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Abstract For two simple graphs G and H , the vertex corona product of G and H , denoted by G⊙H , is the graph obtained
by adding a copy of H for each vertex of G and joining each vertex of G to all vertices in its corresponding copy of H . For
k ≥ 1, a set of vertices D in a graph G is a distance k-dominating set if any vertex in G is at a distance less or equal to k
from a vertex in D. The minimum cardinality overall distance k-dominating sets of G is the distance k-domination number,
denoted by γk(G). The metric dimension of a graph is the smallest number of vertices required to distinguish all other vertices
based on distances uniquely. The concept of distance k-resolving domination in graphs combines both distance k-domination
and the metric dimension of graphs. In this paper, we investigate for all k ≥ 1, the distance k-domination and the distance
k-resolving domination in the vertex corona product of graphs. First, we show that for k ≥ 2, the distance k-domination
number of G⊙H is equal to γk−1(G) for any two graphs G and H . Then, we give the exact value of γk(G⊙H) when G
is a complete graph, complete m-partite graph, path and cycle. We also provide general bounds for γk(G⊙H). Then, we
examine the distance k-resolving domination number for G⊙H . For k = 1, we give bounds for γr(G⊙H) the resolving
domination number of G⊙H and characterize the graphs achieving those bounds. Later, for k ≥ 2, we establish bounds for
γrk(G⊙H) the distance k-resolving domination number of G⊙H and characterize the graphs achieving these bounds.
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product
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1. Introduction

In this paper, we consider only finite, undirected, and unweighted graphs. Graph terminology can be found in [6].
Distance in graphs is a fundamental concept in graph theory. Another well-known concept in graph theory is

domination in graphs. A combination of distance and domination in graphs was introduced by Meir and Moon [21]
in 1975. For k ≥ 1, in a graph G = (V,E), a set D ⊆ V is a distance k-dominating set, if for any vertex v ∈ V \D,
there exists a vertex u ∈ D, such that dG(u, v) ≤ k, where dG(u, v) is the length of a shortest path joining u and
v in G. The distance k-domination number is the minimum cardinality overall distance k-dominating sets of the
graph G, it is denoted by γk(G). Note that for k = 1, the distance 1-domination number is the domination number
of the graph, here denoted simply by γ(G). Distance k-domination in graphs finds applications to many problems,
this includes geometric problems [20], communication networks [24], and facility location problems in operations
research [16]. Precise descriptions and results on the distance k-domination in graphs can be found in [15].
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The metric dimension of a graph is the minimum number of vertices needed to identify all other vertices
based on distances. The concept of metric dimension was introduced independently by Slater [23] in 1975,
and by Harary and Melter [14] in 1976. Formally, for a graph G = (V,E), let W = {w1, w2, ..., wr} be an
ordered set of vertices in G. The metric representation of v ∈ V with respect to W is the r-vector c(v|W ) =
(dG(v, w1), dG(v, w2), ..., dG(v, wr)). The set W is a resolving set of G, if for every two distinct vertices v, u ∈ V ,
c(v|W ) ̸= c(u|W ). The minimum cardinality of a resolving set of G is the metric dimension of G, and is denoted
by dim(G). Resolving sets have many applications to several problems involving graphs, like robot navigation in
networks [19], pharmaceutical chemistry [5], coin weighing problems, strategies for Mastermind game [3, 18], and
more. For a survey on the metric dimension of graphs, we refer the reader to [26]. Example of minimum resolving
set of a path graph of order 8 is illustrated in Figure 1 (a).

A recently studied graph quantity closely related to both metric dimension and distance k-domination is the
distance k-resolving domination in graphs [22, 29]. The concept of distance k-resolving domination combines
together the concepts of resolvability and distance domination in graphs. A set S ⊆ V in a graph G is a distance
k-resolving dominating set, if S satisfies both conditions:

(i) For any v ∈ V , dG(v, S) ≤ k, where dG(v, S) = min{dG(v, x) : x ∈ S}.
(ii) For any two different vertices u, v ∈ V , there exists x ∈ S such that dG(u, x) ̸= dG(v, x).

Notice that condition (i) means that S is a distance k-dominating set of G, and condition (ii) means that S is a
resolving set of G. The distance k-resolving domination number, denoted by γr

k(G), is the minimum cardinality of
a distance k-resolving dominating set of G. When k = 1, the distance 1-resolving domination number is called the
resolving domination number of the graph and is denoted simply by γr(G). For studies on the resolving domination
number of graphs, see for example [1, 2, 13, 17], and for results on the distance k-resolving domination number
for k ≥ 2, we refer the reader to [22, 29]. Examples of distance k-resolving dominating sets of path graph of order
8 for k = 1 and k = 3 are illustrated in Figure 1 (b) and (c), respectively.

Figure 1. (a) Example of minimum resolving set of P8 (b) Example of minimum resolving dominating set of P8 (c) Example
of minimum distance 3-resolving dominating set of P8. Vertices are annotated with their metric representation which are all
unique.

In this paper we investigate, for all k ≥ 1, the distance k-domination and distance k-resolving domination of the
vertex corona product of two graphs. The vertex corona product of two graphs G and H , denoted by G⊙H , is the
graph obtained by adding a copy of H for each vertex v of G and joining v to every vertex of its corresponding
copy of H . To avoid repetition, we call it simply the corona product of graphs.
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Researchers have become increasingly interested in graph operations, such as their product. Researchers are
drawn to the corona product among the many existing graph operations because of its intricate yet distinct structure,
which creates copies of the original graph when one graph is multiplied on its own, creating a massive structure.
Studying its uses and structural characteristics is therefore both necessary and fascinating. Since their introduction
in 1970 by Frucht and Harary [11], many aspects and invariants of the corona product of graphs have been studied,
see [8, 10, 25, 28, 31, 32]. Corona products are very important in data analytics, where large volumes of data must
be quickly processed in order to make a conclusion. It may be applied in biotechnology to DNA sampling [30]. It
may be used in chemistry [7] to understand chemical compound structures. It might also be useful in social science
to understand a community’s or group’s behavioral patterns. In here we focus on the distance k-domination number
and the distance k-resolving domination number of the corona product. For results on the metric dimension of the
corona product of graphs, we refer to [10, 31, 32].

The paper is organized as follows. In Section 2, we give some preliminary results regarding the degree and
the distance in the corona product of two graphs. We establish the maximum degree, minimum degree, diameter
and radius for the corona product of any two graphs. Section 3 is dedicated to the domination number and the
distance k-domination number of the corona product of two graphs. First, we provide another proof showing that
γ(G⊙H) = |G|, where |G| is the order of the graph G. Then we show that for k ≥ 2, γk(G⊙H) = γk−1(G) for
any two graphs G and H . We use these results to give some bounds in general for γk(G⊙H) in terms of k, the
order of G, its diameter, and radius. We also give the exact value of γk(G⊙H) for all k ≥ 1, when H is any graph
and G is a complete graph, complete m-partite graph, path, and cycle. In Section 4, we investigate the resolving
domination number and the distance k-resolving domination number for G⊙H . We give bounds for γr(G⊙H)
in terms of the order of both G and H and characterize the graphs achieving both the upper bound and the lower
bound. Afterward, for k ≥ 2, we give both upper and lower bounds for γr

k(G⊙H). Then we use the equivalence
relationship between dim(G⊙H) and γr

k(G⊙H) to characterize the graphs achieving those bounds. Finally, we
conclude the paper with several directions for future work.

