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Abstract Let G = (V,E) be a simple, connected, and undirected graph. Given that a map f : E(G) −→
{1, 2, 3, . . . , |E(G)|}. We define a vertex weight of v ∈ V as w(v) = Σe∈E(v)f(e) where E(v) is the set of edges incident
to v. The bijection f is said to be a local antimagic labeling if, for any two adjacent vertices, their vertex weights must be
distinct. Additionally, a b-coloring of a graph is a proper k-coloring of the vertices of G where, within each color class, there
exists a vertex that has neighbors in all the other k − 1 color classes. Suppose we assign color on each vertex by the vertex
weight w(v) such that it induces a graph coloring satisfying the b−coloring property. In that case, this concept falls into a
local antimagic b−coloring of the graph. The local antimagic b-chromatic number, denoted as φla(G), represents the highest
number of colors used in any coloring produced by a local antimagic b-coloring of G. In this study, we initiate the study of
the b−chromatic number of G and the exact values of φla(G) of certain classes of graph families.
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1. Introduction

In graph theory, a graph is a mathematical structure consisting of two main components, there are a set of vertices
and a set of edges. All graphs discussed in this paper are nontrivial, finite, simple, undirected, and connected.
For a definition of the graph and terms used in this paper, see [1, 2]. Graph theory has many applications in
various fields. Here are some examples of the main applications in graph theory, namely: social networks, computer
networks, road and route mapping, computer graphics, social sciences, transportation systems, molecular biology,
product recommendations, financial analysis, circuit network mapping, face recognition and image processing,
geographic information systems, scheduling, delivery design, supply chain management, cryptography, machine
learning, transit-oriented development for smart city, and others [3]. In this study, points in a network are called
vertices, and the connections between points are called edges. Moreover, when we assign colors on the vertices
or edges such that no two adjacent vertices or incidence edges have the same colors, this problem falls into the
concept of graph coloring, which has a wide range of applications especially in scheduling problems. There are
three types of graph coloring, namely vertex coloring, edge coloring, and face coloring; see Kristiana et al. [4] for
a detailed definition. According to Bhavanari et al. [5], face coloring includes coloring the face components of a
graph such that no two adjacent faces have the same color. The chromatic number of a graph G, denoted as χ(G),
is the fewest colors required to create a properly colored graph G.
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Furthermore, there are many natural extensions of proper graph coloring, one of them is a b−coloring of the
graph. A b-coloring of a graph refers to a proper k-coloring of G where each color class includes a vertex that
has neighbors in all the other k − 1 color classes. The b-chromatic number of a graph G, denoted as φ(G), is
the maximum k for which G can be b-colored with k colors. It is easy to understand that χ(G) ≤ φ(G). Many
researchers have studied b−coloring, for instance Jakovac and Klavzar [6] determined the b−chromatic number of
cubic graphs. Irving and Manlove [7] found the b−chromatic number of trees. Javadi and Omoomi [8, 9] determined
the b−chromatic number of Kneser graphs and the Cartesian product of paths and cycles with complete graphs and
the cartesian product of two complete graphs. Kok and Sudev [10] determined the b−chromatic number of linear
Jaco graph, Ornated graph, Rasta graph, Chithra family graphs, and set graph. Diego and Gella [11] found the
b−chromatic number of the center graph, middle graph, and total graph of the bistar graph. The other results
regarding b−coloring can be seen in [12]-[30]. An example of b−coloring on a graph can be seen in Figure 1 (a).

Figure 1. (a) b-coloring on C9, (b) the local antimagic coloring on C9.

Moreover, we have also studied the graph labeling of the graph, see [31]-[33]. Let G(V,E) be a simple graph,
and let f is a map f : E(G) → {1, 2, . . . , |E(G)|}. Arumugam et al. defined local antimagic labeling [34]. Consider
a graph G = (V (G), E(G)) with no isolated vertices of order n and size m. A local antimagic labeling is a
bijective function from the edge set to the natural numbers up to the number of edges, ensuring that every pair
of adjacent vertices have different weights, w(u) ̸= w(v), where w(u) =

∑
e∈E(u) f(e). A graph G is considered

local antimagic if it has such a local antimagic labeling [40]-[43]. The author defines a local antimagic coloring
as the coloring on vertices of a graph G which induced by local antimagic labeling of G. The local antimagic
chromatic number, denoted by χla(G), is the smallest number of colors taken over all colorings of G induced by
local antimagic labeling of G [34]-[39]. An example of local antimagic coloring on a graph can be seen in Figure
1 (b).

