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A Redundancy Allocation Model for Uncertainty Random Water Supply
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Abstract Water saving management contract (WSMC) projects provide advanced technology and management for a
water supply system to achieve water conservation and set redundant components to ensure water supply reliability. Project
managers focus on the reliability optimization problem and require redundancy allocation strategies of the above system.
This paper presents an optimization method by dealing with the lifetime of the whole water supply system. Assuming the
lifetimes of advanced components are uncertain variables and the old ones are random variables, a reliability optimization
model of water supply systems is established based on chance theory, and the redundancy allocation solutions are obtained
by an optimization toolkit. A WSMC case in Shenzhen, China is studied and the results show that the reliability of the water
supply system has been in a high state based on the allocation strategy. This study provides theoretical support for improving
water-saving safety and popularizing the WSMC service mechanism.
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1. Introduction

Water saving management contract (WSMC) is an innovative method for a water saving service company
(WSSC) to generate profit by providing water users with services such as capital collection, advanced technology
integration, and water-saving enhancement [15, 17]. The premise for promoting new projects is to ensure their
safety and reliability, which requires the traditional system reliability assessment method [9, 13]. Reliability
assessment occupies an important position in all industries and attracts the attention of many scholars [1, 2].

Due to the uncertainties of advanced water-saving technologies, component reliability and water supply safety
are concerns for project managers [34]. System reliability is mainly determined by the lifetime of components,
and increasing redundancy is one of the common methods to improve system reliability [6]. Generally, the more
redundancy a component has, the longer the lifetime of that component, but also the higher the cost [3]. Therefore,
managers need to trade-off between cost and reliability, which is called the redundancy allocation problem (RAP)
[27]. At present, RAP has attracted many scholars to study, including different form systems and solving algorithms
[4, 14]. Studying RAP requires understanding the lifetimes of individual components and their relationship to the
lifetime of the entire system [29, 38].

Traditional research usually makes the component lifetimes constants or random variables, and calculates the
lifetime of the whole system according to the connection structure among different components [7, 8, 39]. Some
scholars have evaluated the life of the entire system based on different connection structures or component life
distributions [12, 25, 33]. However, some scholars believe that the lifetime of advanced components is not suitable
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to be described by random variables, because these components have few statistical data [36]. They also argue that
the lifetime of a system composed of advanced components is better characterized by uncertain variables [18, 37].

The water supply system in the WSMC project is composed of advanced components and traditional components
[26]. The lifetime of such a system cannot be described by only uncertain variables or random variables.
Fortunately, Liu proposed the chance theory, which is a theoretical system that characterizes the lifetime of a
system where uncertain variables and random variables coexist [22] . Based on chance theory, some scholars
have considered reliability optimization problems. Wen and Kang first studied the reliability analysis of uncertain
random systems based on chance theory and they describe each component’s reliability as an uncertain variable
or a random variable, respectively, according to component data information [35]. Gao and Yao [10] proposed
the concept of importance index to describe the importance of individual components and component groups in
uncertain random systems where both uncertain variables and random variables exist. However, at present, no
research has been found on the reliability optimization of water supply systems in WSMC projects, especially the
coexistence of advanced components and traditional components.

Based on the traditional redundancy allocation method, this paper establishes a redundancy allocation model
for the mixed components of the water supply system of WSMC project by using chance theory, and solves the
above model through equivalence transformation and optimization toolbox. In this paper, the lifetime of advanced
components in the water supply system is set as an uncertain variable, and the lifetime of traditional components is
set as a random variable. Then an uncertain random redundancy allocation model (UR-RAM) is established based
on chance theory. Finally, a solution tool is used to obtain the reliability optimization strategy of the water supply
system in the WSMC project.

2. Preliminaries

This section briefly introduces the water supply system in WSMC projects, uncertainty theory, and chance theory.

2.1. The water supply system in WSMC projects

The WSMC project implements water-saving renovations on some of the core components of the water user’s water
supply system, while the remaining components remain in their original state. In this way, this water supply system
is composed of advanced components (denoted by New) and traditional components (denoted by Old), as shown
in Figure 1.

