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A novel technique for generating families of continuous distributions
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Abstract In this paper, we present the generalized flexible-G family for creating several continuous distributions. Our new
technique features are that it adds only two extra shape parameters to any chosen continuous distribution and is not derived
from any parent distribution that currently exists. Several special cases of this family are provided. The generalized flexible-
G family offers significant improvements in flexibility, fit, and applicability across a wide range of fields. The family’s model
parameters are estimated using the maximum likelihood estimation method. A simulation study is conducted to assess the
consistency of the maximum likelihood estimates. The generalized flexible log-logistic, a specific case of our novel family,
is applied to both patient’s analgesia and reliability data in order to illustrate the significance of the family. The generalized
flexible log-logistic outperforms several competitive models provided in this paper. Furthermore, the generalized flexible
log-logistic performs better than traditional distributions such as the BurrXII, Gumbel, and Weibull models.
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1. Introduction

In our real-life applications, statistics is essential through the use of statistical methods that heavily rely on
the standard probability distributions. Nonetheless, a number of statistical issues defy the assumptions of these
traditional models. Many real-world phenomena exhibit data patterns that are not adequately captured by these
models. Different fields have unique requirements. For instance, hydrologists might need distributions that
accurately model extreme rainfall, while reliability engineers might require models for lifetimes of complex
systems. Also, existing distributions might fail to capture certain empirical regularities observed in specific
domains, such as the heavy tails in financial returns or the asymmetry in biological measurements, flexibility
and a closer fit to empirical data, capturing features such as skewness, kurtosis, and multimodality. As a result of
this, there is a growing need to create flexible distributions in order to draw trustworthy conclusions and make
informed judgments [1, 2, 6, 11, 13, 14, 15, 22]. By expanding the toolbox of available distributions, statisticians
and researchers can achieve more accurate and insightful analyses. More work on the development of new models
was done (see [8, 9, 10, 12, 19, 24])

Recently, [25] introduced a new technique of creating families of distributions called the new flexible generalized
family (NFGF). This family was primarily designed to take account of the non-symmetrical behavior of the parent
distribution. For any arbitrary baseline cdf distribution G(t), the cdf and pdf of the NFGF are given by

FNFGF (t) = 1− Ḡ(t)G(t), (1)
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and

fNFGF (t) = g(t;φ)Ḡ(t)G(t)
(
G(t)(G(t)−1 − log(Ḡ(t))

)
, (2)

respectively. In a similar spirit, we extend the family of distributions given in (1) with the incorporation of two
additional shape parameters. These parameters control the skewness and the tail weight. The new family of
distributions termed the generalized flexible -G (GFG) is defined as follows. Consider a continuous distribution
function G(t;φ) with density function g(t;φ). Then, the GFG has its cdf as

F (t;ϕ, ψ, φ) =
[
1− Ḡ(t;φ)ϕG(t;φ)

]ψ
, (3)

where ϕ and ψ are positive non zero shape parameters. Thus, this family of distributions has its pdf as

f(t;ϕ, ψ, φ) = ψϕg(t;φ)Ḡ(t;φ)ϕG(t;φ)

[
G(t;φ)

Ḡ(t;φ)
− log(Ḡ(t;φ))

] [
1− Ḡ(t;φ)ϕG(t;φ)

]ψ−1

. (4)

The GFG has its survival function and hazard rate function (hrf) as

s(t) = 1−
[
1− Ḡ(t;φ)ϕG(t;φ)

]ψ
, (5)

and

hrf(t) =
ψϕg(t;φ)Ḡ(t;φ)ϕG(t;φ)

[
G(t;φ)

Ḡ(t;φ)
− log(Ḡ(t;φ))

] [
1− Ḡ(t;φ)ϕG(t;φ)

]ψ−1

1−
[
1− Ḡ(t;φ)ϕG(t;φ)

]ψ , (6)

respectively. For u ∈ (0, 1), the GFG has its quantile function as

ϕG(t;φ) log(Ḡ(t;φ) = log(1− u1/ψ). (7)

Equation (7) can be solved numerically via some softwares such as R, MATHEMATICA, MAPLE and Ox. The
strength of this research is solely based on the fact that the family of distributions defined in (3) is not developed
from any well-known parent model similar to the T-X family [1], cubic rank transmuted-G [2], generalized
exponentiated-G family [6], exponentiated-G family [11], alpha power transformation family [13], Marshall Olkin
family [14], alpha log power transformed-G family [15], transmuted-G family [22] and the new flexible-G family
[25].
This research was primarily driven by a combination of practical needs, theoretical advancements, the desire to
improve statistical modeling and the need to develop a novel technique for generating families of continuous
distributions. This novel technique can provide better fits to empirical data, unify existing models, offer more
flexible parameterizations, and address specific challenges in various applications.