The study in this paper is motivated by the two interesting concepts mentioned above, namely local antimagic
coloring and b-coloring. Thus, this research aims to explore a new concept, namely local antimagic b-coloring. The
idea behind local antimagic b-coloring is to assign colors to each vertex based on the vertex weight w(v) in such a
way that it satisfies the b-coloring property. Specifically, local antimagic labeling is performed by assigning labels
to each edge of the graph with natural numbers from 1 to the number of edges in such a way that every two adjacent
vertices have different weights, where the weight of a vertex w(u) is calculated as the sum of the labels of the edges
incident to that vertex. After determining the local antimagic labeling, local antimagic b-coloring is achieved by
coloring the vertices based on their weights and ensuring that each color class has a vertex adjacent to vertices in
all other k − 1 color classes. The local antimagic b-chromatic number, denoted by φla(G), is the maximum number
of colors used in the local antimagic b-coloring of the graph G.

The results of this paper include on determining the boundaries of the local antimagic b−chromatic number and
determine the exact value of φla(G) of G whenever G are cycle, wheel, friendship, and fan graphs. A cycle graph,
denoted by Cn, is a type of graph in graph theory that consists of a single closed loop or cycle. A wheel graph,
denoted by Wn, is defined as the join graph K1 + Cn, where K1 is the complete graph with one vertex and Cn is
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the cycle graph with n vertices. The friendship graph, denoted by Fn, is a graph constructed by joining n copies
of the cycle graph C3 with a common vertex. A fan graph, denoted by Fn, is defined as the join graph K1 + Pn,
where K1 is the complete graph of one vertex and Pn is the path graph of n vertices.

2. Bounds on Local Antimagic b−Chromatic Number of Graphs

In this section, we will show the bounds on local antimagic b−chromatic number of graphs. We start with the
following lemma.

Lemma 2.1
Let G be a graph and ∆ is maximum degree. The local antimagic b−chromatic number of G is χla(G) ≤ φla(G) ≤
φ(G) ≤ ∆+ 1.

Proof: Given that the b−chromatic number represents the maximum coloring of G, we can write, φla(G) ≤ φ(G).
However, considering the b−coloring condition, which stipulates that φ(G) ≤ ∆+ 1, we arrive at the inequality:

φla(G) ≤ φ(G) ≤ ∆+ 1 (2.1)

Applying Brook’s theorem, which states that for any undirected connected graph G, χ(G) ≤ ∆, and χ(G) ≤
∆+ 1 for odd cycles and complete graphs, take, χ(G) ≤ ∆+ 1. Also by (1), we have, φla(G) ≤ ∆+ 1, leading
to χ(G) ≤ φla(G) ≤ φ(G), since we know that, χ(G) ≤ φ(G) and so, χla(G) ≤ φla(G). Furthermore, from [34],
it’s evident that χ(G) ≤ χla(G), establishing the following inequalities:

χ(G) ≤ χla(G) ≤ φla(G) ≤ φ(G) (2.2)

Equations (2.1) and (2.2) delineate the bounds of the local antimagic b−chromatic number to be χla(G) ≤
φla(G) ≤ φ(G) ≤ ∆+ 1. 2

Since the lower bound of the local antimagic b−coloring is determined based on the local antimagic chromatic
number of the graph, then determining the local antimagic b−chromatic number requires the local antimagic
chromatic number of the graph. The local antimagic b−chromatic number of the cycle, wheel, and fan graphs
is determined in this article. As a result, we present the local antimagic chromatic number of these graphs, which
is as follows:

1. χla(Cn) = 3 for n ≥ 3 [34].

2. χla(Wn) =

{
3 , for n ≡ 2(mod 4)
4 , for n ≡ 1, 3(mod 4)

3. 3 ≤ χla(Wn) ≤ 5 for n ≡ 0(mod 4).
4. χla(Fn) = 3 for n ≥ 3.
5. χla(Fn) = 3 for n ≥ 3.

