31] a
(
1− e−bt

) (
1− α

b

)
+ αa t

7 PNZ [24]
a(1−e−bt)(1−α

b )+αa t

1+β e−bt

8 PZ [32] (by Pham–Zhang)
(c+a)(1−e−bt)−( a b

b−a )(e
−at−e−bt)

1+β e−bt

9 TC [33] N
(
1− β

β+(a t)b

)α

10 VTUB [25] (VTUB model) N
(
1− β

β+(a t)b−1

)α

11 Suggested Model (New) N
(
1− β

α+ 1
2 b2

t2

)α

Step 3. Simulation and Comparison: After estimating the parameters, the model’s performance is assessed
through simulations. The results are compared against existing NHPP models using various goodness-of-fit metrics,
such as MSE, SAE, PRR, and AIC. This comparison helps to validate the effectiveness of the proposed model in
accurately predicting software reliability under uncertain conditions.

4. Comparing Models

A set of comparison standards is provided in this section. that we will use to objectively analyse the models in
order to determine which one is the best.

4.1. Model Comparison Criteria

The model parameters are estimated using MATLAB software that applies the root mean square error (RMSE)
method once the analytical formula for the mean function m(t) has been derived. The five standard metrics
(predictive power (PP), mean square error (MSE), absolute sum error (SAE), prediction risk ratio (PRR), and
Akaike information criterion (AIC)) are used to test the recommended model for goodness of fit and to compare
it with other models [24]. These criteria apply to the proposed model and some common NHPP models, such as
those listed in Table 1. It is important to note that models 9 in Table 1 take into account the unpredictability of
the environment. The names of the authors or the attributes of each model are abbreviated. Although the proposed
model (New) takes into account dependent failures and unpredictable operational circumstances, VTUB assumes
uncertain operating environments.

4.2. Limitations of the Proposed Model

The proposed model, while addressing dependent failures, makes certain assumptions about these dependencies,
such as linear relationships, which may not always align with real-world scenarios. Although it considers
environmental unpredictability, it might oversimplify the diverse factors affecting software performance, such as
varying hardware, software configurations, and user interactions. The model’s accuracy is also contingent on the
quality and availability of defect data; incomplete or biased data can significantly impact results. Additionally, the
model may not fully account for the complexity of modern software systems, where interactions among numerous
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components can lead to unpredictable behaviors. It assumes static parameters over time, potentially overlooking
the dynamic nature of software development, which requires ongoing model updates. Finally, while validated with
specific defect data, the model’s generalizability to other software systems or domains may be limited.

4.3. Estimation of the Cuckoo Search Algorithm

In this section, we estimate the mean value function of the NHPP SRGM by using the Cuckoo Search (CS) method,
taking into account all the evaluation criteria mentioned in Table 4. The suggested algorithm is defined as follows
using Matlab2019a:

Step 1: Identify each of: the number of particles N = 50; the number of iterations with imax = 100;
Step 2: The positions of each particle, representing estimations for all parameters, are randomly determined.

Initially, these positions are generated from a uniform distribution within the range [0,1].
Step 3: We define the objective function based on the models defined in Table 1.

Step 4: The fitness function is set as RMSE, in which RMSE =

√
Q∑

i=1

(γ̂i−γ)2

Q

Step 5: Generate the initial population randomly.
Step 6: Enter the main loop of the CS.
Step 7: The Cuckoo Search algorithm is based on the following equations:
Levy Flight: si(t+ 1) = si(t) + aL(λ)(si(t)− sj(t))
Cuckoo’s Nest Selection: sj(t+ 1) = si(t+ 1)
Random walk: si(t+ 1) = si(t) + aN(0, 1)
Step 8: By periodically replacing nests, the algorithm can explore the search space more effectively and

potentially find better solutions.
Step 9: Perform Greedy selection.
Step 10: The estimators of parameters are adjusted based on the resultant value of the objective function RMSE.
Step 11: Steps 4 and 7 are repeated until imax is reached.