2. Special Cases

Here we consider examples of the family in (3) for different standard distributions, namely for uniform (U),
exponential (E), log-logistic (LLoG), Topp-Leone (TL), Pareto (P) and half-logistic (HL) distributions. Figures 1, 2,
3, 4, 5, and 6 demonstrate how the hrf of the GFG distribution can take on a variety of very flexible shapes, including
bathtub, bathtub followed by upside-down bathtub, upside-down bathtub, constant, increasing and decreasing. We
also provide moments, standard deviation (SD), variance (V ar(T )), skewness (S), kurtosis (K) and quantiles for
selected values of Ω = (ϕ, ψ, δ).
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2.1. Generalized flexible uniform distribution

If the parent distribution is uniform, such that G(t; δ) = t/δ and g(t; δ) = 1/δ where 0 < t < δ, then the cdf and
pdf of the generalized flexible uniform (GFU) model are respectively given by

FGFU (t;ϕ, ψ, δ) =
[
1− (1− t/δ)ϕt/δ

]ψ
, (8)

and

fGFU (t;ϕ, ψ, δ) = ψϕδ−1

(
δ − t

δ

)ϕt/δ [
t/δ

1− t/δ
− log(1− t/δ)

] [
1− (1− t/δ)ϕt/δ

]ψ−1

. (9)

The GFU has its ith moment and quantile function as

Figure 1. GFU distribution pdf and hrf plots

E(T i) =

∫ ∞

0

tifGFU (t;ϕ, ψ, δ)dt, (10)

and

ϕt/δ log(1− t/δ) = log(1− u1/ψ), (11)

respectively. Moments associated with equation (10) for selected values of Ω are given in Table 1, whereas Table
2 shows some quantiles for selected values of Ω.

2.2. Generalized flexible exponential distribution

Let the parent distribution be exponential with cdf and pdf given by G(t; δ) = 1− e−δt and g(t; δ) = δe−δt for non
negative δ, then the cdf and pdf of the generalized flexible exponential (GFE) model are respectively given by

FGFE(t;ϕ, ψ, δ) =
[
1− e−δtϕ(1−e

−δt)
]ψ
, (12)

and

fGFE(t;ϕ, ψ, δ) =
ψϕδe−δt

eδtϕ(1−e−δt)

[
1− e−δt

e−δt
− log

(
e−δt

)] [
1− e−δtϕ(1−e

−δt)
]ψ−1

. (13)
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Table 1. GFU distribution table of moments

(0.5,0.5,0.5) (0.5,1.3,0.5) (0.5,1.8,0.5) (1.5,1.9,0.5) (2.2,2.5,0.5)
E(T ) 0.2962 0.5111 0.5868 0.2978 0.2502
E(T 2) 0.1654 0.3344 0.4075 0.1182 0.0809
E(T 3) 0.1132 0.2463 0.3100 0.0564 0.0314
E(T 4) 0.0856 0.1943 0.2494 0.0305 0.0140
E(T 5) 0.0688 0.1602 0.2084 0.0181 0.0069

SD 0.2787 0.2705 0.2514 0.1719 0.1354
V ar(T ) 0.0777 0.0732 0.0632 0.0296 0.0183

S 6.5438 12.9317 17.6919 25.2097 38.6252
K 2.5739 1.8980 2.0198 3.0740 3.5263

Table 2. GFU distribution table of quantiles

u (0.5,0.5,0.5) (1.5,0.3,0.1) (2.5,0.8,0.5) (3.5,0.9,0.5) (3.2,0.5,1.5)
0.1 0.0071 0.0000 0.0513 0.0633 0.0084
0.2 0.0279 0.0007 0.0876 0.0973 0.0334
0.3 0.0617 0.0001 0.1202 0.1261 0.0747
0.4 0.1073 0.0005 0.1514 0.1527 0.1320
0.5 0.1633 0.0017 0.1823 0.1787 0.2054
0.6 0.2280 0.0047 0.2141 0.2053 0.2960
0.7 0.2999 0.0011 0.2481 0.2339 0.4068
0.8 0.3766 0.0023 0.2869 0.2667 0.5459
0.9 0.4527 0.0433 0.3368 0.3102 0.7383

Figure 2. GFE distribution pdf and hrf plots

The GFE has its ith moment and quantile function as

E(T i) =

∫ ∞

0

tifGFE(t;ϕ, ψ, δ)dt, (14)

and

−ϕδt(1− e−δt) = log(1− u1/ψ), (15)
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respectively. For some selected values of Ω, moments associated with equation (14) and quantiles associated with
Equation (15) are given in Table 3 and Table 4, respectively.

