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Abstract This study presents a new class of distributions (CoDs) called the Topp-Leone type I heavy-tailed-G power series
(TL-HT-GPS), along with its subclass, the Topp-Leone type I heavy-tailed log-logistic power series (TL-HT-LLOGPS)
distribution. Statistical properties of this novel CoDs were derived, and actuarial risk measures were developed and
numerically simulated. The maximum likelihood estimation technique was employed to estimate the unknown parameters of
the model, and Monte Carlo simulations were used to evaluate the estimates’ consistency. Through the use of the Topp-Leone
type I heavy-tailed log-logistic Poisson (TL-HT-LLOGP) distribution, a special case of the TL-HT-LLOGPS distribution,
two real data sets including a censored case, were examined to illustrate the potential of the proposed distribution. The
TL-HT-LLOGP distribution was compared to a few selected non-nested competing distributions including some known
heavy-tailed distributions and power series distributions. The TL-HT-LLOGP out-performed the contending distributions
through various goodness-of-fit tests conducted.
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1. Introduction

The development of new classes of probability distributions is motivated by the limitations of traditional
distributions in accurately representing complex real-world data, especially in terms of kurtosis and skewness.
Researchers are pushing the boundaries by incorporating extra parameters to construct more adaptable models,
termed as generalized or modified distributions. Notable contributions, such as the Topp-Leone Odd Burr III-G
family of distributions (FoDs) proposed by Moakofi et al. [16], the extended Topp-Leone-G FoDs by Chesneua
et al. [6] and the Topp-Leone-Harris-G FoDs introduced by Oluyede et al. [19], among others, have significantly
improved the ability to model extreme events and outliers in a variety of datasets.

The integration of power series distributions with continuous distributions, as exemplified in works such as
the type II exponentiated half-logistic-Topp-Leone-G power series by Moakofi et al. [15] and the odd Weibull
Topp-Leone-G power series by Oluyede et al. [18], the exponentiated half logistic generalized-G power series by
Chipepa et al. [7], and the odd power generalized Weibull-G power series by Oluyede et al. [20], demonstrates
the potential of combined distributions in accommodating diverse data patterns. These innovations highlight the
versatility and efficacy of merging different distribution types to enhance modeling capabilities.
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The Topp-Leone-G generator (TL-G) pioneered by Al-Shomrani et al. [3] excels in modeling extreme events
and outliers through its adept handling of heavy-tailed behaviors and unique hazard rate function. Its application
enhances the reliability of statistical analyses, especially in lifetime data contexts, underscoring the need for
improved distribution models to better capture real-world complexities. As a key player among heavy-tailed
distributions, the TL-G distribution accurately represents heavy tails and outliers, overcoming limitations faced
by traditional distributions like Gaussian or exponential models. Its adaptability not only offers precise depictions
of extreme events but also strengthens the reliability of statistical analyses, enabling researchers to derive more
accurate predictions and deeper insights from their data.

The bathtub-shaped hazard rate function (hrf) of the TL-G distribution proves advantageous for lifetime
data analysis, albeit constrained to the [0,1] domain. To augment the model’s flexibility, numerous distributions
have been generalized or amalgamated with the TL-G distribution through the addition of supplementary
parameters. Nadarajah and Kotz [17] delved into the characteristics of the Topp-Leone (TL) distribution,
presenting moments and a characteristic function. Ghitany et al. [9] derived various reliability measures for the
TL distribution, whereas Vicaria et al. [22] introduced a two-sided generalized TL distribution. Al-Zahrani [4]
scrutinized the goodness-of-fit (GoF) test for the TL distribution.

The TL-G FoDs is distinguished by its cumulative distribution function (cdf) and the matching probability
density function (pdf), which are defined as follows:

F (x; b, Φ) =
[
1− Ḡ2(x;Φ)

]b
(1)

and
f(x; b, Φ) = 2b

[
1− Ḡ2(x;Φ)

]b−1
Ḡ(x;Φ)g(x;Φ), (2)

respectively, for b, x > 0, where Φ is a baseline distribution parameter vector for G(.) and Ḡ(x;Φ) = 1−G(x;Φ).

Heavy-tailed distributions play a fundamental role in diverse domains of applied research, including reliability,
actuarial science, and risk management, owing to their ability to effectively model extreme events and outliers.
The type I heavy-tailed-G (HT-G) FoDs has emerged as a significant contribution to this field, stemming from the
research conducted by Zhao et al. [24]. This study presents a novel FoDs that demonstrates exceptional proficiency
in capturing heavy-tailed behaviors, providing invaluable insights and robust modeling capacities crucial for the
comprehensive analysis and mitigation of risks across diverse domains. The cdf of the HT-G FoDs is

F (x; δ,Ω) = 1−
(

Ḡ(x;Ω)

1− (1− δ)G(x;Ω)

)δ

(3)

and the pdf is

f(x; δ,Ω) =
δ2g(x;Ω)

[
Ḡ(x;Ω)

]δ−1

[1− (1− δ)G(x;Ω)]
δ+1

, (4)

respectively, for δ, x > 0 and Ω denotes the baseline distribution (G(.)) parameter vector.