2. Preliminary results

In this section, we give some results on the degree and the distance in the corona product of two graphs, which will
help us understand the structure of the corona product of graphs. First, we will give the formal definition of the
corona product of two graphs G and H . The notations will be used throughout the remainder of the paper.

Let G be a graph of order n1 with vertex set V (G) = {v1, v2, . . . , vn1} and let H be a graph of order n2

with vertex set V (H) = {u1, u2, . . . , un2
}. For 1 ≤ i ≤ n1, let Hi be the i-th copy of H and let V (Hi) =

{ui,1, ui,2, . . . , ui,n2
}. The corona graph G⊙H is the graph with the vertex set V (G⊙H) = V (G) ∪n1

i=1 V (Hi),
obtained from G and by joining the vertex vi of G with an edge with every vertex from Hi the i-th copy of H .

The open neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of vertices that are adjacent to
v in G. The degree of a vertex v in G, denoted by degG(v), is the number of vertices that are adjacent to v in G.
From the definition of the corona product of two graphs, we get the following results.

Lemma 2.1
Let G and H be two graphs. Then the degree of a vertex x in V (G⊙H) is

degG⊙H(x) =

{
degG(x) + n2, if x ∈ V (G);
degH(x) + 1, if x ∈ V (Hi) for 1 ≤ i ≤ n1.

The maximum degree of a graph G, denoted by ∆(G), is the maximum value of the degrees among all vertices of
G. The minimum degree of a graph G is the minimum value of the degrees among all vertices of G and it is denoted
by δ(G). Based on Lemma 2.1, we prove the following results regarding the maximum and minimum degrees of
the corona product of any two graphs G and H .

Lemma 2.2
Let G and H be two graphs.
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• We have ∆(G⊙H) = ∆(G) + n2.
• If G is a trivial graph, then ∆(G⊙H) = n2, and degG⊙H(v) = ∆(G⊙H) = n2 if and only if v ∈ V (G) or
degH(v) = n2 − 1.

• If G is not a trivial graph, we have degG⊙H(v) = ∆(G⊙H) if and only if v ∈ V (G) and degG(v) = ∆(G).

Proof
Let v be a vertex in V (G⊙H). If v ∈ V (Hi) with 1 ≤ i ≤ n1, by Lemma 2.1 we have degG⊙H(v) =
degH(v) + 1. Since degH(v) ≤ n2 − 1, we have degG⊙H(v) ≤ n2. If v is in V (G), by Lemma 2.1 we
have degG⊙H(v) = degG(v) + n2 ≤ ∆(G) + n2. If degG(v) = ∆(G), then degG⊙H(v) = ∆(G) + n2. Therefore
∆(G⊙H) = ∆(G) + n2.

Let G be a trivial graph. Since ∆(G) = 0, from the previous result we have ∆(G⊙H) = ∆(G) + n2 = n2.
If degG⊙H(v) = ∆(G⊙H) = n2, suppose that v ∈ V (Hi) with 1 ≤ i ≤ n1, and degH(v) ≤ n2 − 2. Based on
Lemma 2.1 we have degG⊙H(v) = degH(v) + 1 ≤ n2 − 1, which is a contradiction. Therefore v ∈ V (G) or
degH(v) = n2 − 1. Conversely, if v ∈ V (G), then by Lemma 2.1, we have degG⊙H(v) = n2 = ∆(G⊙H). Also,
if v ∈ V (Hi) and degH(v) = n2 − 1, then by Lemma 2.1 we have degG⊙H(v) = degH(v) + 1 = n2 = ∆(G⊙H).

If G is not trivial, let v be a vertex in V (G⊙H) such that degG⊙H(v) = ∆(G⊙H). Suppose that v ∈
V (Hi) with 1 ≤ i ≤ n1, or (v ∈ V (G) and degG(v) < ∆(G)). If v ∈ V (Hi), based on Lemma 2.1 we have
∆(G⊙H) = degG⊙H(v) = degH(v) + 1 ≤ n2. If u is a vertex in V (G), by Lemma 2.1 we have degG⊙H(u) =
degG(u) + n2. Since G is not a trivial graph, we have degG(u) ≥ 1. Therefore degG⊙H(u) ≥ n2 + 1 > ∆(G⊙H),
which is a contradiction. Now, if v ∈ V (G) and degG(v) < ∆(G), then by Lemma 2.1 we have degG⊙H(v) =
degG(v) + n2 < ∆(G) + n2, again a contradiction, since ∆(G⊙H) = ∆(G) + n2. Conversely, if v ∈ V (G) and
degG(v) = ∆(G), then by Lemma 2.1 we have degG⊙H(v) = degG(v) + n2 = ∆(G) + n2 = ∆(G⊙H).

Lemma 2.3
Let G and H be two graphs.

• We have δ(G⊙H) = δ(H) + 1.
• For v ∈ V (G), we have degG⊙H(v) = δ(G⊙H) if and only if G is a trivial graph and H ∼= Kn2

.
• For uj ∈ V (H), we have for any 1 ≤ i ≤ n1, degG⊙H(ui,j) = δ(G⊙H) if and only if degH(uj) = δ(H).

Proof
Let V (G) = {v1, v2, . . . , vn1} and V (H) = {u1, u2, . . . , un2}. For 1 ≤ i ≤ n1, in G⊙H let us denote by Hi the
i-th copy of H joined to the vertex vi and let V (Hi) = {ui,1, ui,2, . . . , ui,n2

}. For any 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2,
from Lemma 2.1 we have degG⊙H(vi) = degG(vi) + n2 ≥ n2 and δ(H) + 1 ≤ degG⊙H(ui,j) = degG(ui,j) + 1 ≤
n2. For some 1 ≤ j ≤ n2, if degH(uj) = δ(H), then degG⊙H(ui,j) = δ(H) + 1. Therefore, δ(G⊙H) = δ(H) +
1.

Let v ∈ V (G) be such that degG⊙H(v) = δ(G⊙H). From the previous result, we have δ(G⊙H) = δ(H) + 1 ≤
n2. Suppose that G is not a trivial graph or H ≇ Kn2 . If G is not a trivial graph, then for any 1 ≤ i ≤ n1

we have degG(vi) ≥ 1. By Lemma 2.1 we have degG⊙H(v) = degG(v) + n2 ≥ n2 + 1, which is a contradiction.
Now, if H ≇ Kn2

, then there exists a vertex uj in V (H) such that degH(uj) ≤ n2 − 2. Based on Lemma 2.1 we
have degG⊙H(ui,j) ≤ n2 − 1. Since degG⊙H(v) ≥ n2 we have degG⊙H(v) = δ(G⊙H) > degG⊙H(ui,j), again a
contradiction. Conversely, if G is a trivial graph and H ∼= Kn2

, then from the definition of the corona product we
have G⊙H ∼= Kn2+1 and degG⊙H(v) = n2 = δ(G⊙H).

We have δ(G⊙H) = δ(H) + 1. For uj ∈ V (H), if degH(uj) = δ(H), then by Lemma 2.1 for 1 ≤ i ≤ n1

we have degG⊙H(ui,j) = degH(uj) + 1 = δ(H) + 1 = δ(G⊙H). Now, for 1 ≤ i ≤ n1 we have degG⊙H(ui,j) =
δ(G⊙H). Since degG⊙H(ui,j) = degH(uj) + 1 we have degH(uj) + 1 = δ(G⊙H) = δ(H) + 1. It follows that
degH(uj) = δ(H).