Table 3. GFE table of moments

(0.5,0.5,0.5) (0.5,1.3,0.5) (0.5,1.8,1.5) (1.5,1.9,2.5) (2.2,2.5,3.5)
E(T ) 0.1450 0.0321 0.1590 0.4416 0.3122
E(T 2) 0.0940 0.0245 0.1199 0.2480 0.1173
E(T 3) 0.0693 0.0198 0.0956 0.1582 0.0518
E(T 4) 0.0548 0.0166 0.0792 0.1107 0.0264
E(T 5) 0.0453 0.0143 0.0675 0.0829 0.0152

SD 0.2701 0.1532 0.3076 0.2300 0.1409
V ar(T ) 0.0729 0.0235 0.0946 0.0529 0.0198

S 3.5752 5.4201 3.0557 18.0660 48.9788
K 4.7213 25.7681 3.8723 2.5986 4.4810

Table 4. GFE table of quantiles

u (0.5,0.5,0.5) (1.5,0.3,0.1) (2.5,0.8,0.5) (3.5,0.9,0.5) (1.2,1.5,0.5)
0.1 0.2940 0.1767 0.3164 0.3155 1.0156
0.2 0.6160 0.5671 0.5102 0.4854 1.3915
0.3 0.9765 1.1342 0.6891 0.6374 1.7185
0.4 1.3913 1.8795 0.8691 0.7873 2.0403
0.5 1.8852 2.8279 1.0604 0.9441 2.3809
0.6 2.5013 4.0368 1.2746 1.1172 2.7650
0.7 3.3241 5.6268 1.5299 1.3208 3.2306
0.8 4.5538 7.8833 1.8644 1.5837 3.8586
0.9 6.8647 11.7415 2.3969 1.9946 4.9066

2.3. Generalized flexible log-logistic distribution

For a log-logistic parent distribution with cdf and pdf given by G(t; δ) = 1− (1 + tδ)−1 and g(t; δ) = δtδ−1(1 +
tδ)−2 for non negative δ, then the cdf and pdf of the generalized flexible log-logistic (GFLLoG) model are
respectively given by

FGFLLoG(t;ϕ, ψ, δ) =
[
1− (1 + tδ)−ϕ(1−(1+tδ)−1)

]ψ
, (16)

and

fGFLLoG(t;ϕ, ψ, δ) = ψϕδtδ−1(1 + tδ)−2(1 + tδ)−ϕ(1−(1+tδ)−1)

×
[
1− (1 + tδ)−1

(1 + tδ)−1
− log((1 + tδ)−1)

]
×

[
1− (1 + tδ)−ϕ(1−(1+tδ)−1)

]ψ−1

. (17)

Consequently, the ith moment and the quantile funtion of the GFLLoG distribution are given by

E(T i) =

∫ ∞

0

tifGFLLoG(t;ϕ, ψ, δ)dt, (18)
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Figure 3. GFLLoG distribution pdf and hrf plots

and

ϕ(1− (1 + tδ)−1) log((1 + tδ)−1) = log(1− u1/ψ), (19)

respectively. For some selected values of Ω, moments associated with equation (18) and quantiles associated with
(19) are given in Tables 5 and 6, respectively.

Table 5. GFLLoG distribution table of moments

(0.5,0.5,1.5) (1.5,0.3,1.1) (2.5,0.8,0.5) (3.5,0.9,1.5) (1.2,1.5,1.5)
E(T ) 0.2042 0.2293 0.1848 0.4218 0.1445
E(T 2) 0.1327 0.1247 0.1000 0.2824 0.1122
E(T 3) 0.0971 0.0838 0.0675 0.2069 0.0911
E(T 4) 0.0761 0.0625 0.0507 0.1610 0.0764
E(T 5) 0.0624 0.0497 0.0405 0.1308 0.0656

SD 0.3017 0.2686 0.2566 0.3232 0.3022
V ar(T ) 0.0910 0.0722 0.0658 0.1044 0.0913

S 3.6111 5.3177 4.7576 6.0865 3.0514
K 2.9937 3.2199 4.1033 1.6905 4.3738

Table 6. GFLLoG distribution table of quantiles

u (0.5,0.5,1.5) (1.5,0.3,1.1) (2.5,0.8,0.5) (3.5,0.9,1.5) (1.2,1.5,1.5)
0.1 0.2927 0.0257 0.0294 0.3079 0.7593
0.2 0.5067 0.0755 0.0844 0.4225 1.0035
0.3 0.7345 0.1456 0.1692 0.5203 1.2284
0.4 1.0034 0.2386 0.2962 0.6150 1.4653
0.5 1.3489 0.3618 0.4890 0.7139 1.7366
0.6 1.8384 0.5299 0.7946 0.8242 2.0730
0.7 2.6321 0.7749 1.3199 0.9566 2.5321
0.8 4.2451 1.1800 2.3719 1.1339 3.2595
0.9 9.6441 2.0778 5.3593 1.4305 4.8335

Stat., Optim. Inf. Comput. Vol. 12, September 2024



B. MAKUBATE AND R. R. MUSEKWA 1237

2.4. Generalized flexible Topp-Leone distribution

Let the parent distribution be the Topp-Leone distribution with G(t; δ) = tδ(2− t)δ and g(t; δ) = 2δtδ−1(1−
t)(2− t)δ−1 where δ is non negative, then the cdf and pdf of the generalized flexible Topp-Leone (GFTL) model
are respectively given by