Replacing the baseline cdf in Equation (1) with the HT-G distribution yields a new FoDs called Topp-Leone type I
heavy-tailed-G (TL-HT-G) FoDs with cdf

F (x; b, δ, Ω) =

(
1−

(
Ḡ(x;Ω)

1− (1− δ)G(x;Ω)

)2δ
)b

(5)

and pdf
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f(x; b, δ, Ω) = 2bδ2

(
1−

(
Ḡ(x;Ω)

1− (1− δ)G(x;Ω)

)2δ
)b−1

g(x;Ω)
[
Ḡ(x;Ω)

]2δ−1

[1− (1− δ)G(x;Ω)]
2δ+1

, (6)

for b, δ, x > 0.

This study aims to introduce a novel CoDs referred to as TL-HT-GPS. The main motivations for developing this
new CoDs are:

• to develop a novel class of generalized distributions by compounding the TL-HT-G FoDs with power series
distributions;

• generate distributions with different shapes, such as reversed-J, left-skewed, and right-skewed;
• to simulate various hazard rate geometries, including monotonic and non-monotonic geometries;
• to formulate heavy-tailed distributions that possess the capability of effectively representing and modeling

real data sets spanning a diverse range of fields;
• to rigorously evaluate and assess the capability of the TL-HT-GPS CoDs in accurately representing risk

measures, thereby enabling informed decision-making processes and the development of comprehensive risk
management strategies.

The paper is structured and arranged in the following manner: Section 2 presents the development of the new
CoDs, the TL-HT-GPS, including its sub-classes and special cases for specified baseline or parent distributions.
Section 3 provides statistical properties of the TL-HT-GPS distribution. Parameter estimation including censoring
is discussed in Section 4, while Section 5 focuses on risk measures. In Section 6, the paper presents the Monte Carlo
simulation outcomes, while Section 7 showcases real data examples. Ultimately, Section 8 provides the summary.

2. The New CoDs

We introduce the Topp-Leone type I heavy-tailed-G power series (TL-HT-GPS) CoDs in this section.

Suppose we have a discrete random variable M that follows a power series distribution, which is presumed
to be truncated at zero. The probability mass function (pmf) of M is defined as follows:

P (M = m) =
amθm

C(θ)
,m = 1, 2, 3..., (7)

where θ is a positive value, {am}m≥1 is a sequence of positive real numbers and C(θ) =
∑∞

m=1 amθm is finite.
Johnson et al. [11] presented some power series distributions and these include binomial, Poisson, geometric, and
logarithmic distributions.

Consider a set of M independent and identically distributed random variables, denoted as X1, X2, X3, . . . , XM ,
which are drawn from the TL-HT-G FoDs. Let X(1) represent the minimum value among X1, X2, X3, . . . , XM .
The expression for the conditional distribution of X given M = m is given as follows:

FX(1)|M=m(x) = P
(
X(1) ≤ x|M = m

)
= 1−

1−(1− [ Ḡ(x;Ω)

1− (1− δ)G(x;Ω)

]2δ)b
m

.
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The TL-HT-GPS CoDs represents the marginal distribution of X(1) whose cdf is expressed as follows:

FX(1)
(x) =

∞∑
m=1

P (X ≤ x|M = m)P (M = m)

=

∞∑
m=1

1−

1−(1− [ Ḡ(x;Ω)

1− (1− δ)G(x;Ω)

]2δ)b
m amθm

C(θ)

= 1−
C

(
θ

[
1−

(
1−

[
Ḡ(x;Ω)

1−(1−δ)G(x;Ω)

]2δ)b
])

C(θ)
(8)

for b, δ, θ > 0, and the baseline cdf G(x;Ω) depends on a parameter vector Ω. The corresponding pdf is

fX(1)
(x) =

θfTL−HT−G(x; b, δ, Ω)C ′(θSTL−HT−G(x; b, δ, Ω))

C(θ)
, (9)

where STL−HT−G(x; b, δ, Ω) = 1− FTL−HT−G(x; b, δ, Ω) is the TL-HT-G survival or reliability function, and
fTL−HT−G(x; b, δ, Ω) is the corresponding pdf.