Water users implementing WSMC projects are usually highly water-dependent enterprises, such as car washes,
hotels, etc [34]. In order to ensure the reliability of the water supply system after the implementation of the
project, the administrator will set up redundancy for the core components of the system [11]. Managers take a
cold redundancy approach, but instead of setting redundant components directly on the water supply system, they
store these components in backup warehouses. When a component fails, maintenance personnel shall replace it
in time. In the actual water supply process, the time consumed to replace the parts is negligible. Therefore, the
lifetime of a component can be described as the sum of the lives of all its redundant components.

The components of a water system are usually connected in a grid structure [32]. The connection mode of the
water supply system considered in this paper is in the form of parallel series. When characterizing the entire system
lifetime, calculations are made based on the connection structure [30]. To simplify this calculation process, this
paper assumes that each subsystem of the water supply system consists of the same advanced types of components
(all New or all Old), as shown in Figure 1.

2.2. Uncertainty theory

While the assumption of random variables is generally accepted and reasonable in most cases, in broader
applications such as the space shuttle system, this assumption does not apply because the lack of precision in
the data does not allow us to estimate the probability distribution or density function of the component life [20].
Uncertainty theory is a branch of axiomatic mathematics for deals with the imprecise phenomena in the production
and life of the people. As one of the main elements, the uncertain measure is defined based on normality axiom,
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Figure 1. A hybrid water supply system coexist the New components and Old components

duality axiom, and subadditivity axiom to evaluate the possibility that the event happened in uncertainty theory. In
particular, the product uncertain measure is introduced as product axiom, which is different to probability theory.

The concept of uncertainty distribution is introduced in order to describe the regularity of distribution of an
uncertain variable, which implies the significant information for the studied uncertainty event. Some special
uncertainty distributions, like normal, lognormal, and the properties of them are given. As a particular emphasis
on the preceding properties, there is a method to obtain the uncertainty distribution of the function for several
independent uncertain variables, which is very helpful for the subsequent researches. More details about the above
concepts or properties can be explained in Uncertainty Theory [19].

2.3. Chance theory

Facing the phenomena that uncertainty and randomness coexist, chance theory seems an optional tool to deal with
them. Chance space, defined as the product of uncertainty space and probability space, is a foundational concept in
this theory. Important concepts such as chance measure, uncertain random variables, and chance distribution are all
defined in chance space. In particular, for uncertain random variables that contain multiple uncertain variables and
random variables, its chance distribution is fortunately obtained. For more details on these concepts or properties
can be explained in the literature [19, 21].

3. Methodology

This section will establish a redundant allocation method for water supply systems for WSMC projects. First,
the symbols and assumptions involved in this method are introduced. Secondly, based on chance theory, the life
of mixed system of different types of components in WSMC project is described. Thirdly, with the maximum
reliability of the system as the target and the constraints of cost and space, an optimal model of uncertain random
redundancy allocation is established. Finally, the optimization model is solved by equivalent form transformation
and MATLAB optimization toolbox.

3.1. Notations and assumptions

The mathematical notations used in the problem formulation are given in Table 1.
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Table 1. Notations

s number of subsystems
i index of subsystems, 1 � i � s
ni number of different components available for subsystem i, 1 � i � s
xij number of elements in jth component in subsystem i, 1 � j � ni; 1 � i � s
ui upper bounds on the number of redundant components in subsystem i; 1 � i � s
�ijk the uncertain lifetime of redundant element k in jth component in the subsystem i,

1 � k � xij ; 1 � j � ni; 1 � i � s
�ijk the random lifetime of redundant element k in jth component in the subsystem i,

1 � k � xij ; 1 � j � ni; 1 � i � s
T 0 preselected threshold system lifetime
RT 0(x) system reliability for a decision x at the threshold lifetime T 0

cij the cost of each element in jth component in subsystem i, 1 � j � ni; 1 � i � s
c0 the maximum capital available
N� set of positive integer

A parallel-series system (S) composing of s subsystems is considered (see Figure 2). Each subsystem i
consists of ni components and the jth component consists of xij � 1 redundant elements in subsystem i(j =
1; 2; � � � ; ni; i = 1; 2; � � � ; s), respectively. System S includes two classes of the components, namely the New
and the Old. Specifically, for a given q(1 � q � s� 1), the components in subsystem i(1 � i � q) are wholly
New while the components in subsystems i(q + 1 � i � s) are all Old. For each of the above components, there
are several redundant elements in cold standby way. We assume that the lifetimes of standby elements in New
components and Old components are uncertain variables and random variables, respectively. For each component,
the lifetimes of each element are independent and identically distributed. Compared with component’s lifetime, the
time that workers change the elements is negligible.