FGFTL(t;ϕ, ψ, δ) =
[
1− (1− tδ(2− t)δ)ϕt

δ(2−t)δ
]ψ
, (20)

and

fGFTL(t;ϕ, ψ, δ) = ψϕ2δtδ−1(1− t)(2− t)δ−1(1− tδ(2− t)δ)ϕt
δ(2−t)δ

×
[

tδ(2− t)δ

1− tδ(2− t)δ
− log(1− tδ(2− t)δ)

]
×

[
1− (1− tδ(2− t)δ)ϕt

δ(2−t)δ
]ψ−1

. (21)

Figure 4. GFTL distribution pdf and hrf plots

The GFTL distribution has its ith moment and quantile function as

E(T i) =

∫ ∞

0

tifGFTL(t;ϕ, ψ, δ)dt, (22)

and

ϕtδ(2− t)δ log(1− tδ(2− t)δ) = log(1− u1/ψ), (23)

respectively. Tables 7 and 8 show, respectively, moments associated with equation (22) and quantiles associated
with Equation (23) for some selected values of Ω.

2.5. Generalized flexible Pareto distribution

Let the parent distribution be Pareto with cdf and pdf given by G(t; δ) = 1− 1/tδ and g(t; δ) = δ/xδ+1 for non
negative δ, then the cdf and pdf of the generalized flexible Pareto (GFP) model are respectively given by

FGFP (t;ϕ, ψ, δ) =
[
1− (1/tδ)ϕ(1−1/tδ)

]ψ
, (24)
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Table 7. GFTL distribution table of moments

(0.5,0.5,0.5) (0.5,1.3,0.5) (0.5,1.8,1.5) (1.5,1.9,2.5) (2.2,2.5,3.5)
E(T ) 0.2962 0.5111 0.7399 0.6237 0.6514
E(T 2) 0.1654 0.3344 0.5778 0.4044 0.4328
E(T 3) 0.1132 0.2463 0.4695 0.2712 0.2929
E(T 4) 0.0856 0.1943 0.3931 0.1874 0.2017
E(T 5) 0.0688 0.1602 0.3369 0.1330 0.1412

SD 0.2787 0.2705 0.1743 0.1239 0.0921
V ar(T ) 0.0777 0.0732 0.0304 0.0154 0.0085

S 6.5438 12.9317 53.2120 153.6846 378.6294
K 2.5739 1.8980 2.6386 2.7430 2.8940

Table 8. GFTL distribution table of quantiles

u (0.5,0.5,0.5) (0.5,1.3,0.5) (0.5,1.8,1.5) (1.5,1.9,2.5) (2.2,2.5,3.5)
0.1 0.0094 0.1429 0.4922 0.4618 0.5323
0.2 0.0358 0.2408 0.5846 0.5173 0.5735
0.3 0.0776 0.3305 0.6528 0.5578 0.6032
0.4 0.1347 0.4178 0.7106 0.5925 0.6285
0.5 0.2079 0.5054 0.7630 0.6250 0.6521
0.6 0.2995 0.5953 0.8124 0.6574 0.6757
0.7 0.4139 0.6890 0.8602 0.6918 0.7008
0.8 0.5588 0.7876 0.9073 0.7315 0.7300
0.9 0.7479 0.8917 0.9540 0.7849 0.7699

and

fGFP (t;ϕ, ψ, δ) = ψϕδt−(δ+1)(1/tδ)ϕ(1−1/tδ)

[
1− 1/tδ

1/tδ
− log(1/tδ)

]
×

[
1− (1/tδ)ϕ(1/t

δ)
]ψ−1

. (25)

Figure 5. GFP distribution pdf and hrf plots
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The ith moment and the quantile function of the GFP distribution are given by

E(T i) =

∫ ∞

0

tifGFP (t;ϕ, ψ, δ)dt, (26)

and

ϕ(1− 1/tδ) log(1/tδ) = log(1− u1/ψ), (27)

respectively. Moments associated with Equation (26) and quantiles associated with Equation (27) for some selected
values of Ω are given in Tables 9 and 10, respectively.

Table 9. GFP distribution table of moments

(0.5,1.0,1.5) (0.5,1.5,2.0) (0.5,2.0,2.5) (0.8,2.5,3.5) (0.9,3.0,4.0)
E(T ) 0.1603 0.1982 0.1982 0.2354 0.2727
E(T 2) 0.0892 0.0866 0.0866 0.1421 0.1824
E(T 3) 0.0613 0.0518 0.0518 0.1005 0.1358
E(T 4) 0.0466 0.0361 0.0361 0.0774 0.1077
E(T 5) 0.0375 0.0276 0.0276 0.0628 0.0891

SD 0.2519 0.2176 0.2176 0.2944 0.3288
V ar(T ) 0.0635 0.0473 0.0473 0.0867 0.1081