The TL-HT-GPS CoDs’ pdf (from Equation (9)) is

fTL−HT−GPS(x) = 2bδ2θ

[
1−

(
Ḡ(x;Ω)

1− (1− δ)G(x;Ω)

)2δ
]b−1

g(x;Ω)
[
Ḡ(x;Ω)

]2δ−1

[1− (1− δ)G(x;Ω)]
2δ+1

×
C ′

(
θ

[
1−

(
1−

[
Ḡ(x;Ω)

1−(1−δ)G(x;Ω)

]2δ)b
])

C(θ)
. (10)

If we modify the baseline cdf G(x;Ω) and specify the power series distribution, various sub-classes, and special
cases of the TL-HT-GPS CoDs can be derived. The hrf and reverse hazard functions (rhrf) of the TL-HT-GPS CoDs
are respectively given by

hTL−HT−GPS(x) = 2bδ2θ

[
1−

(
Ḡ(x;Ω)

1− (1− δ)G(x;Ω)

)2δ
]b−1

g(x;Ω)
[
Ḡ(x;Ω)

]2δ−1

[1− (1− δ)G(x;Ω)]
2δ+1

×
C ′

(
θ

[
1−

(
1−

[
Ḡ(x;Ω)

1−(1−δ)G(x;Ω)

]2δ)b
])

C

(
θ

[
1−

(
1−

[
Ḡ(x;Ω)

1−(1−δ)G(x;Ω)

]2δ)b
]) , (11)

and

τTL−HT−GPS(x) =

2bδ2θ

[
1−

(
Ḡ(x;Ω)

1−(1−δ)G(x;Ω)

)2δ]b−1

C ′

(
θ

[
1−

(
1−

[
Ḡ(x;Ω)

1−(1−δ)G(x;Ω)

]2δ)b
])

C(θ)− C

(
θ

[
1−

(
1−

[
Ḡ(x;Ω)

1−(1−δ)G(x;Ω)

]2δ)b
]) . (12)
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2.1. Special Cases

Considering the log-logistic to be the parent distribution with cdf G(x;β) = 1− (1 + xβ)−1 and g(x;β) =
βxβ−1(1 + xβ)−2, for β, x > 0, and letting 1 + xβ = η, we have the Topp-Leone type I heavy-tail log-logistic-
G power series (TL-HT-LLOGPS) CoDs with cdf

FTL−HT−LLOGPS(x) = 1−
C

(
θ

(
1−

(
1−

[
η−1

1−(1−δ)(1−η−1)

]2δ)b
))

,

C(θ)
(13)

and pdf

fTL−HT−LLOGPS(x) = 2bθδ2

[
1−

(
η−1

1− (1− δ)(1− η−1)

)2δ
]b−1

βxβ−1η−2
[
η−1
]2δ−1

[1− (1− δ)(1− η−1)]
2δ+1

×
C ′

(
θ

(
1−

(
1−

[
η−1

1−(1−δ)(1−η−1)

]2δ)b
))

C(θ)
(14)

for b, θ, δ, β > 0.

The Topp-Leone type I heavy-tail log-logistic Poisson (TL-HT-LLOGP), Topp-Leone type I heavy-tail log-logistic
geometric (TL-HT-LLOGG) and the Topp-Leone type I heavy-tail log-logistic logarithmic (TL-HT-LLOGL)
distributions are the sub-models of the TL-HT-GPS CoDs to be considered.

(a) TL-HT-LLOGP Distribution
The TL-HT-LLOGP cdf is

FTL−HT−LLOGP (x) = 1−
exp

(
θ

(
1−
(
1−
[

1

η(1−(1−δ)(1−η−1))

]2δ)b
))

−1

exp(θ)−1 ,

the pdf is

fTL−HT−LLOGP (x) = 2bδ2θ

[
1−

(
1

η(1− (1− δ)(1− η−1))

)2δ
]b−1

βxβ−1η−2
[
(1 + xβ)−1

]2δ−1

[1− (1− δ)(1− η−1)]
2δ+1

×
exp

(
θ

(
1−

(
1−

[
η−1

1−(1−δ)(1−η−1)

]2δ)b
))

exp(θ)− 1

for b, θ, δ, β, x > 0.
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Figure 1. Graphical representations of the TL-HT-LLOGP distribution, showcasing the pdf and hrf plots.

Figure [1] illustrates the versatile nature of the TL-HT-LLOGP distribution, which can exhibit virtual symmetry,
positive skewness, negative skewness, or a reversed-J shape. The hrf exhibits a diverse range of shapes including
bathtub, inverted bathtub, bathtub followed by inverted bathtub, increasing and decreasing shapes.

(b) TL-HT-LLOGG Distribution
The TL-HT-LLOGG cdf is

FTL−HT−LLOGG(x) = 1−
(1−θ)

(
1−
(
1−
[

η−1

1−(1−δ)(1−η−1)

]2δ)b
)

1−θ

(
1−
(
1−
[

η−1

1−(1−δ)(1−η−1)

]2δ)b
) ,

the pdf is

fTL−HT−LLOGG(x) = 2bθδ2

[
1−

(
1

η(1− (1− δ)(1− η−1))

)2δ
]b−1

β (1− θ)xβ−1η−2
[
η−1
]2δ−1

[1− (1− δ)(1− η−1)]
2δ+1

×

1− θ

1−

(
1−

[
1

η(1− (1− δ)(1− η−1))

]2δ)b
−2

for b, θ, δ, β > 0 and x > 0.
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Figure 2. Density and hrf plots for the TL-HT-LLOGG distribution

Figure [2] demonstrates the potential positive skewness or reversed-J shape of the TL-HT-LLOGG distribution.
Additionally, the hrf displays decreasing, increasing, bathtub, inverted bathtub as well as bathtub followed by
inverted bathtub shapes.