5. Simulation

A study employing simulation techniques is conducted to evaluate the effectiveness of various estimation methods.
Utilizing data generated through simulation algorithms, these methods are compared to determine the most
effective approach. The algorithms for data generation are implemented in MATLAB, with the process outlined
below:

Creating Random Variables: The following stages comprise the methods used to generate random variables from
a given distribution function:

1. Determine the sample size n and the parameter values of the distribution;
2. Generate random observations from the distribution for the given n and parameter;
3. Calculate the parameter value using the random sample from step 2;
4. Again Steps 2 and 3 according to the specified replication number denoted by N ;

Process Simulation Guidelines: The following outline the primary steps involved in designing the experiments
that are to be simulated under examination.

1. Sample Size Selection: Typically, three sample sizes (20, 50, 100) are selected to demonstrate how variations
in sample size n affect the estimation of model parameters. The choice of sample size significantly impacts the
efficiency and accuracy of the extracted results.

2. Setting the default values: Default values are chosen for the sample size and for the parameters of each model
listed in Table 1.

3. Generating random variables that follow the distribution of each model listed in Table 1, particularly for NHPP
models utilizing the Monte Carlo method;
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Table 2. The Simulated RMSE of each model listed in Table 1. Estimating parameters with various sample sizes and
estimation techniques when a = b = 0.5; α = β = 0.6 & N = c = 0.7

No. Model Sample size(n) RMSE Sample size(n) RMSE Sample size(n) RMSE
1 DPF1 20 1.5095 50 0.9547 100 0.6751
2 DPF2 20 1.0274 50 0.6498 100 0.4595
3 DS 20 1.0612 50 0.6711 100 0.4746
4 GO 20 1.2189 50 0.7709 100 0.5451
5 IS 20 0.8061 50 0.5098 100 0.3605
6 YID 20 8.1229 50 5.1374 100 3.6327
7 PNZ 20 6.7338 50 4.2588 100 3.0115
8 PZ 20 0.5791 50 0.3663 100 0.2590
9 TC 20 1.2867 50 0.8138 100 0.5754
10 VTUB 20 1.2349 50 0.7810 100 0.5522
11 suggested model 20 0.0637* 50 0.0403* 100 0.0285*

Table 3. The Simulated RMSE of each model listed in Table 1. Estimating parameters with various sample sizes and
estimation techniques when a = b = 0.6; α = β = 0.5 & N = c = 0.7

No. Model Sample size(n) RMSE Sample size(n) RMSE Sample size(n) RMSE
1 DPF1 20 1.5095 50 0.9547 100 0.6751
2 DPF2 20 1.0274 50 0.6498 100 0.4595
3 DS 20 1.0770 50 0.6812 100 0.4817
4 GO 20 1.2189 50 0.7709 100 0.5451
5 IS 20 0.8065 50 0.5100 100 0.3607
6 YID 20 16.1644 50 10.2233 100 7.2289
7 PNZ 20 14.2315 50 9.0008 100 6.3645
8 PZ 20 0.5712 50 0.3612 100 0.2554
9 TC 20 1.2867 50 0.8138 100 0.5754
10 VTUB 20 1.2358 50 0.7816 100 0.5526
11 suggested model 20 0.0590* 50 00373* 100 0.0264*

4. After determining the model parameter estimator by various techniques and utilizing the root mean square

error RMSE, contrasting various approaches takes the following form: RMSE =

√
Q∑

i=1

(γ̂i−γ)2

Q

5. Random generation for each model listed in Table 1.

Following the determination of the parameters’ starting values, the values were methodically changed in
conjunction with the sample size and evaluated by many program iterations. n = 20, 50, and 100 sample sizes
were used, along with other parameter value combinations, including (a = b = 0.5;α = β = 0.6;N = c = 0.7)
and (a = b = 0.6;α = β = 0.5;N = c = 0.7). The findings displayed in Table 2 and Table 3 demonstrate that the
RMSE value of the suggested model is consistently lower than that of the other models.