S 4.3660 7.6518 7.6518 4.3495 3.8080
K 4.7314 4.8618 4.8618 2.7657 2.0872

Table 10. GFP distribution table of quantiles

u (2.5,0.5,0.8) (1.5,1,0.5) (1.5,0.5,1.5) (1.5,1.5,1.5) (1.0,1.5,1.5)
0.1 0.1441 0.1640 0.2474 0.0547 0.1108
0.2 0.2380 0.2701 0.4051 0.1161 0.2389
0.3 0.3262 0.3689 0.5498 0.1863 0.3894
0.4 0.4157 0.4683 0.6934 0.2681 0.5703
0.5 0.5117 0.5737 0.8434 0.3660 0.7945
0.6 0.6198 0.6911 1.0079 0.4879 1.0839
0.7 0.7494 0.8299 1.1991 0.6488 1.4814
0.8 0.9201 1.0094 1.4418 0.8825 2.0865
0.9 1.1913 1.2881 1.8107 1.3003 3.2273

2.6. Generalized flexible half-logistic distribution

For a half-logistic parent distribution with cdf and pdf given by G(t; δ) = 1−e−δt

1+e−δt and g(t; δ) = 2δe−δt

(1+e−δt)2
for non

negative δ, then the cdf and pdf of the generalized flexible half-logistic (GFHL) model are respectively given by

FGFHL(t;ϕ, ψ, δ) =

1−(
1− 1− e−δt

1 + e−δt

)ϕ 1−e−δt

1+e−δt

ψ , (28)
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1240 A NOVEL TECHNIQUE FOR GENERATING FAMILIES OF CONTINUOUS DISTRIBUTIONS

and

fGFHL(t;ϕ, ψ, δ) =
2ψϕδe−δt

(1 + e−δt)2

[
1−e−δt

1+e−δt

1− 1−e−δt

1+e−δt

− log

(
1− 1− e−δt

1 + e−δt

)]

×
(
1− 1− e−δt

1 + e−δt

)ϕ 1−e−δt

1+e−δt

1−(
1− 1− e−δt

1 + e−δt

)ϕ 1−e−δt

1+e−δt

ψ−1

. (29)

Figure 6. GFHL distribution pdf and hrf plots

The GFHL distribution has its ith moment and quantile function as

E(T i) =

∫ ∞

0

tifGFHL(t;ϕ, ψ, δ)dt, (30)

and

ϕ
1− e−δt

1 + e−δt
log

(
1− 1− e−δt

1 + e−δt

)
= log(1− u1/ψ), (31)

respectively. For some selected values of Ω, moments and quantiles of the GFHL model are given in Tables 11 and
12, respectively.

3. Estimation

Let t1, t2, t3, ..., ti be values of a random sample of size i from the GFG family. The log-likelihood function
log(L(Ω)) = ℓ(Ω), for Ω = (ϕ, ψ, φ) of the GFG family is given by

ℓ(Ω) = i log(ψϕ) +

i∑
j=1

log(g(t;φ)) + ϕ

i∑
j=1

G(t;φ) log(Ḡ(t;φ))

+

i∑
j=1

log

[
G(t;φ)

Ḡ(t;φ)
− log(Ḡ(t;φ))

]
+ (ψ − 1)

i∑
j=1

log
[
1− Ḡ(t;φ)ϕG(t;φ)

]
. (32)
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Table 11. GFHL distribution table of moments

(0.5,0.5,0.5) (0.5,1.3,0.5) (0.5,1.8,1.5) (1.5,1.9,2.5) (2.2,2.5,3.5)
E(T ) 0.0928 0.0089 0.0741 0.5110 0.4440
E(T 2) 0.0621 0.0070 0.0596 0.3465 0.2240
E(T 3) 0.0466 0.0057 0.0497 0.2528 0.1254
E(T 4) 0.0373 0.0049 0.0425 0.1947 0.0767
E(T 5) 0.0311 0.0042 0.0372 0.1561 0.0506

SD 0.2312 0.0831 0.2325 0.2922 0.1639
V ar(T ) 0.0535 0.0069 0.0541 0.0854 0.0269

S 3.7673 9.9732 3.7714 9.7774 50.2795
K 8.0509 98.2922 10.1590 2.2314 3.3319

Table 12. GFHL distribution table of quantiles

u (0.5,0.5,0.5) (1.5,0.3,0.1) (2.5,0.8,0.5) (3.5,0.9,0.5) (1.2,1.5,0.5)
0.1 0.5503 0.3504 0.5896 0.5880 1.6859
0.2 1.0863 1.1037 0.9163 0.8756 2.2042
0.3 1.6298 2.1526 1.2007 1.1200 2.6290
0.4 2.2039 3.4609 1.4729 1.3507 3.0290
0.5 2.8382 5.0299 1.7498 1.5828 3.4374
0.6 3.5786 6.9046 2.0469 1.8298 3.8831
0.7 4.5111 9.2058 2.3865 2.1094 4.4074
0.8 5.8348 12.2361 2.8123 2.4563 5.0941
0.9 8.2185 16.9942 3.4562 2.9731 6.2050

The log-likelihood in (32) has its score functions as

∂ℓ(Ω)

∂ϕ
=

i

ϕ
+

i∑
j=1

G(t;φ) log(Ḡ(t;φ))− (ψ − 1)

i∑
j=1

ϕg(t;φ)
[
G(t;φ)