(c) TL-HT-LLOGL Distribution
The TL-HT-LLOGL cdf is

FTL−HT−LLOGL(x) = 1− log

(
1− θ

(
1−

(
1−

[
η−1

1−(1−δ)(1−η−1)

]2δ)b
))

,

the pdf is

fTL−HT−LLOGL(x) = 2bθδ2

[
1−

(
1

η(1− (1− δ)(1− η−1))

)2δ
]b−1

βxβ−1η−2/delta−1

[1− (1− δ)(1− η−1)]
2δ+1

×

(
1− θ

[
1−

(
1−

[
1

η(1−(1−δ)(1−η−1))

]2δ)b
])

− log(1− θ)

for b, δ, β > 0, x > 0 and 0 < θ < 1.
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Figure 3. Visualizations of the pdf and hrf for the TL-HT-LLOGL distribution

Figure [3] presents important insights into the TL-HT-LLOGL distribution. It highlights the distribution’s
versatility, showing that it can take on various shapes, ranging from almost symmetric to positively skewed,
negatively skewed, or reversed-J. The hrf demonstrates distinct patterns, including increasing and decreasing trends,
inverted bathtub, and bathtub followed by inverted bathtub shapes.

3. Quantile Function, Linear Representation, Moments and Incomplete Moments

This section contains various statistical properties associated with the TL-HT-GPS CoDs. These include the
quantile function, the qth moment, incomplete moments, order statistics, Rényi entropy, and probability weighted
moments.

3.1. Quantile Function

The quantile function is utilized for calculating percentiles, detecting outliers, and establishing confidence
intervals. It also plays a crucial role in risk assessment, finance, and decision-making processes. The TL-HT-GPS
distribution’s quantile function, (QX(q)) is

QX(q) = G−1


(
1−

[
θ−[C−1C(θ)(1−q)]

θ

] 1
b

) 1
2δ

1 + (1− δ)

(
1−

[
θ−[C−1C(θ)(1−q)]

θ

] 1
b

) 1
2δ

 (15)

for 0 ≤ q ≤ 1. The quantile values of the TL-HT-GPS CoDs can be computed using numerical techniques in R,
given the baseline cdf G(·) and the function C(θ). For detailed derivations, please refer to the web appendix
section.
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3.2. Linear Representation

This subsection gives a density expansion of the TL-HT-GPS CoDs. Properties of the TL-HT-GPS CoDs are derived
from this expansion. The TL-HT-GPS distribution pdf can be written as

f(x) =

∞∑
r=0

ηr+1gr+1(x;Ω), (16)

where gr+1(x;Ω) = (r + 1)g(x;Ω)Gr(x;Ω) represents the exponentiated-G (Expo-G) distribution with power
parameter (r + 1), and

ηr+1 =

∞∑
l,n,p,q=0

∞∑
m=1

(−1)l+n+q+r2bδ2(1− δ)p
(
m− 1

l

)(
b(l + 1)− 1

n

)
×

(
2δ(n+ 1) + p

p

)(
p

q

)(
q + 2δ − 1

r

)
mamθm

C(θ)

(
1

r + 1

)
, (17)

is the linear component. The TL-HT-GPS CoDs can be represented as an infinite linear combination of
exponentiated-G (Expo-G) densities. This formulation allows for the direct derivation of various statistical
properties including order statistics, entropy, and probability weighted moments can be directly derived. For
comprehensive insights into this expansion and additional statistical properties, please consult the web appendix
for detailed derivations.

3.3. Moments and Incomplete Moments

In statistics, moments serve as indicators of the distribution’s form and spread, detailing both the central tendency
and variability within a dataset. Incomplete moments are fundamental components essential for measuring
inequality; metrics like the Lorenz curve and Gini coefficients rely on these incomplete moments, illustrating their
importance in assessing wealth inequalities (McDonald and Butler [14]).

If Yr+1 is an Expo-G distributed random variable with power parameter (r + 1), then, the qth moment of
the TL-HT-GPS CoDs is

E(Xq) =

∞∑
r=0

ηr+1E(Y q
r+1),

where ηr+1 is specified by Equation (17) and E(Y q
r+1) is the qth moment of Yr+1. The qth incomplete moment is

IX(t) =

∫ t

0

xqf(x)dx =

∞∑
r=0

ηr+1Ir+1(t; q,Ω),

where Ir+1(t; q,Ω) =
∫ t

0
xqgr+1(x;Ω)dx denotes the incomplete moment of Yr+1. We state the moment

generating function (mgf) of X as

MX(t) =

∞∑
r=0

ηr+1E(etYr+1),

where E(etYr+1) is the mgf of Yr+1 and ηr+1 is defined in Equation (17). The computation of statistical measures
such as the coefficient of skewness (CS), coefficient of variation (CV), coefficient of kurtosis (CK), variance (σ2),
and standard deviation (σ) becomes straightforward once the necessary information is available. Bonferroni and
Lorenz curves for the TL-HT-GPS can also be obtained from incomplete moments of the distribution.
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Figure 4. Some 3D plots of the TL-HT-LLOGP distribution’s skewness and kurtosis