3. The Local Antimagic b−Chromatic Number of Graphs

Theorem 3.1
If G is a graph with pendant vertex, then G does not have local antimagic b−coloring.

Proof: Let G be a graph with pendant vertex. The vertex weight on pendant vertex depends on its edge label. It is
different from the other vertex weights. Based on the definition of local antimagic b−coloring, the vertex of each
color class must be adjacent with at least one vertex to other color classes. The color class of pendant vertex is
only adjacent with one class and it is impossible adjacent with other class. Hence, the graph G does not have local
antimagic b−coloring. 2
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Corollary 3.1
All tree does not have local antimagic b−coloring.

Since tree is a graph which contains pendant vertex, it is clear that it does not have local antimagic b−coloring.

Theorem 3.2
Let Cn be a cycle graph, the local antimagic b−chromatic number of Cn is 3 for odd n ≥ 3, where n is the number
of vertices of cycle graph.

Proof: Let Cn be a cycle graph with vertex set V = {ui : 1 ≤ i ≤ n} and edge set E = {uiui+1 : 1 ≤ i ≤
n− 1} ∪ {u1un}. Since χla(Cn) = 3, such that φla(Cn) ≥ 3. Abiding by the condition of b−coloring, we can
start coloring the graph from ∆+ 1 = 3 colors. Furthermore to show φla(Cn) ≤ 3, we construct the edge labels on
Cn as follows. Let ei = uiui+1 : 1 ≤ i ≤ n− 1 and en = unu1.

g(ei) =
i+ 1

2
: 1 ≤ i ≤ n for i ≡ 1(mod 2)

g(ei) = n+ 1− i

2
: 2 ≤ i ≤ n− 1 for i ≡ 0(mod 2)

Using the edge labeling above, we can determine the vertex weight of each vertex on Cn. We can determine the
number of different vertex weights. Therefore, we can obtain the number of different vertex weights as follows.

w1 =
n+ 3

2
;w2 = n+ 1;w3 = n+ 2

In the local antimagic b−coloring concept, the color on each vertex is induced from the vertex weight. Table 1
shows that the colors on each vertex of Cn graph.

Table 1. The Vertex Color on Cn

Vertex ui Color
i = 1 w1

i ≡ 0(mod 2) w2

i ≡ 1(mod 2); i ̸= 1 w3

The vertex coloring on the graph Cn in Table 1 shows that there is a vertex in each color class that is adjacent
to at least one vertex in all other color classes. Since the number of different vertex weight on Cn is 3 and satisfies
the b−coloring property, it concludes that φla(Cn) = 3. 2

According to the labeling illustration in Figure 2, the local antimagic b−chromatic number in the graph C15 is
three, namely color classes 9, 16, and 17. The 9 color class is adjacent to the 16 color class and the 17 color class;
the 16 color class is adjacent to the 9 color class and the 17 color class; and the 17 color class is adjacent to the
9 color class and the 16 color class. This color class’s neighborhood satisfies the definition of the local antimagic
b−coloring concept.

Theorem 3.3
The cycle graph of even order does not have local antimagic b−coloring.

Proof: When we consider the concept of local antimagic b−coloring for an even-cycle. Suppose that there exist
three distinct weights, say w1, w2 and w3. However only one color class shares adjacency with all other color
classes, but the rest does not adjacent with others. It implies that even-cycles does not admit the local antimagic
b−coloring. 2
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Figure 2. The Local antimagic b−coloring on C15.

Theorem 3.4
Let Wn be a wheel graph, the local antimagic b−chromatic number of Wn is 4 for odd n ≥ 3, where n is the
number of spokes of wheel graph.

