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Abstract Breast cancer (BC) is a global health challenge that affects millions of women worldwide and leads to significant
mortality. Recent advancements in next-generation sequencing technology have enabled comprehensive diagnosis and
prognosis determination using multiple data modalities. Deep learning methods have shown promise in utilizing these
multimodal data sources, outperforming single-modal models. However, integrating these heterogeneous data sources
poses significant challenges in clinical decision-making. This study proposes an optimized multimodal CNN for a stacked
ensemble model (OMCNNSE) for breast cancer prognosis. Our novel method involves the integration of the Tug of War
(TWO) algorithm to optimize the hyperparameters of a convolutional neural network (CNN), enhancing feature extraction
from three distinct multimodal datasets: clinical profile data, copy number alteration (CNA), and gene expression data.
Specifically, we employ the TWO algorithm to optimize separate CNN models for each dataset, identifying optimal values
for the hyperparameters. We then trained the three baseline CNN models using the optimized values through 10-fold cross-
validation on the METABRIC breast cancer dataset. Finally, we utilize an ensemble learning approach to integrate the
models’ predictions and apply an SVM classifier for the final prediction. To validate the proposed method, we used the TCGA
dataset as an independent test set. Our results demonstrated the effectiveness of the OMCNNSE approach for predicting
breast cancer prognosis, achieving high AUC, accuracy, sensitivity, precision, and MCC, and outperforming traditional
single-modal models and other state-of-the-art methods.
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1. Introduction

Hyperparameter optimization in deep learning, particularly in convolutional neural networks (CNNs), is crucial
in bioinformatics and other fields. It improves model regularization and performance in cancer data. By tuning
hyperparameters such as learning rates, batch sizes, and network architectures, researchers can enhance the ability
of CNN models to discern intricate patterns within diverse data sources, including mammography images, genomic
data, and clinical information. Integrating diverse data types appeared to be the primary challenge, as it is necessary
to carefully identify how each modality contributes to model performance [1]. This complicates the hyperparameter
tuning process, leading to an exponential increase in hyperparameters that must be optimized simultaneously.
Moreover, the risk of overfitting is heightened in multimodal settings, where models may learn noise from the
data rather than generalizable patterns [2]. Overfitting can significantly impact the performance of deep learning.
Models lead to inaccurate predictions and reduced model interpretability, which is a critical factor in clinical
applications such as breast cancer prognosis [3]. These challenges necessitate the development of an effective
deep-learning model for breast cancer prognosis, underscoring the importance of precision and interpretability

∗Correspondence to: Dr. Chew Xinying (Email: xinying@usm.my). School of Computer Science, University Science Malaysia (USM),
Penang, Malaysia.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



A. MAIGARI, Z. ZAINOL AND C. XINYING 1

in clinical applications [4] By leveraging advanced optimization techniques and validation strategies to enhance
the performance of deep-learning models for multimodal breast cancer prognosis and contribute to improved
patient outcomes and personalized treatment strategies [5], offering a glimpse of hope against formidable and
life-threatening diseases.

In 2020, there was a global incidence of 2.3 million breast cancer cases among women, with a corresponding
mortality rate of 685,000 individuals. Breast cancer is the most detected cancer worldwide, with approximately 7.8
million women being diagnosed within the past five years, making it the world’s most prevalent cancer, according
to the World Health Organization Report 2021. Breast cancer occurs worldwide in women of all ages after puberty,
but the incidence of this disease is increasing later in life. Every 14 seconds around the globe, a woman is diagnosed
with breast cancer. Breast cancer is the most common cancer in women and is diagnosed in 140 out of 184
countries worldwide, according to a report from the Breast Cancer Foundation Research (BRCF). Breast cancer
mortality did not change much from the 1930s to the 1970s. Only in 1980 did the world realize the improvement
in survival rates in the countries that established early detection programs, which gave rise to various treatment
alternatives for invasive diseases. Given the extreme aggressiveness of breast cancer, prognostic prediction can
be improved by incorporating more than one data modality, such as genetics and clinical profile data. However,
the heterogeneity of these data has led to complexity because of the significant differences in dimensionality and
data types. The process of integrating these data types into a single predictive model is complex [6, 7, 8]. A
prognosis estimates the probability of risk, such as complications or death, occurring over a given period. The
breast cancer prognosis model divides patients into short-term and long-term survivors based on five-year cutoff
points [9]. Accurate prognosis estimation helps clinicians use this knowledge to make clinical decisions [10, 11].
Short-term survivors may consider aggressive treatments to establish eligibility for care programs. Moreover, a
favorable prognosis can assist in improving precision medication regimens for breast cancer patients [10, 11].
Predicting breast cancer prognosis has been challenging due to the lack of fast and effective methods in recent
decades [6, 7, 8, 12]. Advanced optimization techniques, such as metaheuristic algorithms for deep learning
models, enhance the accuracy and efficiency of breast cancer prognosis. This process extracts relevant features
from multimodal datasets, mitigates historical limitations, and provides a fast, effective approach. Hyperparameter
optimization leads to improved patient outcomes and personalized treatment strategies.

2. Related Work

2.1. Unimodal Approach

[13] was the first to use the 70-gene profile to improve breast cancer prognosis and adjuvant therapy selection using
univariate and multivariate statistical techniques. To classify lymph node-negative individuals by gene activity,
[14] employed a statistical technique on 115 training sets and discovered 76 gene signatures, with 60 and 16 for
ER-positive and ER-negative patients, respectively. They tested their extracted genes against 171 lymph node-
negative samples, which yielded 93 percent sensitivity and 48 percent specificity. A feature selection algorithm
was adopted to reduce the high dimensionality of the genetic data and improve the model predictions. [15] used
SVM and recursive feature elimination (SVM-RFE) to select and predict genes from [13] 70-gene signatures.
The 50-gene signature outperformed the 70-gene signature in terms of accuracy, sensitivity, and specificity. [11]
used undersampling and bagging with a decision tree classifier and 10-fold stratified cross-validation to classify
patients based on a five-year survival threshold to solve the imbalance in the SEER dataset, improving the
AUC of the model. [16] used ensemble machine learning with seven publicly available gene expression datasets
to classify genes or gene clusters that may accurately identify cancer cells. The ensemble methods predicted
cancerous cells better than the individual algorithms. However, prediction models based on gene expression data
have disadvantages; single sources of information typically need more non-universality, uniqueness, and noisy
data. Multimodal learning provides a solution to the single modality challenges by combining and integrating
complementary data from multiple sources to make a final decision [6, 7, 8, 12, 17, 18, 19, 20, 21, 22].
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2.2. Multimodal Approach