Figure [4] illustrates that the TL-HT-LLOGP distribution is capable of representing data with varying degrees of
kurtosis and skewness after fixing b and β.
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Figure 5. 3D plots of the TL-HT-LLoGG distribution’s skewness and kurtosis

Figure [5] demonstrates varying levels of kurtosis and skewness for the TL-HT-LLoGG distribution after fixing θ
and β.
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Figure 6. 3D plots of the TL-HT-LLOGL distribution’s skewness and kurtosis

After controlling for θ and β, Figure [6] demonstrates that the TL-HT-LLOGL distribution displays different
degrees of kurtosis and skewness as b and δ increase.

4. Estimation

In this section, our primary objective is to estimate the unknown parameters of the TL-HT-GPS CoDs. We aim
to achieve this by utilizing the maximum likelihood estimation (MLE) technique. The optimization process for
estimating distribution parameters followed an iterative approach, starting with an initial set of parameter estimates
informed by domain knowledge and preliminary data analysis. To make the process more robust, multiple random
initializations were tried, and the one that led to the best objective function value (the negative log-likelihood) was
selected. The parameter estimates were then updated in each iteration using the maximum likelihood estimation
algorithm, and after each update, the convergence of the optimization was checked by monitoring the stabilization
of the negative log-likelihood. The iterations continued until the objective function reached a stable value,
indicating that the parameters had converged to an optimal solution. This combination of iterative refinement,
informed initialization, and convergence checking ensures that the final parameter estimates are reliable and
accurate, providing a trustworthy model of the underlying distribution and making the optimization process less
sensitive to the choice of initial parameter estimates.

4.1. Estimation in the Absence of Censoring
The aim of this subsection is to obtain the MLEs for the parameters linked to the TL-HT-GPS CoDs.

Consider a random sample of size n denoted by Xi ∼ TL-HT-GPS, and let ∆ = (b, δ, θ, Ω)T represent the
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parameter vector. The log likelihood function ℓ = ℓ(∆) can be expressed as

ℓ = ℓ(∆) = 2n log(δ) + n log(2bθ) +

n∑
i=1

log[g(xi;Ω)] + (b− 1)

n∑
i=1

log

[
1−

(
Ḡ(xi;Ω)

1− (1− δ)G(xi;Ω)

)2δ
]

+ (2δ − 1)

n∑
i=1

log[Ḡ(xi;Ω)]− (2δ + 1)

n∑
i=1

log [1− (1− δ)G(xi;Ω)]−
n∑

i=1

log [C(θ)]

+

n∑
i=1

log

C′

θ

1−(1−
[

Ḡ(xi;Ω)

1− (1− δ)G(xi;Ω)

]2δ)b
 .

The MLEs of the parameters b, δ, θ and Ωk can be obtained by solving the nonlinear equation
(

∂ℓ
∂b ,

∂ℓ
∂δ ,

∂ℓ
∂θ ,

∂ℓ
∂Ωk

)T
=

0 using iterative methods in R. See web appendix for individual components of the score vector.

4.2. Estimation in the Presence of Censoring

Survival time studies often involve censored observations, which means that only partial information is available
during the period under study. Interval censoring can occur when an observation requires follow-up or inspections.
Right censoring is a type of interval censoring that is commonly used in medical studies. This type of censoring
occurs when the study ends before all units fail. Suppose we have a study with a random sample of n patients, each
with an independent censoring time Yk; k = 1, 2, 3, ....n, which is time interval between entry and study completion,
and the failure time Xk; i = 1, 2, ..., n of the ith patient. It is assumed that Xk and Yk are independent and follow
the TL-HT-GPS CoDs. For Tk = min(Xk, Yk), (Tk, ζk) is observed for ζk = 1 if failure has occurred and ζk = 0
if censoring has occurred. Consequently, the log-likelihood function (ℓ) can be expressed as

ℓ =

n∑
k=1

ζk log (f(tk)) +

n∑
k=1

(1− ζk) log (S(tk)) , (18)

where f(.) is the pdf of TL-HT-GPS CoDs and S(.) = 1− F (.) represent the survival function, respectively.
The log-likelihood function presented in Equation (18) can be optimized using numerical methods to obtain the
maximum likelihood estimates (MLEs) of the model parameters.

5. Risk Measures

Risk measures, such as value at risk (VaR), tail value at risk (TVaR), tail variance (TV), and tail variance premium
(TVP), serve as statistical tools utilized by actuaries to assess market risk. Their evolution in statistics and finance is
vital for effectively managing uncertainty, gaining insights into potential risks, and informing strategic decisions to
mitigate adverse outcomes. Within insurance, these measures assist in risk pricing and upholding financial stability,
while in finance, they are essential for portfolio evaluation and enhancing resilience by optimizing risk-return trade-
offs. Integration of these risk measures into risk management frameworks empowers organizations to navigate
uncertainties and make well-informed decisions.