Ḡ(t;φ)
− log(Ḡ(t;φ))

]
Ḡ(t;φ)−G(t;φ)

[
1− Ḡ(t;φ)ϕG(t;φ)

] ,
∂ℓ(Ω)

∂ψ
=

i

ψ
+

i∑
j=1

log
[
1− Ḡ(t;φ)ϕG(t;φ)

]
,

and

∂ℓ(Ω)

∂φ
=

i∑
j=1

∂ (log(g(t;φ))) /∂φk + (ψ − 1)

i∑
j=1

∂
(
log

[
1− Ḡ(t;φ)ϕG(t;φ)

])
/∂φk

+

i∑
j=1

∂

(
log

[
G(t;φ)

Ḡ(t;φ)
− log(Ḡ(t;φ))

])
/∂φk + ϕ

i∑
j=1

∂
(
G(t;φ) log(Ḡ(t;φ))

)
/∂φk.

The score functions are not linear in the parameters. Hence iterative methods are required to solve them [16, 18].

4. Simulation Study

In this section, we evaluate the effectiveness of the maximum likelihood estimators (MLEs) in the proposed model
using the GFLLoG distribution. The algorithm of the simulation process is as follows:
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i) Select initial parameter values for the GFLLoG distribution;
ii) Generate n random values from a uniform distribution with pdf f(x) = 1; 0 < x < 1;

iii) Use Equation 19 to compute n values of the GFLLoG distribution defined in step i);
iv) Repeat the above steps 2000 times;

The performance of the estimators is evaluated using the Average Bias (ABIAS) and Root Mean Square Error
(RMSE). These metrics are calculated based on 2000 samples of each selected sample size. The simulation results,
presented in Tables 13, 14 and 15, showcase the performance under selected initial parameter values. It is observed
that both ABIAS and RMSE decrease as the sample size n increases, indicating the consistency of the MLEs.
These findings demonstrate that the MLEs provide reliable results when estimating model parameters in the GFG
distribution.

Table 13. Parameter estimation from the GFLLoG distribution Results 1

(1.0, 1.0, 1.0) (0.5, 0.5, 0.5)

Parameter Sample Size MLE RMSE ABias MLE RMSE ABias
ϕ 75 2.3003 3.0880 1.3003 1.1171 2.0709 0.6171

100 2.1599 2.8389 1.1599 0.9690 1.6822 0.4690
200 1.6116 1.8416 0.6116 0.6189 0.6375 0.1189
400 1.3074 1.1639 0.3074 0.5478 0.4085 0.0478
500 1.1861 0.8389 0.1861 0.5264 0.1390 0.0264
800 1.0986 0.5287 0.0986 0.5244 0.1115 0.0244

ψ 75 9.9784 95.6833 8.9784 2.8951 33.4374 2.3951
100 6.9022 47.2207 5.9022 1.6000 10.8882 1.1000
200 2.5199 9.2566 1.5199 0.6229 0.9254 0.1229
400 1.5297 4.1140 0.5297 0.5823 1.6032 0.0823
500 1.2724 1.9318 0.2724 0.5219 0.0834 0.0219
800 1.1134 0.8077 0.1134 0.5224 0.0700 0.0224

δ 75 0.9447 0.4882 -0.0553 0.5024 0.2032 0.0024
100 0.9324 0.4482 -0.0676 0.4938 0.1759 -0.0062
200 0.9519 0.3257 -0.0481 0.5056 0.1116 0.0056
400 0.9696 0.2399 -0.0304 0.5072 0.0755 0.0072
500 0.9821 0.2016 -0.0179 0.5104 0.0682 0.0104
800 0.9901 0.1582 -0.0099 0.5036 0.0555 0.0036

5. Data Analysis

We consider patients receiving an analgesic data [3], and reliability data [4]. For each dataset, the MLEs
for the distributions are obtained. The GFLLoG is compared to non-nested models of different parameters
namely the exponentiated generalized XLindley (EGXL) [17], exponentiated generalized logarithmic (EGEL)
[20], exponentiated power lindley poisson (EPLP) [21], generalized Gompertz-poisson (GGP) [26] and the
exponentiated Burr-XII poisson (EBXIIP) [7]. We also compared the GFLLoG with some parent distributions
namely the Burr-XII [27], Gambel [5], Weibull distribution [23]. Model selection criteria such as the −2 log L,
AIC, AICC, BIC, W ∗, A∗, K-S statistic and its associated p-value (see [17] for more details on the GoF) were
employed. For the selected model, plots representing the fitted density, probability plot, Kaplain Meier (KM),
estimated cdf (ECDF), estimated hrf, and total time on test (TTT) are displayed.