3.2. System lifetime

The main problem in RAP is how to deal with the system lifetime when the numbers of redundant elements in all
components are determined. In system S, let

x = (x11; x12; � � � ; x1n1
; x21; � � � ; x2n2

; � � � ; xsns
) (1)

be the redundant elements allocation. Then lifetime of system S under the above allocation can be described by the
following theorem.

Theorem 1
For the redundant element k in jth component in subsystem i of system S, let �ijk be the uncertain lifetime and
�ijk is the random lifetime, respectively, 1 � k � xij ; 1 � j � ni; 1 � i � s. Then the lifetime of system S under
the allocation (1) can be described as an uncertain random variable shown by the follows.

T (x) =

"
q_

i=1

nî

j=1

 
xijX
k=1

�ijk

!#_"
s_

i=q+1

nî

j=1

 
xijX
k=1

�ijk

!#
: (2)

Proof
In subsystem 1 � i � q, let �ijk be the uncertain lifetime of the redundant element k in jth component, 1 � k �
xij ; 1 � j � ni, then the total lifetime of jth component is

xijX
k=1

�ijk; 1 � j � ni: (3)
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Figure 2. A s-stage parallel-series system S

Thus the lifetime of subsystemi is
n i^

j =1

 x ijX

k=1

� ijk

!

: (4)

Therefore, the maximal lifetime of the subsystems1 to q is

q_

i =1

n i^

j =1

 x ijX

k=1

� ijk

!

: (5)

Similarly, the maximal lifetime of the subsystemq + 1 to s is

s_

i = q+1

n i^

j =1

 x ijX

k=1

� ijk

!

(6)
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where� ijk is the random lifetime of the redundant elementk in j th component in the subsystemi , 1 � k � x ij ; 1 �
j � ni ; q + 1 � i � s. Therefore for given allocationx , the lifetime of systemS can be described as

T(x) =

"
q_

i =1

n i^

j =1

 x ijX

k=1

� ijk

!#
_

"
s_

i = q+1

n i^

j =1

 x ijX

k=1

� ijk

!#

: (7)

wherex is de�ned by Equation(1). By De�nition 1 in [22], T(x) is an uncertain random variable.

Then it is necessary to determine the chance distribution ofT(x) for the further calculation, and the following
theorem presents its chance distribution.

Theorem 2
Let T(x) be an uncertain random variable which given by Equation(7). Then the chance distribution ofT(x) is

�( x) = Chf T(x) � xg

=

 
q̂

i =1

� i (x)

!

�

 
sY

i = q+1

F i (x)

!

;
(8)

where� i (x) andF i (x) are the uncertain distribution and probability distribution determined by elements' lifetime
distribution, respectively.

Proof
On the one hand, in subsystemsi (1 � i � q), for any componentj (1 � j � ni ), we assume that the lifetimes
� ijk (1 � k � x ij ) are independent uncertain variables with the same uncertainty distribution� ij (x)(1 � j �
ni ; 1 � i � q). By Theorem2:1 in [19], we have that

x ijX

k=1

� ijk ; 1 � j � ni ; 1 � i � q (9)

and
n i^

j =1

 x ijX

k=1

� ijk

!

; 1 � i � q (10)

are uncertain variables, and their uncertainty distributions are

� j (z) =

( x ijX

k=1

� ijk � z

)

= sup
z1 + z2 + ��� + zx ij

� ij (z1) ^ � ij (z2) ^ � � � ^ � ij (zx ij ); 1 � j � ni ; 1 � i � q
(11)

and

� i (z) =

(
n i^

j =1

 x ijX

k=1

� ijk

!