5.1. VaR

VaR is a statistical measure that quantifies the potential magnitude of financial losses that a firm, portfolio,
or specific position may face within a defined time period. It serves as a valuable metric for assessing and
understanding the extent of potential downside risks in the financial realm. V aRq, which is the qth quantile for
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the TIHT-GPS CoDs is calculated from

Xq = G−1


(
1−

[
θ−[C−1C(θ)(1−q)]

θ

] 1
b

) 1
2δ

1 + (1− δ)

(
1−

[
θ−[C−1C(θ)(1−q)]

θ

] 1
b

) 1
2δ

 , (19)

where q ∈ (0, 1) is the probability threshold.

5.2. TVaR

TVaR is a quantitative measure that assesses the expected loss magnitude when an event surpasses a predetermined
probability level. The TVaR for the TL-HT-GPS CoDs is

TV aRq = E (X|X > xq) =
1

1− q

∫
V aRq

xf(x)dx

=
1

1− q

∞∑
j=0

∫ ∞

V aRq

xηr+1gr+1(x;Ω)dx, (20)

where gr+1(x;Ω) = (r + 1)Gr(x;Ω)g(x;Ω) is the exponentiated-G (Expo-G) pdf with power parameter (r + 1)
and ηr+1 is as given in Equation (17).

5.3. TV

TV is a statistical measure that evaluates the conditional variance of losses exceeding the VaR at a specified
probability level, providing valuable insights into the risk dynamics associated with extreme outcomes. The TVq

of the TL-HT-GPS CoDs is given by

TVq = E
(
X2 | X > xq

)
− (TV aRq)

2
=

1

1− q

∫ ∞

V aRq

x2f(x)dx− (TV aRq)
2

=
1

1− q

∞∑
r=0

υr+1

∫ ∞

V aRq

x2gr+1(x;Ω)dx− (TV aRq)
2
, (21)

where gr+1(x;Ω) = (r + 1)Gr(x;Ω)g(x;Ω) is the Expo-G distribution with power parameter (r + 1), parameter
vector Ω and ηr+1 is as given in Equation (17). Hence, the TVq of TL-HT-GPS CoDs can be obtained from those
of Expo-G distributions.

5.4. TVP

Risk managers become concerned when risks exceed specific levels. Such circumstances are widespread in
insurance, such as deductible plans and reinsurance contracts. Tail value premium answers demands to these
circumstances. The TVP of the TL-HT-GPS CoD is expressed as

TV Pq = TV aRq + β(TVq), (22)

where 0 < β < 1. The TVP of the TL-HT-GPS CoD is found by inserting Equations (20) and (21) into Equation
(22).

5.5. Numerical Study for the Risk Measures

We present results from the numerical simulations for the risk measures of the TL-HT-LLOGP distribution in this
subsection. The risk metrics (TVaR, VaR, TV and TVP) of the TL-HT-LLOGP distribution are compared to the type
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I heavy-tailed Weibull (TIHT-W) distribution by Zhao et al. [24], the heavy-tail log-logistic Poisson (HT-LLOGP),
the log-logistic Weibull-Poisson (LLOGWP) distribution by Oluyede et al. [21], the heavy-tail log-logistic (HT-
LLOG), the log-logistic Poisson (LLOGP) and the Weibull distributions. Simulation results are obtained based on
the following:

(1) a series of random samples, each consisting of 100 data points, are generated for each of the distributions
under consideration. The parameters associated with these distributions are estimated using the maximum
likelihood technique.

(2) the calculations for the risk metrics of these distributions are performed through 1000 repetitions to ensure
accurate and reliable estimates.

Table 1. Findings Derived from the Numerical Simulation of the Risk Measures

Significance Level
Distribution Risk measure 0.75 0.8 0.85 0.9 0.95 0.99

TL-HT-LLOGP(b = 1.3, θ = 0.6, δ = 1.4, β = 1.7) VaR 36.4513 38.7442 48.5754 53.3817 76.5251 94.6520
TVaR 52.1343 56.2249 69.8559 71.4539 82.5611 101.7086
TV 201.4752 267.7756 293.1283 302.8258 951.8390 1398.641

TVP 309.2408 314.8454 329.9150 341.0971 1854.248 3166.6550
TIHT-W(α = 1.3, θ = 0.6, γ = 1.4) VaR 33.4243 37.5023 42.5850 49.4916 60.7943 85.4688

TVaR 49.3077 53.1095 57.9260 64.5664 75.5611 99.7086
TV 214.0337 257.4698 280.9098 294.4029 303.2769 309.5669

TVP 281.4828 295.7310 308.1684 317.3852 320.1575 311.6020
HT-LLOGP(θ = 0.6, δ = 1.4, β = 1.7) VaR 29.0828 31.4845 32.5431 36.18364 51.0012 65.3564