5.1. Patients receiving an analgesic

The data collection contains information on patients’ lifetime alleviation times (measured in minutes) after taking
an analgesic as reported [3].
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Table 14. Parameter estimation from the GFLLoG distribution Results 2

(1.0, 1.5, 1.1) (2.5, 0.5, 2.5)

Parameter Sample Size Mean RMSE Bias Mean RMSE A.Bias
ϕ 75 2.3204 3.3551 1.3204 3.4363 2.1962 0.9363

100 2.0541 2.8295 1.0541 3.1777 1.8011 0.6777
200 1.5286 1.8124 0.5286 2.8190 1.1928 0.3190
400 1.2216 1.0461 0.2216 2.6455 0.8632 0.1455
500 1.1365 0.7890 0.1365 2.6196 0.7726 0.1196
800 1.0664 0.4428 0.0664 2.5703 0.6189 0.0703

ψ 75 17.8273 107.6070 16.3273 1.0344 2.2969 0.5344
100 10.6293 69.0287 9.1293 0.8160 1.1024 0.3160
200 4.4779 37.2887 2.9779 0.6188 0.3679 0.1188
400 2.1849 5.4492 0.6849 0.5536 0.2208 0.0536
500 2.0384 10.9684 0.5384 0.5447 0.1945 0.0447
800 1.6337 1.5989 0.1337 0.5266 0.1475 0.0266

δ 75 1.0616 0.5446 -0.0384 2.4731 1.1849 -0.0269
100 1.0517 0.4755 -0.0483 2.5084 1.0941 0.0084
200 1.0646 0.3362 -0.0354 2.5579 0.8923 0.0579
400 1.0835 0.2376 -0.0165 2.5656 0.6859 0.0656
500 1.0912 0.2009 -0.0088 2.5523 0.6183 0.0523
800 1.0952 0.1551 -0.0048 2.5409 0.4905 0.0409

Table 15. Parameter estimation from the GFLLoG distribution Results 3

(1.5, 1.5, 1.5) (2.5, 0.5, 1.5)

Parameter Sample Size Mean RMSE Bias Mean RMSE A.Bias
ϕ 75 3.1544 3.6789 1.6544 3.4104 2.1566 0.9104

100 3.1081 3.4807 1.6081 3.2119 1.8399 0.7119
200 2.5387 2.4622 1.0387 2.8446 1.2080 0.3446
400 2.1628 1.7562 0.6628 2.6578 0.8685 0.1578
500 2.0655 1.5949 0.5655 2.6193 0.7793 0.1193
800 1.8827 1.1965 0.3827 2.5686 0.6267 0.0686

ψ 75 22.3013 184.7170 20.8013 0.9987 1.8218 0.4987
100 14.7299 104.0332 13.2299 0.8373 1.1373 0.3373
200 5.0081 21.4077 3.5081 0.6273 0.3799 0.1273
400 2.8911 5.0725 1.3911 0.5570 0.2258 0.0570
500 2.6303 4.0689 1.1303 0.5451 0.1964 0.0451
800 2.1260 2.2063 0.6260 0.5265 0.1495 0.0265

δ 75 1.4287 0.8087 -0.0713 1.4891 0.7188 -0.0109
100 1.3788 0.7435 -0.1212 1.5002 0.6790 0.0002
200 1.3942 0.5841 -0.1058 1.5252 0.5319 0.0252
400 1.4165 0.4700 -0.0835 1.5346 0.4107 0.0346
500 1.4250 0.4315 -0.0750 1.5333 0.3784 0.0333
800 1.4429 0.3619 -0.0571 1.5275 0.3017 0.0275

Tables 16 and 17 show maximum likelihood estimates (standard errors in parenthesis) and GoF statistics of
the fitted models. In table 17, it is clear that the GFLLoG consistently has the lowest GoF statistics values and a
corresponding high value of the K-S statistic as compared to comparative models of different number of parameters.
It is evident that the GFLLoG distribution is the best fit for data set on patients receiving an analgesic.
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Table 16. Model’s parameter estimates

Estimates
Model ϕ ψ δ ϵ

GFLLoG 1.0377 4.5151 3.7132
(1.1912) (2.9350) (3.2739)

EGXL 0.1937 36.6798 11.6052
( 1.0717) (25.3081) (63.5798)

EGEL 2.5195×10−8 4.4828 44.2770 0.5239
(0.0381) (37.1390) (34.4620) (4.3409)

EPLP 1.1407×10−8 1.3382 1.3909 6.3251
(0.0442) (0.3369) (0.6274) (5.1764)

GGP 8.0847 5.8056 2.3723 3.0970×10−8

(5.0881) (4.9606) (0.4817) (0.0584)
EBXIIP 4.0755 0.6325 40.7090 5.9194×10−6

(0.7475) (0.0960) (0.0013) (0.5487)
BXII 157.1300 0.0108

(1.6598×10−7) (0.0024)
Gambel 0.4386 1.6189

(0.0811) (0.1023)
Weibull 0.1215 2.7870

(0.0562) (0.4273)