Proof: Let Wn be a wheel graph with vertex set V = {a, vi : 1 ≤ i ≤ n} and edge set E = {vivi+1 : 1 ≤ i ≤
n− 1} ∪ {v1vn} ∪ {avi : 1 ≤ i ≤ n}. Since χla(Wn) = 4, such that φla(Wn) ≥ 4. Abiding by the condition of
b−coloring, we can start coloring the graph from ∆+ 1 = n+ 1 colors and iterating it until every color class has
a dominating b−vertex. Furthermore to show φla(Wn) ≤ 4, we construct the edge labels on Wn as follows. Let
ei = vivi+1 : 1 ≤ i ≤ n− 1 and en = vnv1.

g(ei) =
i+ 1

2
: 1 ≤ i ≤ n for i ≡ 1(mod 2)

g(ei) =
n+ 1 + i

2
: 2 ≤ i ≤ n− 1 for i ≡ 0(mod 2)

g(av1) = 2n

g(avi) = 2n+ 2− i : 3 ≤ i ≤ n for i ≡ 1(mod 2)

g(avi) = 2n− i : 2 ≤ i ≤ n− 1 for i ≡ 0(mod 2)

Using the edge labeling above, we can determine the vertex weight of each vertex on Wn. The number of various
vertex weights may be determined. Therefore, we can obtain the number of different vertex weights as follows.

w1 =
5n+ 3

2
;w2 =

5n+ 1

2
;w3 =

5n+ 5

2
;w4 =

3n2 + n

2

In the local antimagic b−coloring concept, the color on each vertex is induced from the vertex weight. Table 2
shows that the colors on each vertex of Wn graph.

From the vertex coloring on the graph Wn in Table 2, it is evident that within each color class, there is a vertex
that is connected to at least one vertex in every other color class. Given that Wn has 3 distinct vertex weights and
meets the criteria for b-coloring, it follows that φla(Wn) = 4. 2
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Table 2. The Vertex Color on Wn

Vertex Color
a w4

v1 w1

vi, i ≡ 0(mod 2) w2

vi, i ≡ 1(mod 2); i ̸= 1 w3

Figure 3. The Local antimagic b−coloring on W15.

According to the labeling illustration in Figure 3, the local antimagic b−chromatic number in the graph W15 is 4,
namely color classes 38, 39, 40, and 345. The 38 color class is adjacent to the 39 color class, the 40 color class, and
the 345 color class; the 39 color class is adjacent to the 38 color class, the 40 color class, and the 345 color class;
the 40 color class is adjacent to the 38 color class, the 39 color class, and the 345 color class, and the 345 color
class is adjacent to the 38 color class, the 39 color class, and the 40 color class. This color class’s neighborhood
satisfies the definition of the local antimagic b−coloring concept.

Theorem 3.5
The wheel graph of even order does not have local antimagic b−coloring.

Proof: The local antimagic b−coloring of even order of wheel graph acquires four distinct weights, say, w1, w2, w3

and w4. However, the fact shows that every color class has been failed to establish adjacency with any one of the
other color class. This shows that local antimagic b−coloring is admitted for wheel graphs of even order. 2

Theorem 3.6
If Fn is a friendship graph, than the local antimagic b−chromatic number of Fn is 3 for n ≥ 2, where n is the
number of C3 in the friendship graph.

Proof: Let Fn be a friendship graph with vertex set V = {α, xi, yi : 1 ≤ i ≤ n} and edge set E = {αxi, αyi, xiyi :
1 ≤ i ≤ n}. Since χla(Fn) = 3, such that φla(Fn) ≥ 3. Abiding by the condition of b−coloring, we can start
coloring the graph from ∆+ 1 = n+ 1 colors and iterating it until every color class has a dominating b−vertex.
Furthermore to show φla(Fn) ≤ 3, we construct the edge labels on Fn as follows.

g(αxi) = i : 1 ≤ i ≤ n

g(αyi) = n+ i : 1 ≤ i ≤ n

g(xiyi) = 3n+ 1− i : 1 ≤ i ≤ n
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From the edge labeling above, we can determine the vertex weight of each vertex on Fn. We can determine the
number of different vertex weights. Therefore, we can obtain the number of different vertex weights as follows.

w1 = 3n+ 1;w2 = 4n+ 1;w3 = n(2n+ 1) = 2n2 + n

In the local antimagic b−coloring concept, the color on each vertex is induced from the vertex weight. Table 3
shows that the colors on each vertex of Fn graph.