As microarray technology has advanced, additional data sources have become available, allowing the use of
multiple cancer medical datasets, called multimodal datasets, to predict cancer prognosis [23]. In the multimodal
approach, researchers are not limited to gene expression data, as described in the section above, but find it exciting
and challenging to learn low-level features from the multimodal data [8]. Many studies in the literature have
utilized gene expression and clinical data to explore the benefits of combining these two datasets, extracting
complementary and valuable information for precise prediction using a multimodal approach. However, combining
these two datasets is challenging since gene expression data are high-dimensional and clinical profile data are
low-dimensional with mixed-type data (quantitative, qualitative, and interval) [24]. To address this challenge,
researchers have proposed different approaches, including adopting different feature selection algorithms that
extract relevant features from combined data to produce hybrid markers, which were reported to increase prognosis
prediction [10, 11, 24]. Deep belief network (DBN) models were found in the literature to have good predictive
accuracies based on various experiments [25, 26]. Unsupervised learning was also adopted using clustering of
gene expression data and combining those clustered genes with clinical profile data, improving the precision of the
results [27, 28, 29].

Recently, a new utility kernel for SVM has been proposed to deal with the complexity and heterogeneity involved
in multiple modalities, whose significance varies in clinical outcomes. The model is simple and yet empirically
proves its efficacy by achieving the highest value on various performance metrics [30]. To deal with the high
dimensionality of the multiple models, an intelligent system was developed to understand the related features to
the prognosis and make correct predictions. Principal component analysis (PCA) and variational auto-encoders
(VAEs) are utilized for dimensionality reduction techniques and followed by support vector machines (SVM)
or random forests to make the final prediction. this method was found to be effective in identifying long-term
and short-term patients [31]. [32] proposes a novel attention-based multi-modal network to accurately predict
breast cancer prognosis. The network uses two intra-modality self-attentional modules and an inter-modality cross-
attentional module to capture modality-specific and cross-modality relations. The adaptive fusion block takes
full advantage of both modality-specific and cross-modality relations. The method effectively boosts prognosis
prediction performance and compares favorably with state-of-the-art techniques, addressing challenges in multi-
modal fusion and high computational costs.

Deep learning is a relatively new methodology with outstanding performance in various domains. Furthermore,
deep multimodal learning is a relatively new field; the concept employs deep neural networks to learn features
across multiple modalities and has been widely applied. For breast cancer survival prediction, three or more
modalities were used. [33] developed a deep learning application of a multimodal approach to breast cancer
prediction. They proposed a deep neural network called MDNNMD by integrating three different datasets. Their
method architecture trains three different deep neural network models for each type of data (clinical profile data,
copy number alteration, and gene expression) and integrates them using fusion techniques. Their methods achieved
better performance than single models and other existing approaches. To address the drawbacks of MDNNMD, [34]
developed the STACKED RF method using the same METABRIC dataset in a stacked ensemble architecture. They
replaced DNN models with CNNs (CNN-Clinical, CNN-CNA, and CNN-Expr). [35] improved upon their work
[34]; they called the newly proposed methods the SiGaAtCNN using a sigmoid-gated attention CNN. The attention
mechanism is a neural architectural component that allows dynamic highlighting of relevant features of the input
data. The proposed method is called the SiGaAtCNN STACKED RF, and its metrics show that it outperforms
logistic regression (LR), SVM, RF, and MDNNMD models. In the literature, it is determined that CNN is among
the most accurate models for predicting breast cancer prognosis using multimodal stacked ensemble methods
[34, 35].

Recent advancements in deep-learning ensemble architectures have significantly improved breast cancer survival
models using multiple datasets. For instance, [36] introduced a graph convolutional network combined with a
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Choquet fuzzy ensemble, while [21] developed an ensemble model (EBCSP) that integrates convolutional neural
networks for clinical modalities, deep neural networks for copy number variations, and long short-term memory
for gene expression data. [37] presented a novel ensemble architecture that overcomes traditional ensemble
limitations by incorporating deviation and support mechanisms. Additionally, [38] created a hybrid ensemble deep
learning model to enhance prediction accuracy. To address data imbalance, [39] proposed a deep multi-modal
fusion network (DMMFN), and [20] developed an attention-based multimodal deep learning model for analyzing
mammography images. Furthermore, [40] introduced a multimodal data adversarial representation framework
(MDAR) using an embedding space and a multi-scale bilinear convolutional neural network (MS-B-CNN). [41]
proposed a novel deep learning approach using a Twin Convolutional Neural Network (TwinCNN) framework and
a binary optimization method to eliminate non-discriminative features, addressing challenges in multimodal breast
cancer data analysis. These innovations contribute significantly to precision medicine for breast cancer patients.
However, given the multidimensionality of the data, the prediction can be enhanced by determining the optimal
CNN hyperparameter values. The performance of a CNN model heavily depends on its parameters. Because there
is no single design for all the issues, solving a specific problem using the CNN model requires discovering the
ideal values of the hyperparameters. According to the reviewed literature, most studies concentrated on enhancing
the CNN architecture for classification accuracy, with only a few addressing the subject of hyperparameter
optimization [19]. The CNN hyperparameter optimization method has demonstrated superior performance in
different fields, such as computer vision [42, 43], the Internet of Things (IoT) [44], image recognition [45],
and pattern recognition [46]. The methodology also recently improved disease classification in areas such as
diabetic myelopathy [47], brain tumors [45], and cardiovascular disease [48]. These works in the literature have
demonstrated the application of hyperparameter optimization using CNNs [44, 49, 50].