� z

)

= � 1(z) _ � 2(z) _ � � � _ � n i (z); 1 � i � q;

(12)

respectively, by Theorem2:16 in [19].
On the other hand, in the subsystemsi (q + 1 � i � s), for any componentj (1 � j � ni ), let � ijk (1 � k � x ij )

be independent random variables with the same probability distributionsFij (x)(1 � j � ni ; q + 1 � i � s). By the
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de�nition of random variable, we obtain that

x ijX

k=1

� ijk ; 1 � j � ni ; q + 1 � i � s (13)

and
n i^

j =1

 x ijX

k=1

� ijk

!

; q + 1 � i � s (14)

are random variables, and their probability distributions are

Fj (y) = P r

( x ijX

k=1

� ijk � y

)

=
Z

y1 + y2 + ��� + yx ij

d(Fij (y1))d(Fij (y2)) � � � d(Fij (yx ij )) ; 1 � j � ni ; q + 1 � i � s

(15)

and

F i (y) = P r

(
n i^
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 x ijX
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� ijk

!

� y

)

= 1 � (1 � F1(y))(1 � F2(y)) � � � (Fn i (y)) ; q + 1 � i � s;

(16)

respectively. Therefore by Theorem1 in [22], yields

�( x) = Chf T(x) � xg

=

 
q̂

i =1

� i (x)

!

�

 
sY

i = q+1

F i (x)

!
(17)

is the chance distribution ofT(x).

3.3. Uncertain random redundancy allocation model (UR-RAM)

In this paper, the reliability of a system is de�ned as the possibility that the lifetime of this system goes beyond a
certain threshold. Since the lifetime of systemS is an uncertain random variable, the reliability of it is, by chance
theory, described as

RT 0 (x) = Chf T(x) � T0g (18)

whereT0 is speci�able threshold lifetime. Considering the cost of a system, we have the following constraint

sX

i =1

n iX

j =1

cij x ij � c0 (19)

wherecij is the cost of each element inj th component in subsystemi , 1 � j � ni ; 1 � i � s andc0 is the maximum
capital available. Redundancy level indicates total quantities of redundant components in each subsystem, which
means the change count of each component. Thus we have

n iX

j =1

x ij � ui (20)
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whereui is upper bounds on the number of redundant components in subsystemi; 1 � i � s. Until now we have
formed the redundancy allocation model by maximizing the reliability of systemS, i.e.

[UR-RAM]
max R T 0 (x) = Chf T(x) � T0g

subject to
sX

i =1

n iX

j =1

cij x ij � c0;

n iX

j =1

x ij � ui ; 1 � i � s;

x ij 2 N � ; j = 1 ; : : : ; ni ; 1 � i � s;

(21)

whereN � is set of positive integer.

3.4. Model solving

Because the optimization model UR-RAM contains uncertain random variables, it cannot be solved directly, so it
needs to be transformed into an equivalent deterministic form �rst. Then the following theorem illustrates that the
above UR-RAM's equivalent model.

Theorem 3
The UR-RAM(21) is equivalent to the following model.

min �( x ; T0)

subject to
sX

i =1

n iX

j =1

cij x ij � c0;

n iX

j =1

x ij � ui ; 1 � i � s;

x ij 2 N � ; j = 1 ; : : : ; ni ; 1 � i � s;

(22)

where�( x) is obtained by Equation(8), which is the chance distribution of the uncertain random variableT(x)
andN � is set of positive integer.

Proof
By Equation(17), the equivalency is obviously proved.

The equivalent UR-RAM is clearly a crisp integer programming model and we can solve it by the integer
programming software MATLAB optimization toolbox.

Step 1: Program the objective function of the model (22) into the MATLAB function.
Step 2: Import the constraint data of the model (22) into the MATLAB optimization toolbox.
Step 3: Set the decision variable and its value range.
Step 4: Run the optimization toolbox to get the optimal solution of redundancy allocation.

4. Case study

In this section, a portion of Shenzhen PT university WSMC project is taken as an example to illustrate the feasibility
of UR-RAM. To be more general, we assume the whole water supply system is divided into2 subsystems.
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