Table 3. The Vertex Color on Fn

Vertex Color
α w3

xi w1

yi w2

From the vertex coloring on the graph Fn in Table 3, it is evident that within each color class, there is a vertex
adjacent to at least one vertex in every other color class. Since Fn has 3 distinct vertex weights and fulfills the
b-coloring criteria, it follows that φla(Fn) = 3. 2

Figure 4. The Local antimagic b−coloring on F11.

According to the labeling illustration in Figure 4, the local antimagic b−chromatic number in the graph F11 is
three, namely color classes 34, 45, and 253. The 34 color class is adjacent to the 45 color class and the 253 color
class; the 45 color class is adjacent to the 34 color class and the 253 color class; and the 253 color class is adjacent
to the 34 color class and the 45 color class. This color class’s neighborhood satisfies the definition of the local
antimagic b−coloring concept.
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Theorem 3.7
Let Fn be a fan graph, the local antimagic b−chromatic number of Fn is 4 for n ≥ 3 and n ≡ 1, 3(mod 6), where
n is the number of spokes of Fn.

Proof: Let Fn be a fan graph with vertex set V = {α, ui : 1 ≤ i ≤ n} and edge set E = {αui : 1 ≤ i ≤ n} ∪
{uiui+1 : 1 ≤ i ≤ n− 1}. Since χla(Fn) = 4, such that φla(Fn) ≥ 4. Abiding by the condition of b−coloring, we
can start coloring the graph from ∆+ 1 = 2n+ 1 colors and iterating it until every color class has a dominating
b−vertex. Furthermore to show φla(Fn) ≤ 4, we construct the edge labels on Fn as follows.

g(uiui+1) =
i

2
: 2 ≤ i ≤ n, i ≡ 0(mod 2)

g(uiui+1) =
n+ i

2
: 1 ≤ i ≤ n, i ≡ 1(mod 2)

Case 1. For n ≡ 1(mod 6)

g(αui) = 2n− i− 3 : 1 ≤ i ≤ n− 1, i ≡ 1(mod 3)

g(αui) = 2n− i− 1 : 2 ≤ i ≤ n− 1, i ≡ 2(mod 3)

g(αui) = 2n− i+ 1 : 3 ≤ i ≤ n− 1, i ≡ 0(mod 3)

g(αun) = 2n− 1

From the edge labeling above, we can determine the vertex weight of each vertex on Fn. We can determine the
number of different vertex weights. Therefore, we can obtain the number of different vertex weights as follows.

w1 =
5n− 7

2
;w2 =

5n− 3

2
;w3 =

5n+ 1

2
;w4 =

3n2 − n

2

In the local antimagic b−coloring concept, the color on each vertex is induced from the vertex weight. Table 4
shows the colors on each vertex of the Fn graph.

Table 4. The Vertex Color on Fn

Vertex Color
α w4

ui : i ≡ 1(mod 3) w1

ui : i ≡ 2(mod 3) w2

ui : i ≡ 0(mod 3) w3

Case 2. For n ≡ 3(mod 6)

g(αui) = 2n− i− 3 : 3 ≤ i ≤ n− 1, i ≡ 0(mod 3)

g(αui) = 2n− i− 1 : 4 ≤ i ≤ n− 1, i ≡ 1(mod 3)

g(αui) = 2n− i+ 1 : 5 ≤ i ≤ n− 1, i ≡ 2(mod 3)

g(αu1) = 2n− 2

g(αu2) = 2n− 1

g(αun) = 2n− 3
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Using the edge labeling shown above, we can determine the vertex weight of each vertex on Fn. We can
determine the number of different vertex weights. Therefore, we can obtain the number of different vertex weights
as follows.

w1 =
5n− 3

2
;w2 =

5n+ 1

2
;w3 =

5n− 7

2
;w4 =

3n2 − n

2
In the local antimagic b−coloring concept, the color on each vertex is induced from the vertex weight. Table 5
shows the colors on each vertex of the Fn graph.

Table 5. The Vertex Color on Fn

Vertex Color
α w4

ui : i ≡ 1(mod 3) w1

ui : i ≡ 2(mod 3) w2

ui : i ≡ 0(mod 3) w3

From the vertex coloring on the graph Fn in Table 4 and Table 5, it is apparent that within each color class,
there is a vertex that is adjacent to at least one vertex in every other color class. Given that Fn has 4 distinct vertex
weights and meets the b-coloring criteria, it follows that φla(Fn) = 4. 2

Figure 5. The Local antimagic b−coloring on F19.