Choosing the best hyperparameter values for a given problem is an NP-hard problem and one of the most
difficult challenges in the CNN model. Experts employ a variety of strategies to address this challenge. Grid
search, random search, and Bayesian optimization are the three most prevalent hyperparameter optimization
strategies. A grid search is a systematic trial and error method in which a domain expert sets and assesses each
parameter combination in the model. However, the technique only applies to a few hyperparameters; otherwise,
it is computationally expensive. The random search uses random sampling in the search space to locate accurate
hyperparameter values, making random search more effective than grid search. Its main problem is repeating the
previous test’s hyperparameter [42]. Bayesian optimization is the most widely used method for identifying neural
network architectures and optimizing hyperparameters [51]. However, because Bayesian optimization is based
on Gaussian processes, it is limited to low-dimensional optimization problems. Thus, automatic hyperparameter
optimization for CNN models is critical in breast cancer prognosis and diagnosis [52]. Metaheuristic algorithms
have had a considerable impact on hyperparameter optimization in a variety of domains. They were created to
address various practical problems and have sparked much interest in classification problems. Researchers have
widely demonstrated the importance of metaheuristic algorithms in tackling complex optimization challenges
in engineering, communications, industry, and the social sciences because of their excellent performance and
straightforward application[49]. The Tug of War (TWO) algorithm is one of several metaheuristic algorithms.
TWO is a recent method that was introduced in 2016 by [53]; this method outperforms GA and its variants
and performs well on various mathematical and engineering benchmark problems. The authors used multiple
test functions to evaluate the TWO’s performance, and it performed well in various optimization issues. TWO
offers several advantages, such as requiring the fewest configurable parameters, being simple to implement with
excellent search capacity, and being adaptable to changing the basic TWO version.

The challenge of optimizing hyperparameters in convolutional neural networks (CNNs) is a complex, NP-
hard problem that typically requires significant domain expertise and manual effort. This paper aims to address
the challenge of efficiently optimizing CNN hyperparameters to enhance feature extraction capabilities by
implementing the Tug of War (TWO) algorithm. The TWO algorithm offers a meta-heuristic approach that can
navigate the hyperparameter space more effectively, potentially leading to better model accuracy and reliability in
predicting breast cancer outcomes. This paper makes the following key contributions:
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• Optimization of CNN Hyperparameters: We emphasize the critical role of hyperparameter optimization in
CNN models, particularly in the context of exploring the most relevant features from multimodal breast
cancer data.

• Application of TWO Algorithm: We demonstrate the effectiveness of the Tug of War (TWO) algorithm in
identifying optimal hyperparameter values, significantly improving CNN model predictions. The enhanced
model, combined with stacked ensembles, provides a more accurate classification of breast cancer patients
into long-term and short-term survival categories.

• Comprehensive Experimental Validation: Extensive experiments were conducted to evaluate the performance
of the optimized multimodal CNN stacked ensemble (OMCNNSE) model using the METABRIC dataset and
validated the model using the TCGA dataset; the model was rigorously tested with the AUC as the primary
evaluation metric and accuracy, sensitivity, specificity, and MCC as secondary measures, and the Ablation
test by employing a reliability model test using a calibration curve and Brier score. Our findings reveal that
the OMCNNSE model consistently outperforms other methods, offering superior predictive accuracy across
all metrics.

This research contributes to the advancement of deep learning methodologies in medical applications,
particularly in improving the precision of breast cancer survival predictions through sophisticated hyperparameter
optimization techniques.

3. Motivation

Breast cancer survival prediction has significantly benefited from the application of deep learning methods, which
have shown promising results in handling complex multimodal data. Previous works, such as [33], introduced a
novel architecture using three deep neural networks (DNNs) to extract relevant genetic features from individual
datasets, integrating predictions through score-level fusion. This approach marked a significant advancement
in predictive performance. Building on this foundation, [34] proposed the STACKED RF model, integrating
three CNNs using a random forest as the final classifier. This model removed manual guessing from score-level
fusion coefficients and introduced an attention mechanism, further improving the predictive performance. The
SiGaAtCNN model [35], another enhancement, outperformed existing ensemble techniques on unbalanced cancer-
related data. These advancements highlighted the potential of stacked-ensemble approaches for complex medical
predictions. Motivated by these developments, we aim to enhance predictive accuracy by integrating metaheuristic-
based hyperparameter optimization, specifically using the Tug of War Optimization (TWO) algorithm, within CNN
architectures. Our goal is to extract more relevant features from multimodal breast cancer data, thereby improving
the overall prediction accuracy for breast cancer survival.

4. Background details

This study proposed a hybrid method that hybridized deep learning model CNN and Tug of War (TWO) algorithms
to optimize CNN hyperparameters. The details of each model are provided in sections 4.1 and 4.2 below.

4.1. Baseline Convolutional Neural Network

The proposed new method adopted a CNN for prediction by extracting the features of each multimodal dataset
(i.e., clinical, CNA, and gene expression data). This CNN model is a baseline model hybridized with the Tug
of War Optimization (TWO) algorithm that optimizes hyperparameters and generates optimal values for training
prediction models. This specific architecture has two convolutional layers with filters and a kernel with an activation
function, which introduces nonlinearity to the layer’s output. The kernel initialization is assigned as a standard
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initialization method for deep learning models. After the second convolutional layer, a dropout layer is added to
prevent model overfitting during training. This regularization technique randomly dropped neurons to assist the
network in learning the model’s robust features. After the dropout layer, a max pooling layer is applied to reduce
the complexities of the model network. A flattened layer converts the multidimensional output of the max pooling
layer into a 1D vector, which is subsequently fed into a fully connected layer, which expects a 1D input. After the
flattened layer, a fully connected layer with hidden units and an activation function are added. The layer’s output is
then fed into a single output layer with an activation function, which generates the final binary classification output.
To prevent overfitting, the output of this layer is subjected to an L2 activity regularization technique. The detailed
architecture of the baseline CNN is shown in Figure. 1.

Figure 1. Baseline CNN

The fact that our model is a binary classification problem (for short- or long-term survivors), we adopted binary
cross-entropy as a loss function in our CNN baseline model. The loss function is defined as follows:

LBCE = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)] (1)

Where:

• N : Total number of samples
• yi: Actual label for sample i (either 0 or 1)
• ŷi: Predicted probability (output from the CNN, between 0 and 1)
• log: Natural logarithm

The summation’s first term calculates the loss when the true label is 1 (short-term survival), and the second term
calculates the loss when the true label is 0 (long-term survival). Our CNN model contains an input layer, two
convolution layers, a dropout layer, a max pooling layer, a flattening layer, a fully connected dense layer, and an
output layer. Complex CNNs trained on small datasets can overfit. The configurations of the multimodal CNN
baseline are the same as those indicated in Table 1 below, except for the input shape, hidden units in the fully
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connected dense layer, and optimizers for which the CNA and gene expression multimodal data have different
values. We used the AUC metric to evaluate each model.