The distance between two vertices u and v in a graph G, denoted by dG(u, v), is the minimum length overall
paths joining u and v in G. If u and v lie in distinct components of G, we set dG(u, v) := ∞. The following lemma
is a straightforward consequence of the definition of the corona product of two graphs G and H .
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Lemma 2.4
Let G and H be two graphs. Let Hi be the i-th copy of H in G⊙H and let V (G) = {v1, v2, . . . , vn1} and
V (Hi) = {ui,1, ui,2, . . . , ui,n2

}, for 1 ≤ i ≤ n1. Then

dG⊙H(vi, vj) = dG(vi, vj), for 1 ≤ i, j ≤ n1,

dG⊙H(vi, ukl) = dG(vi, vk) + 1, for 1 ≤ i, k ≤ n1, and 1 ≤ l ≤ n2,

dG⊙H(uij , ukl) =

 dG(vi, vk) + 2, if i ̸= k;
1, if i = k and ujuk ∈ E(H);
2, if i = k and ujuk /∈ E(H).

In a graph G the eccentricity of a vertex v, denoted by eccG(v), is the distance between v and the farthest vertex
from v in G. The diameter of a graph G, denoted by diam(G), is the maximum eccentricity among all the vertices
of G. The diameter of G is also the greatest distance between any two pairs of vertices of G. The radius of a
connected graph G, denoted by rad(G), is the minimum eccentricity among the vertices of G. As a consequence
of Lemma 2.4, we get the following results regarding the diameter and radius of the corona product of two graphs
G and H .

Lemma 2.5
Let G and H be two graphs of order n1 and n2 respectively. Then the following statements hold.

• diam(G⊙H) = 1 if and only if G is a trivial graph and H ∼= Kn2
, and we have G⊙H ∼= Kn2+1.

• diam(G⊙H) = 2 if and only if G is a trivial graph and H ≇ Kn2
.

• If G is not a trivial graph, then diam(G⊙H) = diam(G) + 2 ≥ 3.

Proof
If G is a trivial graph and H ∼= Kn2 , then from the definition of the corona product of G and H , we have
G⊙H is a complete graph of order n2 + 1 and so diam(G⊙H) = 1. Conversely, if diam(G⊙H) = 1, we
suppose that G is not a trivial graph or H ≇ Kn2

with n2 ≥ 1. If G is not a trivial graph, then n1 ≥ 2. Let vi
and vk be two distinct vertices in G. From the definition of the corona product of G and H , any two vertices
ui,j and uk,l from the two copies Hi and Hk respectively, are not adjacent. It follows that dG⊙H(ui,j , uk,l) ≥ 2.
Therefore, diam(G⊙H) ≥ 2, which is a contradiction. On the other hand, if H ≇ Kn2

, let uj and ul be two
vertices in H such that uiuj /∈ E(H). From Lemma 2.4, for some 1 ≤ i ≤ n1, we have dG⊙H(ui,j , ui,l) = 2. Hence
diam(G⊙H) ≥ 2, again a contradiction.

If G is a trivial graph and H ≇ Kn, let V (H) = {u1, u2, . . . , un2
} and let ui and uj with 1 ≤ i, j ≤ n2 be such

that uiuj /∈ E(H). Based on Lemma 2.4, we have dG⊙H(ui, uj) = 2. Therefore, diam(G⊙H) = 2. Conversely,
if diam(G⊙H) = 2, we suppose that G is not a trivial graph or H ∼= Kn. If G is not a trivial graph, let vi and vk be
two distinct vertices in G. Based on Lemma 2.4, dG⊙H(uij , ukl) = dG(vi, vk) + 2 ≥ 3 for uij ∈ Hi and ukl ∈ Hl.
Therefore, diam(G⊙H) ≥ 3, which is a contradiction. Now if H ∼= Kn and G is a trivial graph, then the previous
case shows that G⊙H ∼= Kn2+1 and diam(G⊙H) = 1, again a contradiction.

If G is not a trivial graph, then diam(G) ≥ 1. Let Hi be the i-th copy of H in G⊙H and let V (G) =
{v1, v2, . . . , vn1} and V (Hi) = {ui,1, ui,2, . . . , ui,n2} with 1 ≤ i ≤ n1. From Lemma 2.4 for any 1 ≤ i, j ≤ n1,
we have dG⊙H(vi, vj) = dG(vi, vj) ≤ diam(G). For all 1 ≤ i, k ≤ n1 and 1 ≤ l ≤ n2, we have dG⊙H(vi, ukl) =
dG(vi, vk) + 1 ≤ diam(G) + 1. Also for all 1 ≤ i, k ≤ n1 and 1 ≤ j, l ≤ n2, we have dG⊙H(uij , ukl) ≤
dG(vi, vk) + 2 ≤ diam(G) + 2. Hence diam(G⊙H) ≤ diam(G) + 2. Conversely, let vi, vk ∈ V (G) be such that
dG(vi, vk) = diam(G). Based on Lemma 2.4, for some 1 ≤ j, l ≤ n2, we have dG⊙H(uij , ukl) = dG(vi, vk) + 2 =
diam(G) + 2. Therefore, diam(G⊙H) ≥ diam(G) + 2. Thus, diam(G⊙H) = diam(G) + 2 ≥ 3.

Lemma 2.6
For two graphs G and H , the following statements hold.

• rad(G⊙H) = 1 if and only if G is a trivial graph, i.e., G = K1.
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• If G is not a trivial graph, then rad(G⊙H) = rad(G) + 1.

Proof
Let V (G) = {v1, v2, . . . , vn1

} and V (H) = {u1, u2, . . . , un2
}. For 1 ≤ i ≤ n1, in G⊙H denote by Hi the i-th

copy of H joined to the vertex vi and let V (Hi) = {ui,1, ui,2, . . . , ui,n2
}.

• Let G be a trivial graph and let V (G) = {v}. We have the eccentricity of v in G⊙H is 1. Therefore,
rad(G⊙H) = 1.
Conversely, if rad(G⊙H) = 1, suppose that G is not a trivial, graph which means that n1 ≥ 2. From
Lemma 2.4, for any vi ∈ V (G), 1 ≤ i ≤ n1, for some k ̸= i we have dG⊙H(vi, ukl) = dG(vi, vk) + 1 ≥ 2.
Therefore, for any vi ∈ V (G), we have eccG⊙H(vi) ≥ 2. Also, for any 1 ≤ i, k ≤ n1 and 1 ≤ j, l ≤ n2,
with k ̸= i, we have dG⊙H(uij , ukl) = dG(vi, vk) + 2 ≥ 3. Therefore, for any 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2,
eccG⊙H(uij) ≥ 3. It follows that, rad(G⊙H) ≥ 2, which is a contradiction. Hence G is a trivial graph.