According to the labeling illustration in Figure 5, the local antimagic b−chromatic number in the graph F19 is 4,
namely color classes 44, 46, 48, and 532. The 44 color class is adjacent to the 46 color class, the 48 color class, and
the 532 color class; the 46 color class is adjacent to the 44 color class, the 48 color class, and the 532 color class;
the 48 color class is adjacent to the 44 color class, the 46 color class, and the 532 color class, and the 532 color
class is adjacent to the 44 color class, the 46 color class, and the 48 color class. This color class’s neighborhood
satisfies the definition of the local antimagic b−coloring concept.

Theorem 3.8
Let Amal(Cn, v,m) be an amalgamation of the cycle graph, for even n ≥ 2 and m ≥ 2 the local antimagic
b−chromatic number of Amal(Cn, v,m) is 3.
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Proof: Let Amal(Cn, v,m) be an amalgamation of the cycle graph with vertex set V = {α, ui,j : 1 ≤ i ≤ n, 1 ≤
j ≤ m} and edge set E = {αu1,j , αun,j , ui,jui+1,j : 1 ≤ i ≤ n− 2, 1 ≤ j ≤ m}. Since χla(Amal(Cn, v,m)) =
χla(Cn) = 3, such that φla(Amal(Cn, v,m)) ≥ 3.

Furthermore, to show φla(Amal(Cn, v,m)) ≤ 3, we construct the edge labels on Amal(Cn, v,m) as follows.

f(αu1,j) = j : if 1 ≤ j ≤ m

f(ui,jui+1,j) = m
i

2
+ j : if i ≡ 0(mod 2), 2 ≤ i ≤ n− 2, 1 ≤ j ≤ m

f(αun,j) =
mn

2
+ j : if 1 ≤ j ≤ m

f(ui,jui+1,j) = mn− j +
i+ 1

2
: if i ≡ 1(mod 2) 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

Using the edge labeling above, we can determine the vertex weight of each vertex on Amal(Cn, v,m). We can
determine the number of different vertex weights. Therefore, we can obtain the number of different vertex weights
as follows.

w(α) = m2 +m+
m2n

2

f(wi,j) =

{
mn+m+ 1, if i ≡ 1(mod2)

mn+ 2m+ 1, if i ≡ 0(mod2)

In the local antimagic b−coloring concept, the color on each vertex is induced from the vertex weight. From the
vertex weights, We know that there are three colors such that it means φla(Amal(Cn, v,m)) ≤ 3. Since we have
φla(Amal(Cn, v,m)) ≥ 3 and φla(Amal(Cn, v,m)) ≤ 3, it concludes that φla(Amal(Cn, v,m)) = 3. 2

Figure 6. Local antimagic b−coloring on graph Amal(C9, 1, 4).

4. Discussion

This study introduces a new concept called local antimagic b-coloring, inspired by local antimagic coloring and b-
coloring. In local antimagic b-coloring, each vertex is assigned a color based on its vertex weight w(v) to satisfy the
b-coloring property. Vertex weights are determined by labeling each edge so that adjacent vertices have different
weights. Then, vertices are colored based on these weights, ensuring each color class has a vertex adjacent to
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vertices in all other k − 1 color classes. The local antimagic b-chromatic number, denoted by φla(G), represents
the maximum number of colors used.

Local antimagic b-coloring is closely related to various graph coloring and labeling techniques extensively
studied in graph theory. Total coloring, strong coloring, harmonic coloring, and strong or total labeling are
techniques that provide context to the proposed concept.

Total coloring, introduced by Behzad and Vizing, extends vertex coloring to both vertices and edges of a graph,
ensuring adjacent vertices and edges receive different colors. Strong coloring, introduced by Faudree et al., focuses
on coloring edges so that every two edges incident to the same vertex have different colors. Harmonic coloring,
introduced by Chartrand et al., assigns colors to vertices such that adjacent vertices have distinct color sums under
certain conditions. These coloring techniques explore different aspects of graph structures and have been applied
in various theoretical and practical scenarios.