Table 1. Baseline CNN parameters configuration

Layer type Parameters Values

Input Shape (25,1), (200,1), (400,1)

Conv1D x 2

filters
kernel size
strides
padding
activation
kernel initializer
bias initializer
activity regularizer

32
3
1
same
relu/softplus
he uniform
Constant(0.1)
l2(0.001)

Dropout rate 0.5

MaxPooling1D
pool size
stride
padding

2
1
same

Flatten

Dense

units
activation
kernel initializer
activity regularizer

43/95/97
relu
he uniform
l2(0.001)

Output

units
activation
Loss function
Optimizer

1
Sigmoid
binary cross-entropy
RMSprop/Adam

4.2. Tug of War (TWO) algorithm

Kaveh and Zolghadr’s population-based search approach, Tug of War (TWO), is a metaheuristic algorithm that
treats each agent as a team in tug-of-war contests [53]. A team’s weight and pulling force on the rope are related to
its solution quality. Naturally, the other team must exert at least equal pressure to hold the rope. The convergence
operator of the lighter team’s TWO algorithm accelerates toward, the heavier team by maintaining a correct
exploration and exploitation balance and improving solution quality iteratively. The algorithm steps are as follows;

• Step 1: Initialization

The initial position of the team in the search space is assigned at random:

x0
ij = xj,min + rand(xj,max − xj,min), j = 1, 2, . . . , n (2)

Where x0
ij is the initial value of the i-th and j-th variable, the candidate solutions x(j,min) and x(j,max) are the

variable’s minimum and maximum permissible values, respectively. The random numbers are represented by a
uniform distribution within the interval [0, 1].

• Step 2: Evaluation of candidate designs and weight assignment
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Each candidate solution is handled as a team with the assigned weight and its objective function values assessed,
sorted, and saved in a league memory:

Wi =

(
fit(i)− fitworst

fitbest − fitworst

)
+ 1, i = 1, 2, . . . , N (3)

fit(i) is the fitness value of the ith particle, and the ith team penalizes the objective function value for constrained
problems. fitbest and fitworst are the fitness values for the best and worst candidate solutions, respectively, in the
current iteration. The team’s weights range from 1 to 2 in the equation.

• Step 3: Competition and displacement

Each team competes against all the others one at a time in TWO’s algorithm to progress to its new position. A
team’s pulling force is considered equal to its static friction force (Wµs) As a result, the pulling force between
teams i and j (Fp,ij) can be calculated as max(Wiµs,Wjµs). This definition maintains the heavier team’s position.
In the iteration, the resultant force on the team as a result of its interaction with a heavier team can be estimated as
follows: F k

p,ij .

F k
r,ij = F k

p,ij −W k
i µk (4)

F k
p,ij is the pulling force between teams i and j in the kth iteration, and µk is the coefficient of kinematic friction.

As a result, team i accelerates towards team j.

akij =
F k
r,ij

W k
i µk

gkij (5)

Where akij is the acceleration of team i towards team j in the kth iteration and gkij is the gravitational acceleration
constant defined as

gkij = Xk
j −Xk

i (6)

Where Xk
j and Xk

i are the position vectors for candidate solutions j and i in the k-th iteration. Finally, the
displacement of team i after competing with team j can be derived as

∆Xk
ij =

1

2
akij∆t2 + αkβ(Xmax −Xmin)⊙ randn(1, n) (7)

The equation introduces randomness into the algorithm. A random portion of the search space traveled by team
i is interpreted before it stops after removing the applied force. αk decreases the random position of the team’s
movement gradually. α is the constant for most applications, ranging from 0.9 to 0.99; larger values decrease the
algorithm’s convergence speed and help the candidate solutions explore the search space more thoroughly. β is a
scaling factor with an interval of [0, 1], and it controls the steps of the candidate solutions when moving in the search
space. This parameter should be set lower to search the search space more precisely with fewer steps. For numerical
applications, these parameters should be between 0.01 and 0.05; Xmax and Xmin are vectors holding the upper and
lower bounds of the design variables, respectively; ◦ is element-by-element multiplication; and randn(1, n) is a
vector of standard normally distributed random numbers. It should be noted that when team i is lighter than team
j, the corresponding displacement of the team j will be equal to zero (i.e., ∆Xk

ij). Finally, the total displacement
of the team i in iteration k is equal to (with i ̸= j).

∆Xk
i =

N∑
j=1

∆Xk
ij (8)

The team’s new position after the iteration is determined as

X
(k+1)
i = Xk

i +∆Xk
i (9)
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• Step 4: Updating the League

The League should be updated after each round of play. The new candidate solutions (team positions) are compared
to those of the league’s current teams. If the new candidate solution i has a higher objective function value than
does the league team, replace it with a new solution.

• Step 5: Handling the side constraints

The possibility of lighter team solutions exiting the search space is critical, especially when the values of ∆X
are typically larger. Candidate solutions might be returned to their initial feasible location (flyback approach) or
randomly generated to solve the problem. The new value of the jth optimization variable of the ith team that
violated side constraints in the iteration is defined as

xk
ij = GBj +

(
randn

k

)
(GBj − x

(k−1)
ij ) (10)

where GBj denotes the jth variable of the global best solution (i.e., the best solution thus far); randn denotes a
random integer generated from a standard normal distribution. There is a minimal chance that the newly developed
variable will still be outside the search space. A flyback method is utilized in such instances.

• Step 5: Termination

Steps 2 through 5 are repeated until the termination criterion is satisfied

5. Methodology

The proposed methodology for implementing the optimized multimodal CNN for the stacked ensemble model
(OMCNNSE) for breast cancer prognosis is described in detail in this section. The section is divided into problem
formulation 5.1 and OMCNNSE architecture 5.2, as shown in Fig. 2. The framework comprises data preprocessing,
hyperparameter optimization, and training and classification phases.