• If n1 ≥ 2, from Lemma 2.4, for any vi ∈ V (G), 1 ≤ i ≤ n1, for some k ̸= i we have dG⊙H(vi, ukl) =
dG(vi, vk) + 1 and dG⊙H(vi, vk) = dG(vi, vk). Therefore, for any 1 ≤ i ≤ n1, eccG⊙H(vi) ≥ rad(G) +
1. For any 1 ≤ i, k ≤ n1 and 1 ≤ j, l ≤ n2, with k ̸= i, we have dG⊙H(uij , ukl) = dG(vi, vk) + 2 and
dG⊙H(vi, ukl) = dG(vi, vk) + 1. Therefore, for any 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, we have eccG⊙H(uij) ≥
rad(G) + 2. Hence, rad(G⊙H) ≥ rad(G) + 1.
Let vi be a central vertex of G, i.e., eccG(vi) = rad(G). From the above eccG⊙H(vi) ≥ rad(G) + 1. Based on
Lemma 2.4, for any 1 ≤ i, k ≤ n1 and 1 ≤ l ≤ n2, we have dG⊙H(vi, ukl) = dG(vi, vk) + 1 ≤ rad(G) + 1
and dG⊙H(vi, vk) = dG(vi, vk) ≤ rad(G). Therefore, eccG⊙H(vi) ≤ rad(G) + 1. Hence, eccG⊙H(vi) =
rad(G) + 1. Thus, rad(G⊙H) = rad(G) + 1.

Since the parameters of the corona product studied in the following sections have a close relationship with
the neighborhood and distance in graphs, the results obtained in this preliminary section will be useful in the
forthcoming sections.

3. Distance k-domination of the corona product of two graphs

In this section, for all k ≥ 1, we will discuss the distance k-domination number of the corona product of two graphs.
First, we present the following relationship between the radius of the graph and the distance k-domination

number, also known as the Duality Lemma.

Lemma 3.1
For k ≥ 1, let G be a connected graph. Then we have rad(G) ≤ k if and only if γk(G) = 1.

Corollary 3.1
For two graphs G and H and for all k ≥ 1, we have γk(G⊙H) = 1 if and only if rad(G) ≤ k − 1.

Proof
Let G and H be two graphs. For k ≥ 1, if γk(G⊙H) = 1, then by Lemma 3.1 we have rad(G⊙H) ≤ k. From
Lemma 2.6, we have rad(G⊙H) = rad(G) + 1, so rad(G) ≤ k − 1.

Conversely, if rad(G) ≤ k − 1, then from Lemma 2.6 we have rad(G⊙H) = rad(G) + 1 ≤ k. From
Lemma 3.1, it follows that γk(G⊙H) = 1.

In the following, for k ≥ 1, we prove that there exists always a minimum distance k-dominating set of G⊙H ,
which is a subset of the vertex set of G.

Lemma 3.2
For k ≥ 1, there exists a γk-set D of the graph G⊙H such that D ⊆ V (G).

Proof
For k ≥ 1, let D ⊂ V (G⊙H) be a γk-set of G⊙H . Suppose that ui,j ∈ D ∩ V (Hi), and let v ∈ V (G⊙H) be
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such that dG⊙H(ui,j , v) ≤ k. Based on Lemma 2.4, if v ∈ V (G) dG⊙H(ui,j , v) = dG(vi, v) + 1 ≥ dG⊙H(vi, v).
If v ∈ V (Hk) with i ̸= k, we have dG⊙H(ui,j , v) = dG(vi, vk) + 2 ≥ dG⊙H(vi, v) = dG(vi, vk) + 1. Therefore,
dG⊙H(vi, v) ≤ dG⊙H(ui,j , v) ≤ k. Hence for any vertex v ∈ V (G⊙H) such that dG⊙H(ui,j , v) ≤ k, we have
dG⊙H(vi, v) ≤ k, which means that the open k-neighborhood, i.e., the set of vertices at distance less or equal
to k, Nk(ui,j ;G⊙H) ⊆ Nk(vi;G⊙H). Since D is a distance k-dominating set containing ui,j , it follows that
replacing ui,j by vi in D, produces the set D′ = D ∪ {vi} \ {ui,j} which is also a distance k-dominating set and
|D′| = |D| = γk(G⊙H). Thus, for k ≥ 1, there is always γk-set D of G⊙H such that D ⊆ V (G).

The following result appeared in [12]. We give another proof by using Lemma 3.2.

Theorem 3.1 ([12])
For two graphs G and H of order n1 and n2 respectively, we have γ(G⊙H) = n1.

Proof
Let G and H be two graphs of order n1 and n2 respectively. In G⊙H , since for 1 ≤ i ≤ n1 every vertex in Hi is
adjacent to the vertex vi ∈ V (G). The set D = V (G) is a dominating set of G⊙H . Therefore, γ(G⊙H) ≤ n1.

We prove equality by using contradiction. Suppose that γ(G⊙H) < n1, from Lemma 3.2 there is a dominating
set D of the graph G⊙H of cardinality |D| = γ(G⊙H) such that D ⊆ V (G). From the supposition we have
|D| < n1, then there is at least one vertex vi ∈ V (G) for 1 ≤ i ≤ n1 and vi /∈ D. Let vi ∈ V (G) \D. We have the
neighborhood NG⊙H(V (Hi)) = {vi}, which means any vertex from V (Hi) is only adjacent to the vertex vi from
V (G). Hence the vertices in V (Hi) are not adjacent to any vertex in D, which means that D is not a dominating
set of G⊙H , which is a contradiction. Therefore, γ(G⊙H) ≥ n1. Thus, γ(G⊙H) = n1.

Next, for k ≥ 2, we show that the distance k-domination number of G⊙H is equal to the distance (k − 1)-
domination number of the graph G.

Theorem 3.2
Let G and H be two graphs. For k ≥ 2, we have γk(G⊙H) = γk−1(G).

Proof
Let G and H be two graphs of order n1 and n2 respectively and let D be a γk−1-set of G. For any vertex
vi ∈ V (G), there is a vertex vj ∈ D such that dG(vi, vj) ≤ k − 1. In G⊙H , from Lemma 2.4, dG⊙H(vi, vj) =
dG(vi, vj) ≤ k − 1. Also for any ui,l ∈ V (Hi), we have dG⊙H(ui,l, vj) = dG(vi, vj) + 1 ≤ k. Hence D is a
distance k-dominating set of G⊙H . Therefore, γk(G⊙H) ≤ |D| = γk−1(G).

Based on Lemma 3.2, let D be a γk-set of G⊙H such that D ⊆ V (G). For all 1 ≤ i ≤ n1, we have for any
vertex ui,l ∈ V (Hi) there is a vertex vj ∈ D such that dG⊙H(ui,k, vj) ≤ k. Since dG⊙H(ui,k, vj) = dG(vi, vj) + 1,
we have dG(vi, vj) ≤ k − 1. Therefore, D is a distance (k − 1)-dominating set of G. Hence γk−1(G) ≤ |D| =
γk(G⊙H), and the proof is completed.

For k ≥ 2, Theorem 3.2, allow us to investigate γk(G⊙H) through the study of γk−1(G).

Lemma 3.3
Let G, H , and H ′ be three graphs. For k ≥ 1, we have γk(G⊙H) = γk(G⊙H ′).

Proof
For k = 1, by Theorem 3.1 we have γ(G⊙H) = γ(G⊙H ′) = |V (G)|.

Now, for k ≥ 2, from Theorem 3.2 we have γk(G⊙H) = γk−1(G), also γk(G⊙H ′) = γk−1(G). It follows that
γk(G⊙H) = γk(G⊙H ′).