TVaR 38.2216 44.0015 52.0692 57.0424 61.2341 79.2430
TV 88.3543 101.3245 131.4256 162.0423 173.2123 191.2340

TVP 201.3425 232.2402 245.4232 252.2234 355.2774 374.2108
LLOGWP(c = 1.2, a = 0.86, β = 1.7, θ = 0.6) VaR 0.2205 0.7520 1.0017 1.4613 1.0461 1.7105

TVaR 2.0798 2.4351 2.7523 3.0017 3.9087 4.4658
TV 5.0713 6.7754 7.4513 7.2210 8.0912 10.1237

TVP 12.1353 13.0087 14.1046 14.8401 16.1432 20.1244
HT-LLOG(δ = 1.4, β = 1.7) VaR 9.3322 11.8758 14.0543 16.0987 18.4096 21.0864

TVaR 18.2098 20.0860 21.3320 23.907 30.4223 32.0986
TV 29.9008 31.4861 39.3265 42.597 45.0071 49.6506

TVP 53.0978 55.0985 59.0871 60.0876 62.1290 71.0863
LLOGP(θ = 0.6, β = 1.7) VaR 3.2944 4.0921 6.0293 7.0844 9.0432 11.0012

TVaR 12.9944 13.0012 15.5990 17.0122 19.0932 21.0382
TV 23.2103 24.9577 25.7855 26.3943 29.1355 30.0533

TVP 33.2058 34.4832 36.1103 27.0543 42.1039 44.9584
Weibull(α = 1.3) VaR 1.4296 1.6908 2.0349 2.5321 3.4106 5.5595

TVaR 2.2893 2.4380 2.5990 2.7727 2.9589 3.1618
TV 1.2220 1.4581 1.8565 2.5417 3.7671 4.8106

TVP 3.2058 3.6045 4.1771 5.0603 6.5376 7.9243

Table [1] presents the numerical risk measure results for the heavy-tailed distributions. The TL-HT-LLOGP
distribution is recommended for modeling heavy-tailed data due to its elevated risk measure values in comparison
to the LLOGWP, TIHT-W and the Weibull distributions.

6. Simulations

Simulation results hold significant implications for practical applications by offering insights into system
behavior and performance, guiding decision-making processes, optimizing strategies, assessing risks, and testing
hypotheses in controlled environments. Analyzing these results enables informed choices, prediction of outcomes,
identification of challenges, and refinement of strategies to enhance efficiency, mitigate risks, and drive innovation
across diverse domains such as manufacturing, healthcare, finance, and engineering.

In order to evaluate the consistency of MLEs, a simulation study was performed. The results providing an
overview of the findings are displayed in Table [2]. We simulated for n= 25, 50, 100, 200, 400 and 800 and for
N=3000 from the TL-HT-LLOGP distribution. The average bias (AvBIAS) and root mean square error (RMSEr)
for an estimated parameter, say (δ̂), is calculated using the formulae

AvBIAS(δ̂) =

∑N
i=1 δ̂i
N

− δ, and RMSEr(δ̂) =

√∑N
i=1(δ̂i − δ)2

N
,

respectively. Analyzing the outcomes presented in Table [2], we note that the average values closely approximate
the true parameter values. Furthermore, the RTMSEr and AvBIAS tend to diminish towards zero for all parameters
with increasing sample size, indicating improved accuracy and reduced estimation errors. This shows that the
TL-HT-LLOGP distribution produces efficient parameters estimates.
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Table 2. Monte Carlo Simulation Results for TL-HT-LLOGP: Mean, RMSEr, and AvBias

b = 0.5, θ = 2.5, δ = 2.5, β = 1.5 b = 1.2, θ = 0.2, δ = 0.1, β = 1.2

n Mean RMSEr AvBIAS Mean RMSEr AvBIAS
b 25 0.9296 1.8639 0.4796 1.7813 0.8995 0.5813

50 0.8992 1.6721 0.3992 1.5371 0.5853 0.3371
100 0.6242 0.3772 0.1242 1.3859 0.3515 0.1859
200 0.5663 0.2329 0.0663 1.3566 0.2625 0.1566
400 0.5616 0.2270 0.0616 1.2836 0.1413 0.0836
800 0.5517 0.1601 0.0517 1.2479 0.0998 0.0379

θ 25 3.0294 1.8093 0.5294 1.4079 1.6445 1.2079
50 2.9007 1.5547 0.4007 1.1755 1.3241 0.9755
100 2.7672 1.4978 0.2672 1.0402 1.2778 0.8402
200 2.5553 0.9077 0.2553 0.7288 0.7759 0.5288
400 2.5473 0.8849 0.2073 0.4323 0.5157 0.2823
800 2.5078 0.5218 0.1678 0.2497 0.2082 0.1007