5.1. Problem formulation

Let the CNN hyperparameters be represented by a vector h as follows:

h = (h1, h2, h3, h4, h5, h6, h7) (11)

Where h1 − h7 represents the hyperparameters to optimize, such as batch size, number of epochs, etc. The vector
h is encoded as a solution S where each element corresponds to an encoded value of the hyperparameters:

S = [S1, S2, S3, S4, S5, S6, S7] (12)

The decoding function fdecode maps the solution vector S to the hyperparameter vector h as follows:

h = fdecode(S) (13)

• Objective function

The objective function Acc(h) is defined as the classification accuracy of the CNN model with hyperparameters h
on the validation dataset. The goal of the optimization is to maximize the accuracy:

maximize Acc(h) (14)

Subject to:

h ∈ H (15)

Where H is the feasible hyperparameter space defined by the valid ranges for each hyperparameter.
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• Proposed CNN-TWO Algorithm Formulation

The proposed hybrid CNN-TWO algorithm can be formally described as:

h∗ = arg max
s∈S

Acc(fdecode(s)) (16)

Subject to:

si(t+ 1) = si(t) +

N∑
j=1
j ̸=i

Wj +Wi

Wj −Wi
· (sj − si) (17)

where h∗ represents the optimal hyperparameter configuration, and S is the space of all possible binary-encoded
solution vectors.

This mathematical formulation succinctly captures the encoding of the problem, the objective function, and the
application of the TWO algorithm to solve the hyperparameter optimization problem in CNN models. Algorithm
1 describes the pseudocode that demonstrates the CNN-TWO hybrid algorithm that combines Convolutional
Neural Networks (CNNs) with the Tug of War Optimization (TWO) algorithm for efficient hyperparameter tuning.
CNNs are used for breast cancer prediction, while the TWO algorithm optimizes hyperparameters by treating
each configuration as a binary string representing a team in a tug-of-war game. The fitness of each team is based
on the CNN’s classification accuracy, with teams influencing each other’s configurations until the optimal set of
hyperparameters is found. This approach enhances CNN performance by leveraging the TWO algorithm’s ability
to effectively explore the hyperparameter space.

5.2. OMCNNSE framework

We developed the proposed method using a framework with three phases, as shown in Fig. 2. This method consists
of data preparation, hyperparameter optimization, and training and classification steps, which are explained in
detail below.

1. Data preprocessing stage – The proposed methodology utilizes the METABRIC trial dataset, which consists
of clinical data, copy number alterations, and gene expression data. Preprocessing techniques and feature selection
were conducted, and the details are presented in the experimentation section below. The data are split into three
groups in this phase—training, validation, and testing—with ratios of 60 Percent, 20 Percent, and 20 Percent,
respectively. We trained the baseline CNN model with training splits and evaluated it with a validation split. The
testing split was saved for future validation of the proposed model during the training and classification stage.

2. Hyperparameter Optimization Stage – In this section, the Tug of War (TWO) algorithm was used to
optimize the baseline CNN model hyperparameters to predict breast cancer prognosis. The proposed model
optimized seven (7) CNN hyperparameters, including activation functions, batch size, epoch, optimizer, learning
rate, network weight initial, and number of hidden units in the fully connected dense layer. Table 2 details the
seven CNN hyperparameters and TWO parameters used in the proposed methodology and their value ranges. To
obtain the optimal hyperparameter values, we greedily trained each CNN model corresponding to each subset of
the data using two-dimensional (TWO) algorithms with preprocessed data. The TWO algorithm uses accuracy
metrics as an objective function and has the constraint of maximizing the accuracy metric while minimizing the
loss function. After several trials, we found that epoch 5 and pop-size 20 produced the best hyperparameter values
for each CNN baseline model (i.e., CLN-CNN-TWO, CNA-CNN-TWO, and GEXP-CNN-TWO); therefore, we set
these parameter values as the stopping criteria for the model. Table 3 describes the specific parameter configuration
details of the OMCNNSE. The values in Table 3 below are particular to the models developed after applying the
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Figure 2. OMCNNSE Framework

TWO algorithm to optimize the CNN baseline models that improve breast cancer prognostic prediction.

3. Training and classification stage for OMCNNSE - For the proposed method, OMCNNSE is used to generalize
well on new unseen data, and we apply 10 K-fold cross-validation, which prevents overfitting and optimizes model
performance in deep learning models. The stratified K-fold split the dataset (CLN, CNA, and GEXP) into ten
equal parts while maintaining the same proportion of classes in each fold. The data are divided into training and
testing sets for each fold using the indices obtained from the k-fold split. The model was trained on the training
set and evaluated on the testing set. This process is repeated for all ten folds, and the mean accuracy across all
folds is calculated. For the clinical, CNA, and gene expression datasets, we designed three different CNN baseline
models for all three data modalities: CLN-CNN, CNA-CNN, and GEXP-CNN. We used the AUC metric as the
primary performance criterion. We extracted features from the hidden layers of our CNN models. These features
are concatenated to form a stacked feature set, which is later used as input to the SVM classifier that generates the
final prediction.
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Table 2. CNN and TWO default parameter values

#Sn Parameters Value ranges
1. CNN Hyperparameters

Batch size 64 - 255.36
Epoch 50 – 209.9

Optimizers [‘SGD’,’RMSprop’,’Adagrad’,’Adadelta’,
‘Adam’, ‘Adamax’, ’Nadam’]

Network weight initials [‘uniform’, ‘lecun uniform’, ’normal’, ‘normal’,‘zero’,
‘glorot normal’,‘glorot uniform’,‘he normal’,‘he uniform’]

Activation functions [‘softmax’, ‘softplus’, ‘softsign’, ‘relu’, ‘tanh’,
‘sigmoid’, ‘hard sigmoid’, ‘linear’]

Learning rate 0.01 – 6.99
Hidden units 20 – 200

2. TWO Algorithm-specific parameters
Epoch 5 – 1000
Pop size 20 - 1000

Table 3. Model-optimized parameter values

1. CNN Hyperparameters
#Sn Parameters Values

CLN Model CNA Model Gexp Model
1. Batch size 64 64 64
2. Epoch 70 110 90
3. Optimizers RMSprop Adam RMSprop
4. Network weight initials he uniform glorot uniform he uniform
5. Activation functions sigmoid sigmoid softplus
6. Learning rates 0.133 0.063 0.036
7. Hidden units 43 97 95
2. TWO algorithm-specific parameters

Parameters Range of values
1. Epoch 5
2. Pop size 20

6. Experiments

This section presents the experimental datasets, followed by the feature selection process, a comparison of different
methods, evaluation metrics, and implementation settings.