Observation 3.1
For k ≥ 1, if G′ is a spanning subgraph of a graph G, then we have γk(G) ≤ γk(G

′).

Proposition 3.1
Let G and H be two graphs. If G′ is a spanning subgraph of G, then we have γ(G⊙H) = γ(G′ ⊙H). Moreover,
for k ≥ 2, we have γk(G⊙H) ≤ γk(G

′ ⊙H).
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Proof
Let G and H be two graphs and let G′ be a spanning subgraph of G. For k = 1, since G′ is a spanning
subgraph of G, by Theorem 3.1 we have γk(G⊙H) = |V (G)| and γk(G

′ ⊙H) = |V (G′)| = |V (G)|. It follows
that γk(G⊙H) = γk(G

′ ⊙H).
For k ≥ 2, by Theorem 3.2 we have γk(G⊙H) = γk−1(G) and γk(G

′ ⊙H ′) = γk−1(G
′). Also, from

Observation 3.1 we have for k ≥ 2, γk−1(G) ≤ γk−1(G
′). It follows that γk(G⊙H) ≤ γk(G

′ ⊙H ′).

In [21], Meir and Moon showed that γk(G) ≤ n

k + 1
, for any connected graph G of order n ≥ k + 1. Topp and

Volkmann [27] characterized the graphs achieving equality. Based on their results and Theorem 3.2, we have the
following.

Theorem 3.3
For k ≥ 2, let G be a connected graph of order n ≥ k and H any graph. Then we have

γk(G⊙H) ≤ n

k
.

There is equality γk(G⊙H) =
n

k
if and only if at least one of the following conditions holds:

• n = k.
• G ∼= C2k.
• G is the graph obtained from a graph H ′ of order at least 2 by attaching a path of length k − 1 to each vertex

of H ′.

Proof
For k ≥ 2, let G be a connected graph of order n ≥ k and let H be any graph. Based on Theorem 3.2, we
have γk(G⊙H) = γk−1(G). From the upper bound in [21], we have for k ≥ 2, γk−1(G) ≤ n

k
. It follows that

γk(G⊙H) ≤ n

k
.

Based on the characterization in [27], for k ≥ 2, we have γk−1(G) =
n

k
if and only if n = k or G ∼= C2k or G

is the graph obtained from a graph H ′ of order at least 2 by attaching a path of length k − 1 to each vertex of H ′.
Since γk(G⊙H) = γk−1(G), we get the results.

In the following, we focus on the distance k-domination number of G⊙H when G belongs to a certain family
of graphs and H is any graph.

Let Kn be a complete graph of order n with V (Kn) = {vi : 1 ≤ i ≤ n}. Every vertex of a complete graph
is connected to the other vertices, so E(Kn) = {vivj : 1 ≤ i ≤ n : 1 ≤ j ≤ n : i ̸= j}. We have diam(Kn) =
rad(Kn) = 1. It is easy to see that γk(Kn) = 1 for all k ≥ 1.

Proposition 3.2
If G is a complete graph Kn and H is any graph, then

γk(Kn ⊙H) =

{
n, if k = 1,
1, if k ≥ 2.

Proof
If n = 1, i.e., G is a trivial graph K1, then by Lemma 2.6 for any graph H we have rad(G⊙H) = 1. It follows
that for k = 1, we have γ(K1 ⊙H) = n = 1. Also for k ≥ 2, we have γk(K1 ⊙H) = 1.

For n ≥ 2, let Kn be a complete graph and H be any graph. We have the diameter and the radius of the complete
graph are equal to 1 and the maximum and minimum degree is ∆(Kn) = δ(Kn) = n− 1. From Lemma 2.5 and 2.6
it follows that diam(Kn ⊙H) = 3 and rad(Kn ⊙H) = 2.

• If k = 1, then from Theorem 3.1, we have γk(Kn ⊙H) = n.
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• For k ≥ 2, since the radius rad(Kn ⊙H) = 2, we have γk(Kn ⊙H) = 1 for k ≥ 2.

Let Kn1,n2,...,nm be the complete m-partite graph of order n =
∑m

i=1 ni, where V1, V2, . . . , Vm are its partite
sets, with |Vi| = ni for 1 ≤ i ≤ m. We have diam(Kn1,n2,...,nm

) = 2 and rad(Kn1,n2,...,nm
) ≤ 2. If for all 1 ≤

i ≤ m, we have ni ≥ 2, then we have γ(Kn1,n2,...,nm
) = 2. Otherwise, γ(Kn1,n2,...,nm

) = 1. For k ≥ 2, we have
γk(Kn1,n2,...,nm) = 1 for any complete m-partite graph.

Proposition 3.3
Let Kn1,n2,...,nm

be a complete m-partite graph of order n with m ≥ 2 and H be any graph. Then we have

γk(Kn1,n2,...,nm
⊙H) =


n, if k = 1,
1, if k = 2 and there is 1 ≤ i ≤ m, such that ni = 1,
2, if k = 2 and for all 1 ≤ i ≤ m, we have ni ≥ 2,
1, if k ≥ 3.

Proof
Let Kn1,n2,...,nm

be a complete m-partite graph of order n =
∑m

i=1 ni with m ≥ 2 and ni ≥ 1 for 1 ≤ i ≤ m and
V1, V2, . . . , Vm are its partite sets and let H be any graph.

• For k = 1, from Theorem 3.1, we have γk(Kn1,n2,...,nm
⊙H) = n.

• If k = 2 and there is 1 ≤ i ≤ m such that ni = 1, let vi be such that Vi = {vi}. We have vi is adjacent
to all the other vertices in Kn1,n2,...,nm

. Therefore γ(Kn1,n2,...,nm
) = 1. From Theorem 3.2 we have

γ2(Kn1,n2,...,nm
⊙H) = γ(Kn1,n2,...,nm

) = 1.
• If k = 2 and for all 1 ≤ i ≤ m we have ni ≥ 2, then by Theorem 3.2 we have γ2(Kn1,n2,...,nm ⊙H) =
γ(Kn1,n2,...,nm

). Let vi ∈ Vi and vj ∈ Vj with i ̸= j, we have vi is adjacent to every vertex not in Vi and
not adjacent to any vertex in Vi, which means a set consisting of a single vertex cannot be a dominating set
of Kn1,n2,...,nm . Hence γ(Kn1,n2,...,nm) ≥ 2. Also, vj is adjacent to every vertex not in Vj . Therefore, the
set D = {vi, vj} is a dominating set of Kn1,n2,...,nm

, which means that γ(Kn1,n2,...,nm
) ≤ |D| = 2. Thus,

γ(Kn1,n2,...,nm
) = 2. It follows that γ2(Kn1,n2,...,nm

⊙H) = γ(Kn1,n2,...,nm
) = 2.

• If k ≥ 3, we have rad(Kn1,n2,...,nm) ≤ 2, then from Corollary 3.1 we have γk(Kn1,n2,...,nm ⊙H) = 1.

A special case of complete k-partite graphs is the star graph K1,n consisting of two partite sets, a single vertex
adjacent to every vertex in an independent set of order n. The distance k-domination number of the corona product
of star graph K1,n and any graph can be deducted from Proposition 3.3.