Additionally, strong and total labeling assign labels to vertices or edges of a graph with specific properties. Strong
labeling ensures that adjacent vertices have distinct label sums, while total labeling extends this concept to include
edges as well. Understanding these related graph coloring and labeling techniques provides valuable insights into
the development and applications of local antimagic b-coloring. By building upon and relating to these existing
techniques, local antimagic b-coloring contributes to the broader landscape of graph theory and combinatorial
optimization.

While still emerging, this concept may find applications in various fields. For instance, in communication
networks, graph coloring is used for efficient channel allocation. Local antimagic b-coloring could aid in resource
allocation considering specific constraints. Additionally, in scheduling tasks with dependencies, this concept could
be applied to schedule tasks more efficiently. Furthermore, the application of local antimagic b-coloring can be
utilized in the development of precision agriculture by leveraging the property of b-coloring, which involves using
maximum coloring with the condition that each color class is adjacent to other color classes. By considering
these aspects, the study not only contributes to the development of graph theory but also opens doors for practical
applications in various fields such as network optimization and scheduling algorithms.

5. Concluding Remarks

We have determined several graphs that admit local antimagic b-coloring and have shown the exact values of their
local antimagic b-chromatic numbers. The results are as follows: (i) φla(Cn) = 3 for n ≥ 3, (ii) φla(Wn) = 4 for
n ≥ 3, (iii) φla(Fn) = 3 for n ≥ 2, and (iv) φla(Fn) = 4 for n ≥ 3. Since we are just beginning to study this
problem and it is a new concept combining antimagic labeling and b-coloring, it opens up many wide-ranging
problems for further research.

As future research directions, we propose the following open problems:

• Determine the exact values of the local antimagic b-chromatic number for specific classes of graphs.
• Characterize the existence of local antimagic b-coloring for any graph and obtain the best lower bounds.

By further exploring this concept, we hope to expand the understanding of graph coloring and open new avenues
for research in graph theory.
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6. M. Jakovac, S. Klavžar, The b−Chromatic Number of Cubic Graphs. Graphs and Combinatorics 26 (2010), 107–118. https:
//doi.org/10.1007/s00373-010-0898-9.

7. R. W. Irving, and D. F. Manlove. The b-chromatic number of a graph. Discrete Applied Mathematics (1999). Volume 91, Issues 1–3,
Pages 127-141, https://doi.org/10.1016/S0166-218X(98)00146-2.

8. R. Javadi and B. Omoomi. On b−coloring of the Kneser graphs. Discrete Mathematics (2009). Volume 309, Issue 13, Pages 4399-
4408, https://doi.org/10.1016/j.disc.2009.01.017.

9. Ramin Javadi and Behnaz Omoomi. On b−coloring of Cartesian product of graphs. Ars Combinatoria (2012). pp. 1-16 (2012).
10. J. Kok, & N. Sudev. The b-chromatic number of certain graphs and digraphs. arXiv:1511.00680v1 [math.GM] 2 Nov 2015 (2015).

https://arxiv.org/pdf/1511.00680.pdf.
11. I. T. S. Diego and F. S. Gella. The b-Chromatic Number of Bistar Graph. Applied Mathematical Sciences (2014), Vol. 8, no. 116,

5795 - 5800. http://dx.doi.org/10.12988/ams.2014.47529.
12. N. Ansari, R. S. Chandel, & R. Jamal. On b-chromatic Number of Prism Graph Families. Applications and Applied Mathematics: An

International Journal (AAM) (2018). Vol. 13, Issue 1, pp. 286 - 295.
13. Effantin, B. & H. Kheddouci. The b-chromatic number of some power graphs. Discrete Mathematics and Theoretical Computer

Science (2003), pp. 45-54.
14. K. Kaliraj & M. Manjula. b-CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT OF SOME GRAPHS. Palestine Journal

of Mathematics (2021). Vol 10, Special Issue II, pp. 110-121.
15. M. Venkatachalam, & V. J. Vernold. The b-CHROMATIC NUMBER OF STAR GRAPH FAMILIES. LE MATEMATICHE. Vol.