6.1. Dataset

originally described We used the dataset from GitHub: Https://github.com/USTC-HIlab/MDNNMD repository;
the METABRIC dataset was preprocessed before it contained data from 1980 original METABRIC trials of breast
cancer patients [54]. Clinical, CNA, and gene expression profile data from breast cancer patients were obtained. A
total of 1489 and 491 patients were long-term survivors (0) and short-term survivors (1), respectively. The survival
classes were derived using a five-year threshold; the dataset included a median age of 61 years for diagnosed
patients and an average survival of 125.1 months. CNA and gene expression data had unknown and null values
during preprocessing—the weighted nearest neighbor algorithm [55] was used to remove and normalize these
unwanted data points [5]. The gene expression features were further discretized and classified as underexpressed
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Figure 3. Algorithm 1

(-1), baseline (0), or overexpressed (1). With five discrete values, the CNA features remain unchanged (2, 1, 0,
1, 2). The authors used min-max normalization [10] in the range of [0, 1] for clinical data. Table 1 contains the
general information on the METABRIC breast cancer dataset.

Table 4. Metabric dataset summary

Cut-off (Years) 5

Total # of patients 1980

Lon-time survivors 1489

Short-time survivors 491

The median age in diagnosis 61

Average survival (months) 125.1

6.2. Feature Selection

Here are the details of the feature selection procedures originally described by [33], who performed feature
selection on CNA and gene expression data due to the prominent feature length. CNA and gene expression were
detected in 26000 and 24000 samples, respectively. The mRMR [56] reduces the dimensions in the gene expression
and CNA datasets to avoid the curse of dimensionality. The area under the curve (AUC) values of various feature
subsets are observed, and the best feature subset is chosen. For feature selection, a gradational strategy of 100 is
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used. The mRMR algorithm chooses the best features from 100 – 500 to determine the highest AUC values. The
CNA profile included 200 genes, while the reduced gene expression group included 400 selected genes, which had
the highest AUC. The final clinical data included 25 clinical features [35]. Table 5 presents detailed information on
the features selected.

Table 5. Selected features

Data Category Total Features Selected Features

Clinical 27 25

Gene Expression 24368 400

CNA 26298 200

6.3. Comparison

We compared OMCNNSE to six robust state-of-the-art models to validate our proposed model. The following are
the descriptions of the benchmark work:

• Stacked-RF: This method proposed a stacked ensemble framework using three CNN models; in stage one,
they used a CNN to extract features from multimodal data (i.e., clinical, CNA, and gene expression data).
Stage two uses the extracted features as input to the stack-based ensemble model for final predictions via the
random forest (RF) algorithm [34].

• SiGaAtCNN: This method updated the stacked-RF model and introduced a sigmoid-gated attention
convolutional neural network (SGACNN) instead of a CNN to predict the prognosis of breast cancer patients
[35].

• MDAR: This study considers modality-invariant embedding space to effectively integrate multimodal data to
reduce the modality gap; the proposed model is called multimodal data adversarial representation framework
(MDAR) [40].

• DMMFN: A deep multi-modal fusion network (DMMFN) that developed a two-layer one-dimensional
Convolutional neural network and the bi-directional long short-term memory network using gated
multimodal units to obtain fusion features [39].

• GatedAtt: A methodology that employs multimodal data and generates insightful characteristics using a two-
phase model; the first phase generates the stacked features using a sigmoid-gated attention convolutional
neural network, and the second phase uses flattened, dense, and dropout processes for bi-modal attention.
[20].

• MDNNMD: This work inspired the multimodal breast cancer prognosis approach, in which the author used
three distinct deep neural networks to train multidimensional datasets (i.e., clinical data, gene expression, and
CNA profile) and then used score-level fusion to aggregate the three models’ prediction results and generate
the final prediction. Their method is unique in terms of architectural design [33].

• Bayesian optimization: A widely used method for identifying neural network architectures and optimizing
model hyperparameters [51].

6.4. Evaluation metrics

We evaluated the performance of our method using the receiver operating characteristic (ROC) curve [57], which
was plotted between the false positive rate (1-specificity) and the true positive rate (sensitivity) using the decision
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threshold. The AUC is the primary performance indicator, whereas sensitivity (Sn) [57], specificity (Sp) [57],
accuracy (Acc) [57], precision (Pre) [57], and Matthew’s correlation coefficient (MCC) [55] are the secondary
performance metrics of the model.

Sn = TP/(TP + FN) (18)

Sp = TN/(TN + FP ) (19)

Pre = TP/(TP + FP ) (20)

Acc = (TP + TN)/(TP + TN + FP + FN) (21)

Mcc = (TPTN − FPFN)/((TP + FN)(TP + FP )(TN + FN)(TN + FP )) (22)

In a confusion matrix, TP, FP, TN, and FN represent true positives, false positives, true negatives, and false
negatives, respectively.

6.5. Implementation settings

We experimented with a Google Colab setting using the computational resources available. The MEALPY platform
was used to implement the TWO optimization. The detailed experimental setup is provided under the training and
classification subheading above.

7. Results and Analysis

This section presents a detailed analysis and comparative studies of various methods for predicting breast cancer
patient survival. In this comparative analysis, we employed the METABRIC dataset.

7.1. Unimodal comparison

The important metric used to evaluate the efficiency of the proposed method is the AUC value displayed in the
ROC curve. A lower AUC is inferior to a higher AUC. Fig. 4 shows the ROC curves for the unimodal models.

We compared the model performances using ROC curves to establish the effectiveness of our proposed
single model method over the CNN and DNN models in breast cancer prognosis prediction, as shown in Fig. 3.
CNN-TWO-Clinical, CNN-TWO-CNV, and CNN-TWO-Expr achieved 2 percent, 20%, and 4% greater AUC
values than CNN-Clinical, CNN-CNA, and CNN-Expr, respectively. Similarly, 1%, 12%, and 20% improvements
in the area under the curve (AUC) were reported for the DNN-Clinical, DNN-CNA, and DNN-Expr models,
respectively. As a result, the stacked feature set of the final prediction for the optimized stacked-based model
(OMCNNSE) is selected from the hidden features of the proposed single models.