Corollary 3.2
Let K1,n be a star graph and H is any graph, then

γk(K1,n ⊙H) =

{
n+ 1, if k = 1,
1, if k ≥ 2.

Proof
If k = 1, from Proposition 3.3, we have γ(K1,n ⊙H) = |K1,n| = n+ 1. If k ≥ 2, since K1,n is a complete bipartite
graph with one partition consisting of a single vertex, from Proposition 3.3 it follows that γ(K1,n ⊙H) = 1 for
k ≥ 2.

Let Cn be a cycle graph with vertex set V (Cn) = {vi : 1 ≤ i ≤ n}, and edge set E(Cn) = {vivi+1 : 1 ≤
i ≤ n− 1} ∪ {vnv1}. For 0 ≤ i, j ≤ n− 1, with i ̸= j, we have dCn

(vi, vj) = min{|i− j|, n− |i− j|}. Thus,
diam(Cn) = rad(Cn) = ⌊n

2 ⌋.

Proposition 3.4 ([9])
For k ≥ 1 and n ≥ 3, we have γk(Cn) = ⌈ n

2k+1⌉.

By using Theorem 3.1 and 3.2 together with the distance k-domination number of cycle graphs in Proposition 3.4,
we get the distance k-domination number of the corona product of a cycle graph and any graph.
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Proposition 3.5
If Cn is a cycle graph of order n ≥ 3 and H is any graph, then

γk(Cn ⊙H) =

{
n, if k = 1,
⌈ n
2k−1⌉, if k ≥ 2.

Proof
Let Cn be a cycle graph of order n ≥ 3 and H a graph. If k = 1, then by Proposition 3.3, we have γ(Cn ⊙H) =
|Cn| = n.

For k ≥ 2, from Theorem 3.2 we have γk(Cn ⊙H) = γk−1(Cn). Based on Proposition 3.4, we have γk−1(Cn) =
⌈ n
2k−1⌉. It follows that for k ≥ 2, we have γk(Cn ⊙H) = ⌈ n

2k−1⌉. For an illustration of Proposition 3.5, see
Figure 2.

Figure 2. An illustration of distance k-dominating set with k = 2 of C6 ⊙ P4

Let Pn be the path graph of order n ≥ 3 with vertex set V (Pn) = {vi : 1 ≤ i ≤ n}, and edge set E(Pn) =
{vivi+1 : 1 ≤ i ≤ n− 1}. For 1 ≤ i, j ≤ n, with i ̸= j, we have dPn(vi, vj) = |i− j|. Hence, the diameter of path
is diam(Pn) = n− 1 and the radius rad(Pn) = ⌊n

2 ⌋.

Proposition 3.6 ([9])
For k ≥ 1 and n ≥ 3, we have γk(Pn) = ⌈ n

2k+1⌉.

Based on Theorem 3.1 and 3.2 and the distance k-domination number of path graphs given in Proposition 3.6,
we give the exact distance k-domination number of the corona product of a path graph and any graph.

Proposition 3.7
If Pn is a path graph of order n ≥ 3 and H is any graph, then

γk(Pn ⊙H) =

{
n, if k = 1,
⌈ n
2k−1⌉, if k ≥ 2.

Proof
Let Pn be a path graph of order n ≥ 3 and H is any graph. For k = 1, from Proposition 3.3, we have γ(Pn ⊙H) =
|Pn| = n.

Now if k ≥ 2, by Theorem 3.2 we have γk(Pn ⊙H) = γk−1(Pn). In Proposition 3.4, we have γk−1(Pn) =
⌈ n
2k−1⌉. It means that for k ≥ 2, we have γk(Pn ⊙H) = ⌈ n

2k−1⌉. For an illustration of Proposition 3.7, see
Figure 3.
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Figure 3. (a) The illustration of distance 2-dominating set of P7 (b) The illustration of distance 2-dominating set of P7 ⊙ C4

Davila et al. [9] proved the following lower bounds on the distance k-domination number of a graph in terms of
its diameter and radius.

Proposition 3.8 ([9])
For k ≥ 1, let G be a connected graph. Then we have

(a) γk(G) ≥ diam(G)+1
2k+1 ;

(b) γk(G) ≥ 2rad(G)
2k+1 .

By Lemma 2.5 and Proposition 3.8, if G is a nontrivial connected graph and H is any graph, we have
γk(G⊙H) ≥ diam(G⊙H)+1

2k+1 = diam(G)+3
2k+1 . By using the result in Theorem 3.2 and Proposition 3.8, we have been

able to improve this lower bound for γk(G⊙H).

Proposition 3.9
For k ≥ 2, let G be a connected graph and H be any graph. Then we have γk(G⊙H) ≥ diam(G)+1

2k−1 , and this lower
bound is sharp.

Proof
Let G be a connected graph and let H be any graph. For k ≥ 2, by Theorem 3.2, we have γk(G⊙H) = γk−1(G).
In Proposition 3.8 (a) we have for k ≥ 2, γk−1(G) ≥ diam(G)+1

2k−1 . It follows that γk(G⊙H) ≥ diam(G)+1
2k−1 .

For k ≥ 2, if we consider the path graph Pn of order n = p(2k − 1) with p ≥ 1, then by Proposition 3.7
for any graph H we have γk(Pn ⊙H) = ⌈ n

2k−1⌉ =
n

2k−1 . Since diam(Pn) = n− 1, we get that γk(Pn ⊙H) =
diam(Pn)+1

2k−1 . Hence, for all k ≥ 2 the path graph Pn of order n = p(2k − 1) with p ≥ 1 achieves the lower bound
diam(G)+1

2k−1 .

Also, by Lemma 2.6 and Proposition 3.8, if G is a nontrivial connected graph and H is any graph, we have
γk(G⊙H) ≥ 2rad(G⊙H)

2k+1 = 2rad(G)+2
2k+1 . From Theorem 3.2 and Proposition 3.8, we can improve this lower bound

for γk(G⊙H) in terms of the radius of G.

Proposition 3.10
For k ≥ 2, let G be a connected graph and H be any graph. Then we have γk(G⊙H) ≥ 2rad(G)

2k−1 , and this lower
bound is sharp.
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Proof
Let G be a connected graph and H be any graph. For k ≥ 2, by Theorem 3.2, we have γk(G⊙H) = γk−1(G). For
k ≥ 2, from Proposition 3.8 (b) we have, γk−1(G) ≥ 2rad(G)

2k−1 . Thus, γk(G⊙H) ≥ 2rad(G)
2k−1 .

Now, if we consider the path graph Pn of order n = 2p(2k − 1) with p ≥ 1, then by Proposition 3.7 for any
graph H we have γk(Pn ⊙H) = n

2k−1 . We have rad(Pn) = ⌊n
2 ⌋, then if n = 2p(2k − 1), we have 2rad(Pn) =

2p(2k − 1) = n. It follows that γk(Pn ⊙H) = 2rad(Pn)
2k−1 . Hence, the path graph Pn of order n = 2p(2k − 1) with

p ≥ 1 achieves the lower bound 2rad(G)
2k−1 for all k ≥ 2.

4. Distance k-resolving domination of the corona product of two graphs

In this section, we will investigate the distance k-resolving domination, the concept combining both resolvability
and distance k-domination.

First, we will prove the following useful lemma.