LXV (2010), pp. 119-125. doi: 10.4418/2010.65.1.10.
16. R. Nagarathinam & N. Parvathi. On b−coloring line, middle and total graph of tadpole graph. AIP Conference Proceedings 2277

(2020), 100012, https://doi.org/10.1063/5.0026012.
17. A. Jeeva, R. Selvakumar, & M. Nalliah. The b-chromatic number of some special families of graphs. IOP Conf. Series: Materials

Science and Engineering 263 (2017) 042113. doi:10.1088/1757-899X/263/4/042113.
18. V. J. Vernold, M. Venkatachalam, & M. Mohanapriya. On b-Chromatic Number of Some Line, Middle and Total Graph Families.

International J.Math. Combin (2016). Vol.1, 116-125.
19. P. C. Lisna, & M. S. Sunitha. The b-chromatic number of Mycielskian of some graphs. International Journal of Convergence

Computing (2016). Vol. 2 No. 1. doi:10.1504/IJCONVC.2016.080395.
20. Kalpana, M., & Vijayalakshmi, D. On b-coloring of central graph of some graphs. Communications Faculty of Sciences University

of Ankara Series A1 Mathematics and Statistics. (2019). 68(1), 1229-1239.
21. Jaffke, L., Lima, P. T., & Lokshtanov, D. b-Coloring parameterized by clique-width. Theory of Computing Systems. (2023). 1-33.
22. Melo, R. A., Queiroz, M. F., & Santos, M. C. A matheuristic approach for the b-coloring problem using integer programming and a

multi-start multi-greedy randomized metaheuristic. European Journal of Operational Research. (2021). 295(1), 66-81.
23. Karthikeyan, S., & Mary, U. On b-coloring and Johan coloring of line graphs. In AIP Conference Proceedings. (2020, October). (Vol.

2261, No. 1). AIP Publishing.
24. Raj, S. F., & Gokulnath, M. b-Coloring of the Mycielskian of Some Classes of Graphs. Discussiones Mathematicae Graph Theory.

(2022). 42(2), 363-381.
25. Saraswathi, S., & Poobalaranjani, M. Exact 2-distance b-coloring of some classes of graphs. Malaya Journal of Matematik (MJM).

(2020). 8(1, 2020), 195-200.
26. Koch, I., & Marenco, J. An integer programming approach to b-coloring. Discrete Optimization. (2019). 32, 43-62.
27. Jaffke, L., Lima, P. T., & Sharma, R. Structural Parameterizations of b-Coloring. In 34th International Symposium on Algorithms and

Computation (ISAAC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. (2023).
28. Francis Raj, S., & Gokulnath, M. b-Coloring of the Mycielskian of Regular Graphs. In Conference on Algorithms and Discrete

Applied Mathematics. (2019, January). (pp. 91-96). Cham: Springer International Publishing.
29. SARASWATHI, S., & POOBALARANJANI, M. 2-DISTANCE STRONG B-COLORING OF HELM AND CLOSED HELM

GRAPHS.
30. Xavier, D. Francis. b-Chromatic Number of Line Graphs of Certain Snake Graphs. International Journal of Computing Algorithm

(2014). Vol. 3, p. 700-703.
31. Agustin, I. H., Hasan, M., Alfarisi, R., Kristiana, A. I., & Prihandini, R. M. Local edge antimagic coloring of comb product of graphs.

Journal of Physics: Conference Series (2018). Vol. 1008, No. 1, 2018, p. 012038. https://doi.org/10.1088/1742-6596/
1008/1/012038.

32. Septory, B. J., Utoyo, M. I., Sulistiyono, B., & Agustin, I. H. On rainbow antimagic coloring of special graphs. Journal of Physics:
Conference Series (2021). Vol. 1836, No. 1, p. 012016. https://doi.org/10.1088/1742-6596/1836/1/012016.

33. J. A. Gallian, A Dynamic survey on Graph Labeling, The Electronic Journal of Combinatorics (2008), 15.
34. S. Arumugam, K. Premalatha· Martin Baˇca· Andrea Semaniˇcová-Fe ˇnovˇcı́ková. Local Antimagic Vertex Coloring of a
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