Table 6 compares the OMCNNSE SVM, OMCNNSE RF, and individually optimized CNN models, such as the
CNN-TWO-clinical, CNN-TWO-CNA, and CNN-TWO-Expr models, to provide a detailed measurement of the
model’s AUC values and the remaining secondary metrics.

Table 6 above also indicates that the OMCNNSE SVM model outperformed the OMCNNSE RF and the other
unimodal models in terms of the area under the curve (AUC) and different evaluation metrics. In this experiment,
we tested the random forest (RF) and support vector machine (SVM) models as the final classifiers in the proposed
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Figure 4. ROC curves and AUC values for unimodal model comparisons

Table 6. OMCNNSE vs. Unimodal result

Models AUC Acc Pre Sen MCC

OMMSE SVM 0.980 0.965 0.932 0.911 0.899
OMMSE RF 0.975 0.939 0.977 0.766 0.829
CLN-CNN-TWO 0.878 0.845 0.782 0.519 0.549
CNA-CNN-TWO 0.871 0.873 0.835 0.607 0.637
GEXP-CNN-TWO 0.951 0.929 0.843 0.878 0.813

ensemble model. OMCNNSE SVM has an AUC of 0.980, which is a 5 percent improvement compared to that
of OMCNNSE RF. Notably, the OMCNNSE SVM has an accuracy of 0.965, precision = 0.932, sensitivity =
0.911, and MCC = 0.899. These metric values are 2.6%, 14.5%, and 7% improvement, respectively, except for
precision, for which the OMCNNSE RF has a value of 0.977% compared to 0.911. However, the sensitivity
metric representing the classifier’s ability to correctly identify patients with a favorable prognosis (i.e., accurately
detecting patients with cancer or patients at risk) was greater with the OMCNNSE SVM than with the OMCNNSE
RF.

Similarly, the OMCNNSE model outperformed the unimodal model, as described in Table 6. The performance
improvements are 12% AUC, 15% Acc, 10.4% Pre, 39.2% Sen, and 35% Mcc in the CLN-CNN-TWO model
comparisons. Compared to those of the CNN-TWO-CNA, the improvements are 10.9% AUC, 9.2% Acc, 9.7%
Pre, 30.4% Sen, and 26.2% Mcc. Finally, for the CNN-TWO-Expr dataset, the improvements were 2.9% in AUC,
3.6% in Acc, 8.9% in Pre, 3.3% in Sen, and 8.6% in Mcc.
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We also compared our proposed OMCNNSE method with two (2) inspired deep learning methods developed
by [34, 35] and recently developed four (4) other state-of-the-art methods for breast cancer prognosis prediction,
such as MDAR [40], DMMFN [39], GatedAtt [20], and MDNNMD [33]. Fig. 5 below presents a bar chart for the
popular state-of-the-art methods and our proposed model (OMCNNSE SVM).

Figure 5. Bar chart of the proposed OMCNNSE SVM and the state-of-the-art models

7.2. Comparison with benchmark prediction methods

Table 7. Performance metrics for different models.

Models AUC Acc Pre Sen MCC

OMCNNSE SVM 0.980 0.965 0.932 0.911 0.899
SiGaAtCNN 0.950 0.912 0.841 0.798 0.762
Stacked RF 0.930 0.902 0.841 0.747 0.730
MDAR - 0.916 0.882 0.828 0.764
DMMFN 0.964 0.937 0.891 0.845 -
GatedAtt 0.950 0.912 0.841 0.798 -
MDNNMD 0.845 0.826 0.749 0.450 0.486

Table 7 presents details of the comparative analysis of the OMCNNSE SVM model against six other state-of-
the-art deep learning models, demonstrating its superior performance across multiple evaluation metrics, including
Accuracy, Precision, Sensitivity, Matthews Correlation Coefficient (MCC), and Area Under the Curve (AUC).
Starting with the AUC, OMCNNSE SVM achieves the highest value of 0.980, surpassing SiGaAtCNN (0.950)
by 3.2%, Stacked RF (0.930) by 5.4%, DMMFN (0.964) by 1.7%, GatedAtt (0.950) by 3.2%, and MDNNMD
(0.845) by 16.0%. The AUC value for MDAR is not available, but the comparison still highlights OMCNNSE
SVM’s superior ability to distinguish between classes. For Accuracy, OMCNNSE SVM scores 0.965, which is
5.8% higher than SiGaAtCNN (0.912), 7.0% higher than Stacked RF (0.902), 5.3% higher than MDAR (0.916),
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3.0% higher than DMMFN (0.937), and 5.8% higher than GatedAtt (0.912). This indicates OMCNNSE SVM’s
higher reliability in correctly classifying samples. In Precision, OMCNNSE SVM achieves 0.932, outperforming
SiGaAtCNN (0.841) by 10.8%, Stacked RF (0.841) by 10.8%, MDAR (0.882) by 5.7%, DMMFN (0.891) by 4.6%,
and GatedAtt (0.841) by 10.8%. This demonstrates its better capability in reducing false positives. For Sensitivity,
OMCNNSE SVM’s score of 0.911 is 14.2% higher than SiGaAtCNN (0.798), 22.0% higher than Stacked RF
(0.747), 7.8% higher than both MDAR (0.828) and DMMFN (0.845), and 14.2% higher than GatedAtt (0.798).
This shows OMCNNSE SVM’s effectiveness in correctly identifying true positives. Regarding MCC, OMCNNSE
SVM leads with a score of 0.899, surpassing SiGaAtCNN (0.762) by 18.0%, Stacked RF (0.730) by 23.1%, MDAR
(0.764) by 17.7%, and MDNNMD (0.486) by 85.1%. The MCC values for DMMFN and GatedAtt are not available,
but OMCNNSE SVM’s performance in this metric further emphasizes its overall balance between sensitivity and
specificity.

Overall, the OMCNNSE SVM model consistently outperforms the other state-of-the-art deep learning models
in terms of AUC, Accuracy, Precision, Sensitivity, and MCC, highlighting its robustness and effectiveness in
evaluating performance across a broad range of metrics and resulting in more accurate, reliable, and clinically
valuable predictions. These improvements enhance decision-making in breast cancer treatment and survival
analysis, promoting personalized medicine in oncology and improving patient outcomes.