Lemma 4.1
Let G be a connected graph of order n ≥ 2 and H be any nontrivial graph. If W is any resolving set of G⊙H ,
then for all 1 ≤ i ≤ n, W contains at least one vertex from each copy V (Hi).

Proof
If G is a connected graph of order n ≥ 2 and H be any nontrivial graph. In G⊙H , for all 1 ≤ i ≤ n, by Lemma 2.4,
for any two distinct vertices ui,l and ui,m in the i-th copy Hi we have dG⊙H(ui,l, x) = dG⊙H(ui,m, x) for every
vertex x ∈ V (G⊙H) \ V (Hi). Then for any W resolving set of G⊙H , W must contain at least one vertex of
each V (Hi) with 1 ≤ i ≤ n.

For a connected graph G of order n, in [1] we have the resolving domination number 1 ≤ γr(G) ≤ n− 1. Next,
we give general bounds for γr(G⊙H) for any connected graph G and any nontrivial graph H in terms of the
orders of G and H .

Theorem 4.1
Let G be a connected graph of order n1 ≥ 2 and H be any nontrivial graph of order n2. Then we have

n1 ≤ γr(G⊙H) ≤ n1 · n2.

Proof
If G is a connected graph of order n1 ≥ 2 and H is any graph of order n2 ≥ 2, based on Lemma 4.1, we have
any resolving set of G⊙H must contain at least one vertex of each V (Hi) for all 1 ≤ i ≤ n1. Therefore, for
all 1 ≤ i ≤ n1, any resolving dominating set must contain at least one vertex of each V (Hi). It follows that
γr(G⊙H) ≥ n1.

Let S = ∪n1

i=1V (Hi). We have V (G) = V (G⊙H) \ S. For any two distinct vertices vi, vj ∈ V (G), by
Lemma 2.4 we have dG⊙H(vi, u) = 1 ̸= dG⊙H(vj , u) = dG(vi, vj) + 1 for u ∈ V (Hi). Therefore, the set S is a
resolving set of G⊙H . Also, any vertex vi, with 1 ≤ i ≤ n1, is adjacent to a vertex u in V (Hi). It follows that
S is a dominating set of G⊙H . Therefore, S is a resolving dominating set of G⊙H . Thus, γr(G⊙H) ≤ |S| =
n1 · n2.

The complement graph of a graph G, denoted by G, is the graph whose vertex set is V (G) = V (G) and where
uv ∈ E(G) if and only if uv /∈ E(G). We have the following characterization of graphs achieving the upper bound
in Theorem 4.1.

Theorem 4.2
If G is a nontrivial connected graph of order n1 and H a nontrivial graph of order n2, then γr(G⊙H) = n1 · n2 if
and only if H ∼= Kn2 . Moreover, if H ≇ Kn2 , then we have γr(G⊙H) ≤ n1 · (n2 − 1).

Stat., Optim. Inf. Comput. Vol. 13, January 2025



84 DISTANCE K-DOMINATION AND K-RESOLVING DOMINATION OF THE CORONA PRODUCT

Proof
If G is any connected graph of order n1 ≥ 2, we will show that γr(G⊙Kn2) = n1 · n2 with n2 ≥ 2. Let Hi

with 1 ≤ i ≤ n1 be the i-th copy of Kn2
in G⊙Kn2

where V (Hi) = {ui,l : 1 ≤ l ≤ n2}. For any two distinct
vertices ui,l, ui,m ∈ V (Hi), we have the neighborhood NG⊙Kn2

(ui,l) = NG⊙Kn2
(ui,m) = {vi}, which means that

any resolving set of G⊙Kn2
contains at least all but one of the vertices in V (Hi) for all 1 ≤ i ≤ n1. Let S be

a minimum resolving dominating set of G⊙Kn2
. From above, S contains all but one of the vertices in V (Hi)

for all 1 ≤ i ≤ n1. Let ui,l, with 1 ≤ l ≤ n2, be the vertex in V (Hi) not in S. We have NG⊙Kn2
(ui,l) = {vi} for

all 1 ≤ i ≤ n1. If S is a dominating set of G⊙Kn2
, then S must contain ui,l or vi for all 1 ≤ i ≤ n1. Hence,

γr(G⊙Kn2) = |S| ≥ n1 · n2. From the upper bound of Theorem 4.1, it follows that γr(G⊙Kn2) = n1 · n2.
To show the converse, we suppose that H is not an empty graph Kn2

, which means that H contains at least one
edge. Let ulum ∈ E(H). Now, consider the set of vertices S in G⊙H , where S = ∪n1

i=1V (Hi) \ {ui,l}. First, we
show that S is a resolving set of G⊙H . For x and y two distinct vertices in V (G⊙H) \ S, we have the following.

• If x = vi ∈ V (G) and y = vj ∈ V (G) with i ̸= j, then based on Lemma 2.4 for u ∈ V (Hi) ∩ S, we have
dG⊙H(x, u) = 1 < dG⊙H(y, u) = dG(x, y) + 1.

• If x = vi ∈ V (G) and y = uj,l ∈ V (Hj) \ S with i ̸= j, then from Lemma 2.4 for u ∈ V (Hi) ∩ S, we have
dG⊙H(x, u) = 1 < dG⊙H(y, u) = dG(vj , vi) + 2.

• If x = vi ∈ V (G) and y = ui,l ∈ V (Hi) \ S, for u ∈ V (Hj) ∩ S with j ̸= i, from Lemma 2.4 we have
dG⊙H(x, u) = dG(vi, vj) + 1 < dG⊙H(y, u) = dG(vi, vj) + 2.

• If x = ui,l ∈ V (Hi) \ S and y = uj,l ∈ V (Hj) \ S with j ̸= i, then by Lemma 2.4 for u ∈ V (Hi) ∩ S, we
have dG⊙H(x, u) ≤ 2 and dG⊙H(y, u) = dG(vj , vi) + 2 ≥ 3. Therefore, dG⊙H(x, u) ̸= dG⊙H(y, u).

It follows that S is a resolving set of G⊙H . Also, since ulum ∈ E(H), it is easy to see that S is a dominating set
of G⊙H . Hence, S is a resolving dominating set of G⊙H . Thus, γr(G⊙H) ≤ |S| = n1 · (n2 − 1). Therefore,
the result follows.

Next, we characterize the graph achieving the lower bound in Theorem 4.1.

Theorem 4.3
If G is a nontrivial connected graph of order n1 and H a nontrivial graph of order n2, then γr(G⊙H) = n1 if and
only if H ∼= K2.

Proof
If G is any connected graph of order n1 ≥ 2, we show first that γr(G⊙K2) = n1. Let Hi with 1 ≤ i ≤ n1 be the i-
th copy of K2 in G⊙K2 where V (Hi) = {ui,1, ui,2}. From Theorem 4.2, we have γr(G⊙K2) ≤ n1 · (n2 − 1) =
n1. Therefore, based on the lower bound in Theorem 4.1, we get that γr(G⊙K2) = n1.