6. Numerical Examples

This section compares the goodness of fit of the proposed and current models by using real data to estimate their
respective criteria. First, we fit each model (mean value function) to the dataset and use the Cuckoo search algorithm
(CS) to estimate each model’s parameters based on the root mean square error RMSE performance. Next, we
compute the criterion using the estimated values of the parameters m̂(t), and compare the models’ goodness of fit.
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Figure 1. The cumulative data volume’s logarithm is represented by the diffusive form.

6.1. Real Data

We utilized two datasets to assess the goodness of fit of various models. The first dataset M11 = [10 2 4 6 6 8 4
3 1 6 1 4] data used to support the findings of this study have been deposited in [23, 24], was gathered by ABC
Software Company. This dataset spans 12 weeks (with time units represented in weeks), during which 55 failures
were observed. It gave the second dataset command and control system developed by Bell Laboratories; this dataset
contains failure data seen during system testing; 136 failures were recorded during a 23-hour period which is M12
= [27 16 11 10 8 1 5 3 1 4 7 5 5 6 0 5 1 1 2 1 2 1 1]. Data used to support the findings of this study have been
deposited in real-time [35, 36, 37].

6.2. Goodness of Fit Tests for Data Set

The goodness-of-fit test is an essential step in statistical analysis, especially when analysing lifetime data, to find
the distribution that best matches the data. Graphical techniques are frequently used in classical tests to evaluate
the appropriateness of the data. This part looks at the data graphically and evaluates how well it fits the mean value
function. Plotting the cumulative failures against the logarithm of time allows for this to be achieved. The data fits
the function for NHPP SRGMs well if the majority of these points form a straight line. Thus, we get the following
equation by taking the natural logarithm and applying it to the cumulative function of the suggested model:

ln [m (t)] = ln (N) + α ln

(
1− β

α+ 1
2b2 t2

)
(13)

By using the programming language MATLAB, the following figure was obtained.

In Figure 1 the graphical distribution illustrates the cumulative failures of days on a logarithmic scale for
the dataset under examination. It’s noteworthy that the scatter plot depicts a linear relationship, suggesting the
feasibility of modeling such data using a mean value function.

6.3. Criteria

Numerous standards have been put out in this study to evaluate how well a model fits the data [23]. In comparison
the proposed model with ten NHPP SRGMs that already exist, nine evaluation criteria are specifically looked at.
The many evaluation criteria used to assess the goodness of fit of various NHPP SRGMs in conjunction with the
suggested model are compiled in Table 4, [37, 38]. These parameters measure the difference or gap between the
expected number of failures as predicted by the MVF of the model, represented as m(ti), It is vital to compare the
expected number of failures, represented as, m(ti), with the actual observed data, represented as yi. In this case,
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Table 4. Evaluation Criteria

No. Criteria

1 MSE [23]

n∑
i=1

(
⌢
m(ti)−yi

)2

n−m

2 PRR [23]
n∑

i=1

(
⌢
m(ti)−yi

⌢
m(ti)

)2

3 PP [23]
n∑

i=1

(
⌢
m(ti)−yi

yi

)2

4 SAE [25]
n∑

i=1

∣∣∣⌢
m (ti)− yi

∣∣∣
5 R-square R2 [28] 1−

n∑
i=1

(
⌢
m(ti)−yi

)2

n∑
i=1

(yi−yl)
2

6 AIC [34] −2 log MLF + 2m

7 PRV [30]

√
n∑

i=1

(
⌢
m(ti)−yi−bias

)2

n−1

8 MAE [34]

n∑
i=1

∣∣∣⌢m(ti)−yi

∣∣∣
n−m

9 MEOP [31]

n∑
i=1

∣∣∣⌢m(ti)−yi

∣∣∣
n−m+1

10 FPA [38]

T∑
t=1

Correct Predictions at time t

T∑
t=1

Total Predictions at time t

× 100%

n represents the total number of data points and m for the total number of model parameters [39, 40]. A smaller
difference between the expected and actual values indicates that the MVF of the model predicts the number of
failures in the dataset more accurately [10, 37, 41].