7.3. Comparison of OMCNNSE with the Bayesian Optimization Algorithm

The Tug of War Optimization (TWO) algorithm outperforms Bayesian Optimization (BO) in model optimization,
with the ”stackedTWO” model achieving an AUC of 0.950%, a 4.1% higher accuracy than the ”StackedBO”
model. The TWO model also achieves a 7.6% improvement in accuracy, indicating a higher predictive capability.
Its precision score is 8.6% higher than the ”StackedBO” model, indicating a greater ability to correctly identify
positive instances. Sensitivity is 29.6% higher compared to the ”StackedBO” model. The MCC for stackedTWO
is 0.899%, outperforming StackedBO by 26.1%. These significant percentage differences highlight the TWO
algorithm’s superior effectiveness in CNN model hyperparameter optimization using breast cancer survival
multimodal datasets leading to more accurate, precise, and reliable predictions compared to Bayesian Optimization.

Table 8. Performance metrics for TWO vs BO.

Models AUC Acc Pre Sen MCC

stackedTWO 0.950 0.965 0.932 0.911 0.899
StackedBO 0.913 0.897 0.858 0.703 0.713

7.4. Validation

The TCGA-BRCA dataset [58], which contains 1080 breast cancer patients with CNA, gene expression, and
clinical profile data, was used to validate our proposed model. The data are processed and detailed in the Data
section above, and the dataset samples include 250 long-term survivors and 830 short-term survivors. We trained
and evaluated the OMCNNSE SVM model on the dataset using 10-fold cross-validation; Table 9 contains the
details of the results observed for our model and other common approaches. The OMCNNSE SVM model,
when compared to other single models using the TCGA dataset, demonstrates superior performance with an
AUC of 0.950, accuracy of 91.0%, precision of 84.9%, sensitivity of 73.7%, and an MCC of 73.4%. These
results outperform all other models, highlighting their effectiveness in classifying and predicting outcomes. When
comparing the OMCNNSE SVM’s performance between the METABRIC and TCGA datasets, the model shows
a slight decrease across all metrics: AUC drops by 3.1% (from 0.980 to 0.950), accuracy by 5.7% (from 96.5%
to 91.0%), precision by 8.9% (from 93.2% to 84.9%), sensitivity by 19.1% (from 91.1% to 73.7%), and MCC
by 18.4% (from 89.9% to 73.4%). Despite these decreases, the model remains robust, with strong predictive
capabilities on unseen data. The model’s high AUC and accuracy across datasets confirm its reliability, though
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Figure 6. OMCNNSE reliability curve

minor refinements to improve sensitivity and MCC could enhance its generalization to diverse datasets. OMCNNSE

Table 9. Performance metrics for different models.

Models AUC Acc Pre Sen MCC

OMCNNSE SVM 0.950 0.910 0.849 0.737 0.734
CLN-CNN-TWO 0.716 0.781 0.569 0.231 0.257
CNA-CNN-TWO 0.917 0.861 0.844 0.494 0.574
GEXP-CNN-TWO 0.945 0.879 0.948 0.506 0.637

SVM outperformed the other models in all the evaluation metrics of the individual unimodal models and indicated
that the proposed model’s robustness in classifying independent data was good, with a performance that was close
to that of the experimental dataset.

7.5. Model reliability test

This section presents a calibration curve to test the reliability of the OMCNNSE model for breast cancer prognosis
and highlights the importance of hyperparameter optimization in deep learning algorithms. The calibration test
evaluates how well the model’s predicted probabilities of patient survival (e.g., long-term or short-term) align with
the outcomes. In addition, a statistical Brier score measures the model’s overall accuracy, with lower scores of 0
indicating better calibration and 1 indicating poor accuracy.

Fig. 6 above compares the optimized and default models, revealing that the optimized model demonstrates
superior calibration along the diagonal line, indicating accurate alignment between the predicted probabilities
and actual outcomes. In contrast, the default model exhibited more variation along diagonal lines, except for the
clinical model. The Brier score concurred with the graphical data-generated scores: the CNA-CNN-TWO model
had a score of 0.093, whereas the CNN-CNA model had a score of 0.203; the GEXP-CNN-TWO model had a
score of 0.068, whereas the CNN-GEXP had a score of 0.192, except for CLN-CNN-TWO and CNN-CLN, which
exhibited identical scores of 0.121. This outcome underscores the influence of hyperparameter optimization on
genomic data, specifically in the context of copy number alteration (CNA) and gene expression (GEXP).
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8. Conclusion

In conclusion, our study highlights the effectiveness of the OMCNNSE model, offering a significant advancement
in breast cancer prognosis by optimizing multimodal data integration. The Tug of War (TWO) algorithm’s
role in feature extraction from clinical, CNA, and gene expression data has proven to be a robust solution for
improving predictive accuracy. This multimodal approach addresses the limitations of traditional single-modal
models, presenting a comprehensive view of cancer progression that can be directly applied to personalized
therapy and patient management. The results underscore the potential of such models to reshape clinical decision-
making by integrating diverse data sources, thus offering a holistic view of patient health. To overcome challenges
such as small data limitations, future research should expand into transfer learning, data augmentation, and the
incorporation of other modalities, including radiomics and histopathological images, further enhancing model
generalizability across different patient populations.

However, deep learning interpretability remains a critical hurdle, particularly in clinical domains like cancer
prognosis. While deep learning models such as OMCNNSE deliver high performance, their ”black-box” nature can
hinder clinical trust and adoption. Solutions emerging from the literature, such as attention mechanisms, saliency
maps, and model-agnostic techniques, offer pathways to improve interpretability. In multimodal cancer research,
these interpretability tools can be adapted to reveal the specific features contributing to survival predictions
across various data types, such as gene expression patterns or specific CNA markers. Ensuring that clinicians
understand and trust the decision-making process is vital, making interpretability and transparency an ongoing
focus. Alongside this, ethical considerations, such as data privacy and consent, must be addressed, especially as
cancer datasets continue to grow in complexity and scope. Through these measures, the clinical adoption of deep
learning models in cancer care can be more widespread and impactful.
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