Conversely, if H has order n2 ≥ 3, we suppose that γr(G⊙H) = n1. Now let S be a minimum resolving
dominating set of G⊙H . By Lemma 4.1, S contains at least one vertex from each V (Hi) with 1 ≤ i ≤ n1. Since
|Si| = n1, S consists of the union of a single vertex from each V (Hi). Now let ui,l, ui,m ∈ V (Hi) \ S. Since S is a
dominating set of G⊙H , from Lemma 2.4, we have ui,l and ui,m are both adjacent in G⊙H to u ∈ V (Hi) ∩ S,
which means that dG⊙H(ui,l, u) = dG⊙H(ui,m, u) = 1. Also, from Lemma 2.4, dG⊙H(ui,l, u) = dG⊙H(ui,m, u)
for u ∈ V (Hj) ∩ S for all 1 ≤ j ≤ n1 with j ̸= i. It means that S is not a resolving set of G⊙H , which is a
contradiction. Therefore, if γr(G⊙H) = n1, then necessarily H has order n2 = 2. The only graphs with order
2 are the graph K2 and the graph K2. Based on Theorem 4.2, we have γr(G⊙K2) = 2 · n1. It follows that
γr(G⊙H) = n1 if and only if H ∼= K2.

A comment without a proof in [32], suggested that the resolving domination number γr(G⊙H), where it is
called location domination number, is equal to dim(G⊙H) for any two connected graphs G and H . However,
this is not true. For example, if we consider G to be an edge K2 and H to be the path P3 of order 3, then we have
γr(K2 ⊙ P3) = 4 and dim(K2 ⊙ P3) = 2. Besides the case where k = 1, the equality holds between the distance
k-resolving domination number and the metric dimension of the corona product of two graphs.
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Lemma 4.2
If G is a connected graph of order n1 and H any nontrivial graph of order n2, then for k ≥ 2, γr

k(G⊙H) =
dim(G⊙H).

Proof
If n1 = 1, i.e., G is a trivial graph K1, then by Lemma 2.5 we have diam(G⊙H) ≤ 2, which means that
for k ≥ 2, we have γr

k(G⊙H) = dim(G⊙H). If n1 ≥ 2, let W be a metric basis of G⊙H . Based on
Lemma 4.1, W contains at least one vertex from each copy V (Hi) in G⊙H . For vi ∈ V (G), with 1 ≤ i ≤ n1,
by Lemma 2.4 we have dG⊙H(vi, u) = 1 ≤ k for u ∈ W ∩ V (Hi). Also, for ui,l ∈ V (Hi) \W , by Lemma 2.4
we have dG⊙H(ui,l, u) ≤ 2 ≤ k for u ∈ W ∩ V (Hi). Therefore, W is a distance k-dominating set of G⊙H .
Hence γr

k(G⊙H) ≤ |W | = dim(G⊙H). In [22], we have dim(G⊙H) ≤ γr
k(G⊙H), it follows that for k ≥ 2,

γr
k(G⊙H) = dim(G⊙H).

Lemma 4.2, enables us to investigate γr
k(G⊙H) throughout the study of dim(G⊙H) and conversely dim(G⊙

H) can be explored throughout the study of γr
k(G⊙H).

In [22], it is shown that 1 ≤ γr
k(G) ≤ n− 1 for any connected graph G of order n. In the following we give

bounds for γr
k(G⊙H) in terms of the orders of G an H .

Theorem 4.4
Let G be a connected graph of order n1 ≥ 2 and H be any nontrivial graph of order n2. Then for k ≥ 2, we have

n1 ≤ γr
k(G⊙H) ≤ n1(n2 − 1).

Proof
In [10], it is shown that n1 ≤ dim(G⊙H) ≤ n1(n2 − 1). Then by Lemma 4.2, for any connected graph G of order
n1 ≥ 2 and any nontrivial graph H of order n2, for k ≥ 2, we have n1 ≤ γr

k(G⊙H) ≤ n1(n2 − 1).

The graphs achieving the equality dim(G⊙H) = n1 and dim(G⊙H) = n1(n2 − 1) were given in [10] as
follows.

Theorem 4.5 ([10])
If G is a nontrivial connected graph of order n1 and H a nontrivial graph of order n2, then the following statements
hold.

• dim(G⊙H) = n1 if and only if H ∈ {K2, P3,K2, P 3}.
• dim(G⊙H) = n1(n2 − 1) if and only if H ∈ {Kn2

,Kn2
}.

From Lemma 4.2 and Theorem 4.5, we get the following characterizations.

Corollary 4.1
If G is a nontrivial connected graph of order n1 and H is a nontrivial graph of order n2, then for k ≥ 2, the following
statements hold.

• γr
k(G⊙H) = n1 if and only if H ∈ {K2, P3,K2, P 3}.

• γr
k(G⊙H) = n1(n2 − 1) if and only if H ∈ {Kn2 ,Kn2}.

Proposition 4.1 ([31])
If G is any connected graph of order n1 ≥ 2 and H is any graph of order n2 ≥ 2, then we have the following.

• dim(G⊙H) = dim(G⊙H).
• If diam(H) ≤ 2, then dim(G⊙H) = n1 · dim(H).
• If diam(H) ≥ 6 or H is a cycle of order n2 ≥ 7, then dim(G⊙H) = n1 · dim(K1 ⊙H).

By combining Lemma 4.2 and Proposition 4.1, we get the following results for γr
k(G⊙H) for k ≥ 2.

Corollary 4.2
If G is any connected graph of order n1 ≥ 2 and H is any graph of order n2 ≥ 2, then for k ≥ 2 we have the
following.
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• γr
k(G⊙H) = γr

k(G⊙H).
• If diam(H) ≤ 2, then γr

k(G⊙H) = n1 · dim(H).
• If diam(H) ≥ 6 or H is a cycle of order n2 ≥ 7, then γr

k(G⊙H) = n1 · dim(K1 ⊙H).

5. Concluding remarks

In conclusion, this paper investigated the concepts of domination, distance domination, and distance resolving
domination in the context of the vertex corona product of graphs. We have established exact values and bounds
for the domination number, the distance k-domination number, and the distance k-resolving domination number of
the corona product of two graphs G and H in general. We also explored these parameters for the corona product
when G or H belong to some special classes of graphs such as paths, cycles, complete graphs, complete k-partite
graphs, and diameter two graphs. There are still several avenues for further investigation in this area of study, such
as studying these parameters for the corona products when G or H belong to some graph classes not studied here.

Since the lower bounds in Proposition 3.9 and 3.10 are attained and by Lemma 2.6 we have γk(G⊙H) =
γk(G⊙H ′) for any two graphs H and H ′, the following questions naturally arise.

• Can we characterize the graphs G having γk(G⊙H) = diam(G)+1
2k−1 ?

• Can we characterize the graphs G having γk(G⊙H) = rad(G)+1
2k−1 ?

Also, from Theorem 4.1, it would be interesting to investigate the following question regarding the resolving
domination number of the corona product of two graphs.

• If G is a nontrivial connected graph of order n1 and H a nontrivial graph of order n2, let n1 + 1 ≤ γ ≤
n1 · (n2 − 1). Is it possible to characterize for which graphs G and H we have γr(G⊙H) = γ?

From Lemma 4.2, for k ≥ 2, finding the distance k-resolving domination number of G⊙H is equivalent to
finding dim(G⊙H). In view of Theorem 4.4, a similar question as above could be proposed for the distance
k-resolving domination number and the metric dimension of the corona product of two graphs.

• If G is a nontrivial connected graph of order n1 and H a nontrivial graph of order n2, let n1 + 1 ≤ γ ≤
n1 · (n2 − 2). Is it possible to characterize for which graphs G and H we have γr

k(G⊙H) = γ?
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