A statistical metric called the AIC evaluates a model’s fit to the data. It accounts for the model’s parameter count
and maximizes the probability function (L) of the model. Although models with more parameters often fit data
better, overfitting is avoided by the AIC, which penalizes models with too many parameters. The log-likelihood
function (logL) plus a penalty term determined by the number of parameters is how the AIC is computed:

L =

n∏
i=1

(m̂ (ti)− m̂ (ti−1))
yi−yi−1

(yi − yi−1)!
(14)

logL =

n∑
i=1

((yi − yi−1)− m̂ (ti−1)− log (yi − yi−1)!) (15)

In conclusion, there are nine factors that may be used to assess a model’s goodness of fit. A higher R2 value
suggests that the model fits the data better. Compared to other models using the same dataset. Are smaller values
for these parameters often indicating a better model fit.

6.4. Results

Table 5 and Table 6 show the estimated parameters of the models, which were obtained using the Cuckoo Search
algorithm (CS) based on the root mean square error.
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Table 5. Estimation of Dataset (M11) Parameters

No. Model ⌢
a

⌢

b
⌢
α

⌢

β
⌢

N
⌢
c

1 DPF1 9.4297 0.1140 — — — 10.3181
2 DPF2 3.4596 3.2228 — — — 6.0154
3 DS -1.1208 0.3139 — — — —
4 GO 3.1472 4.0579 — — — —
5 IS 4.7331 10.6038 — 10.7170 — —
6 YID 5.2098 6.8974 5.3214 — — —
7 PNZ 7.0928 10.1743 0.0354 1.7601 — —
8 PZ 3.3667 8.5408 0.9324 1.0074 — 2.7473
9 TC 1.8582 2.3261 4.6703 5.1124 3.4883 —
10 VTUB 2.4255 1.8028 2.6347 2.7264 9.4491 —
11 NEW — 2.6124 40.6233 0.4187 4.7557 —

Table 6. Estimation of Dataset (M12) Parameters

No. Model ⌢
a

⌢

b
⌢
α

⌢

β
⌢

N
⌢
c

1 DPF1 7.2508 11.6045 — — — 7.9885
2 DPF2 8.2236 7.6349 — — — 7.6659
3 DS 5.4424 2.0849 — — — —
4 GO 5.9513 8.8399 — — — —
5 IS 4.1066 10.0008 — 12.8173 — —
6 YID 9.3930 8.6980 5.7867 — — —
7 PNZ 3.3827 3.5073 3.4221 8.0882 — —
8 PZ 7.6529 7.1750 13.6901 6.9477 —- 6.3908
9 TC 7.0227 8.1639 13.6522 4.5633 8.2545 —
10 VTUB 4.9023 2.1408 5.9701 11.1018 6.0265 —-
11 NEW 8.8733 6.9631 9.5829 7.2516

Estimated parameter values for the models across the two data sets will be presented in Table 7 and Table 8. It is
shown that our proposed model has the lowest parameters on the dataset M11. Also, for the dataset, M12 has the
lowest parameters. Moreover, these results show that our proposed model outperforms other models in estimating
the total number of failures across datasets.

The MVF for each of the 11 models across the datasets M11 and M12 is shown in Figure 2.

7. Discussion

In summary, the proposed software reliability growth model offers valuable practical implications for software
development practices, including enhanced reliability, risk mitigation, and improved resource management.
However, organizations must also navigate challenges related to complexity, data requirements, and stakeholder
resistance to fully realize the benefits of implementing the model. By addressing these challenges, the model can
contribute significantly to the advancement of software reliability practices in diverse operational contexts.
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Table 7. Model Criteria Value Comparison for Dataset (M11)