Table 17. Model’s GoF statistics

GoF Statistics
Model −2 log L AIC AICC BIC W ∗ A∗ K-S p-value

GFLLoG 30.8524 36.8524 38.3524 39.8396 0.0259 0.1487 0.0956 0.9931
EGXL 32.5239 38.5239 40.0239 41.5111 0.0542 0.3185 0.1343 0.8631
EGEL 32.5951 40.5951 43.2617 44.5780 0.0515 0.3020 0.1282 0.8974
EPLP 34.7641 42.7641 45.4307 46.7470 0.0912 0.5411 0.1625 0.6657
GGP 33.4128 41.4127 44.0793 45.3956 0.0643 0.3822 0.1199 0.9358

EBXIIP 30.8148 38.8148 41.4814 42.7977 0.0281 0.1597 0.0997 0.9886
BXII 42.4142 46.4142 47.1201 48.4057 0.0381 0.2193 0.2850 0.0775

Gambel 32.6661 36.6661 37.3720 38.6575 0.0554 0.3261 0.1340 0.8647
Weibull 41.1728 45.1728 45.8786 47.1642 0.1857 1.0928 0.1849 0.5005

5.2. Reliability data

The reliability data considered here consisting of 20 mechanical components failure times as reported [4].
Table 18 shows some parameter estimates and standard errors in parenthesis of the fitted models. In table 19, it

is evident that the GFLLoG distribution is the best fit for reliability data since the GFLLoG has the lowest GoF
statistics values and the highest K-S statistic value as compared to comparative models presented in the table.
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Figure 7. Fitted density, probability plot and KM survival plot of the GFLLoG distribution for patients receiving an analgesic
data

Figure 8. ECDF, estimated hrf plot and TTT of the GFLLoG distribution for patients receiving an analgesic data

Figure 9. Fitted density, probability plot and KM survival plot of the GFLLoG distribution for reliability data

6. Concluding Remarks

We introduce an original flexible generalized family for univariate distributions called the generalized flexible-G
family, which has the flexible-G family as its sub-model and was not created using any well-known parent
model. The hazard rate function of the generalized flexible-G family can take on a variety of very flexible
shapes, such as bathtub, bathtub followed by upside-down bathtub, upside-down bathtub, constant, increasing
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Table 18. Model’s parameter estimates

Estimates
Model ϕ ψ δ ϵ

GFLLoG 73.1570 2.6123×106 0.1734
(6.8279) (6.7907×10−6) (0.0270)

EGXL 1.5076 13.8182 18.4528
(13.7668) (8.3720) (167.6599)

EGEL 1.8717×10−8 20.1130 13.8560 1.3811
(0.0317) (1.6508) (8.3937) (0.09879)

EPLP 2.4782×10−8 0.6585 4.2247 1.6435
( 0.0257) (0.2631) (1.4966) (1.6437)

GGP 4.6363×10−8 3.0225 13.1370 8.1531×10−6

(0.0488) (1.3862) (4.3663) (1.6517)
EBXIIP 2.6751 9.8028×10−3 7.3016×102 2.8318

(1.0399) (7.0990×10−3) (1.2936×10−4) (2.8331)
BXII 1.6923 29.9045

(0.2235) (12.5340)
Gambel 0.0339 0.0959

(0.0066) (0.0077)
Weibull 25.9722 1.6421

(11.3364) (0.2312)

Table 19. Model’s GoF statistics

GoF Statistics
Model −2 log L AIC AICC BIC W ∗ A∗ K-S p-value

GFLLoG -76.0595 -70.0595 -68.5595 -67.0723 0.0563 0.4387 0.1245 0.9159
EGXL -65.9524 -59.9524 -58.4524 -56.9652 0.1758 1.2511 0.1603 0.6826
EGEL -65.9528 -57.9528 -55.2861 -53.9699 0.1756 1.2504 0.1601 0.6840
EPLP -34.8670 -26.8668 -24.2001 -22.8839 0.2350 1.5937 0.4585 0.0004
GGP -58.1901 -50.1899 -47.5232 -46.2070 0.2490 1.6718 0.2988 0.0561

EBXIIP -78.0870 -70.0870 -67.4203 -66.1041 0.0421 0.2901 0.1261 0.9080
BXII -53.8717 -49.8717 -49.1658 -47.8802 0.3723 2.3262 0.2641 0.1227

Gambel -65.1988 -61.1988 -60.4930 -59.2074 0.1798 1.2751 0.1602 0.6832
Weibull -52.8456 -48.8456 -48.1397 -46.8541 0.3970 2.4519 0.2641 0.1227

and decreasing. Because of its appealing flexibility, the generalized flexible-G family’s hazard rate function can
be used to non-monotonic empirical hazard behaviors, which are more likely to occur in or be seen in real-world
scenarios. We used the log-logistic as our baseline model for the presented simulation study and data analysis.
Our generalized flexible log-logistic fit the two real-life datasets better than compared models presented in this
article. This technique was limited to the univariate case, in the same spirit, more work can be done including the
multivariate extension, truncation, censoring schemes and regression.
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Figure 10. ECDF, estimated hrf plot and TTT of the GFLLoG distribution for reliability data

Standard model selection criteria like AIC, BIC, or cross-validation might be used in choosing between the
various special cases within the generalized flexible-G family.
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