Model MSE PRR PP SAE R2 AIC PRV MAE MEOP FPA
DPF1 2.4568 81.0992 71.0598 5.4297 0.7650 38.6958 0.4177 0.4525 2.7975 27.9751
DPF2 0.0243 5.3056 6.0496 0.5404 0.5124 37.7076 0.5797 0.1450 3.2950 32.9500
DS 2.1852 5.9932 4.4978 5.1208 0.4244 39.6251 1.8887 0.4267 3.6767 36.7671
GO 0.0606 3.5202 4.6105 0.8528 0.5526 30.1451 0.4254 0.1711 3.3211 33.2110
IS 0.0448 15.1165 13.9360 0.7331 2.4840 32.1389 0.8944 0.1611 3.1889 31.8890
YID 1.9304 2.3286 2.3256 1.5220 0.8139 34.1689 43.6975 0.8316 2.5816 25.8161
PNZ 1.1574 206.5067 0.5283 3.7268 0.8679 34.2519 1.4174 0.3106 3.5606 35.6061
PZ 0.3724 29.8090 26.1530 2.1140 0.5382 29.5514 0.9988 0.1762 3.0738 30.7380
TC 0.0228 5.4831 6.1916 0.5117 0.5479 28.6368 0.5912 0.1426 3.2926 32.9261
VTUB 2.4744 81.4647 71.3873 5.4491 0.8468 28.6284 0.4053 0.4541 2.7959 27.9590
NEW 0.0220 1.1802 2.6102 1.3844 0.3474 27.1866 0.3469 0.1154 2.3654 23.6540

Table 8. Model Criteria Value Comparison for Dataset (M12)

Model MSE PRR PP SAE R2 AIC PRV MAE MEOP FPA
DPF1 42.2654 3.0607 2.3557 3.2215 0.2085 138.7791 169.6215 6.1393 127.8607 12.7860
DPF2 40.8883 1.4577 1.0147 3.2743 0.6596 142.8089 171.5776 4.0293 129.9707 12.9970
DS 21.1744 11.6273 8.0294 3.2854 0.6971 208.6486 171.2299 3.6643 130.4157 13.0415
GO 55.3108 1.4650 1.3883 3.2572 0.5089 117.2816 170.7210 4.7930 129.2870 12.9287
IS 16.3276 1.4784 5.4082 3.3015 0.8062 122.8768 172.5658 3.0216 131.0584 13.1058
YID 6.3703 1.5784 2.9258 2.8341 0.6521 121.8758 205.3538 21.7162 112.3638 11.2363
PNZ 6.2979 1.0324 1.5742 2.9782 0.9415 116.4497 178.7504 15.9507 118.1293 11.8129
PZ 10.1581 1.4653 2.5790 3.3242 0.9055 126.0082 173.6287 2.1113 131.9687 13.1968
TC 89.1623 2.3183 1.7229 3.2437 0.4257 114.9172 170.4178 5.2504 128.7496 12.8749
VTUB 72.3238 1.0223 1.4308 3.2554 0.4940 141.8089 170.6458 4.8647 129.2153 12.9215
NEW 6.2978 1.0165 1.0146 2.3625 0.0156 114.7360 169.6055 1.4465 112.8311 11.2311

Figure 2. Average value functions for every model for datasets M11 and M12 (A) and (B).

8. Conclusions

This paper aims to propose a model that accounts for unexpected operating conditions and dependent failures.
The results show that our model was better than those that considered unexpected operating conditions (VTUB)
or dependent failures (DPF 1 and DPF 2). We also presented a method for evaluating the reliability of programs
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using the Cuckoo search algorithm. This emphasizes the need to improve reliability. In this study, the Cuckoo
search algorithm was used to achieve the objectives of early reliability evaluation. In operational contexts, pre-
existing models are usually used to test data for predictions. However the difference between the operational and
test settings means that the operating environment’s unpredictability must be taken into account. Our new software
dependability model is based on the use of RMSE, which is frequently used to simulate unpredictable operational
situations. The superiority of our model was illustrated by the findings from Table 7 and Table 8, which summarized
the parameters calculated using the Cuckoo search method and showed reduced values of MSE, SAE and PRR
compared to other models. These results demonstrate how well our model predicts software faults and how it can
be used to increase dependability.
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