δ 25 4.6348 5.1003 2.1348 0.0701 0.0645 -0.0199
50 3.5526 3.1127 1.0526 0.0750 0.0586 -0.0050
100 2.9448 1.6884 0.4448 0.0809 0.0445 -0.0050
200 2.6216 0.9167 0.1216 0.0901 0.0333 -0.0039
400 2.5073 0.6202 0.0073 0.0987 0.0234 -0.0023
800 2.4601 0.3116 -0.0399 0.1012 0.0180 0.0020

β 25 1.9431 1.2952 0.4431 2.2217 1.9376 1.0217
50 1.7955 1.0873 0.2955 1.8060 1.3262 0.4060
100 1.6885 0.8178 0.1885 1.7115 0.2256 0.0915
200 1.6203 0.6372 0.1203 1.5839 0.1961 0.0861
400 1.6049 0.6061 0.1149 1.3350 0.1711 0.0450
800 1.5108 0.4296 0.0108 1.2001 0.1404 0.0092

b = 0.5, θ = 1.5, δ = 3.0, β = 3.0 b = 0.5, θ = 3.0, δ = 3.0, β = 3.0

n Mean RMSEr AvBIAS Mean RMSEr AvBIAS
b 25 1.1222 2.1448 0.9222 0.9050 2.4723 0.7050

50 0.9271 1.2679 0.7271 0.7773 1.9103 0.5773
100 0.6304 0.7296 0.5304 0.5764 0.3364 0.0764
200 0.5719 0.4998 0.3281 0.5537 0.2306 0.0537
400 0.5331 0.2512 0.1469 0.5279 0.2176 0.0279
800 0.5010 0.1155 0.0390 0.5134 0.1313 0.0134

θ 25 2.8695 2.5363 0.8695 3.2879 2.0257 0.2879
50 2.0452 1.4912 0.8352 3.1839 1.4032 0.0739
100 1.8265 1.4635 0.8265 3.1109 1.3524 0.0639
200 1.6437 1.3887 0.7437 3.0789 1.2206 0.0289
400 1.5916 1.3056 0.6516 3.0089 0.6757 0.0089
800 1.5182 1.1831 0.4582 3.0003 0.4109 0.0023

δ 25 4.4494 1.8709 2.4494 5.2262 4.9147 3.2262
50 3.8855 1.2993 1.2855 4.2056 3.3279 1.7056
100 3.4636 0.8682 0.4636 3.7425 2.2571 0.7425
200 3.2656 0.6134 0.2656 3.2597 1.2883 0.2597
400 3.1490 0.3233 0.1490 3.1019 0.8085 0.0609
800 3.0492 0.1270 0.0492 3.0342 0.5863 0.0042

β 25 4.0077 1.5524 1.0077 3.7774 2.3588 0.7774
50 3.9403 1.3931 0.9403 3.4693 1.8713 0.4693
100 3.8333 1.1406 0.8333 3.3877 1.4518 0.3877
200 3.7647 0.9214 0.7647 3.1716 1.0639 0.1716
400 3.4830 0.7417 0.4270 3.1568 0.8919 0.1568
800 3.2196 0.4133 0.2186 3.0977 0.6919 0.0977
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7. Applications

Applying probability distributions to datasets poses challenges like assumption violations, outlier influence, and
multimodal distribution complexities. Overcoming these hurdles demands a profound dataset understanding,
exploration of diverse distributional forms, and the employment of robust statistical methods for accurate modeling
outcomes.

The objective of this section is to showcase the adaptability and applicability of the TL-HT-GPS CoDs,
highlighting their versatility and usefulness in practical contexts. We focus on one of its special cases, the TL-
HT-LLOGP distribution, and apply it to two real data sets. The GoF statistics used included: −2 log(L), Akaike
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion
(BIC), Cramér-von Mises (CVM), Anderson-Darling (AD), and the Kolmogorov-Smirnov (K-S) statistics and
its associated p-value. We gave preference to the model with the highest K-S statistics p-value and lower GoF
statistics. To estimate the TL-HT-LLOGP model parameters, we used the non-linear minimization (nlm) function
from the R software, and the parameter estimates were presented together with their standard errors (in parenthesis).

We compared the TL-HT-LLOGP model with several non-nested models, along with some well-known
heavy-tailed models. The competing distributions are as follows: Topp-Leone Weibull Lomax (TLWLx) by Jamal
et al. [10], type I heavy-tailed Weibull (TIHT-W) by Zhao et al. [24], heavy-tailed beta power transformed Weibull
(HTBPTW) by Zhao et al. [23], exponentiated Half logistic log-logistic Poisson (EHLLLOGP) by Chipepa et al.
[7], log-logistic Weibull-Poisson (LLOGWP) by Oluyede et al. [21], exponential Lindley odd log-logistic Weibull
(ELOLLW) by Korkmaz et al. [12], and odd exponentiated half logistic Burr XII (OEHLBXII) by Aldahlan and
Afify [1]. The pdfs of the competing distributions are presented in the web appendix. Profile plots were presented
on all data sets to verify the uniqueness of the parameter estimates.

We also presented the sum of squares (SS) obtained from the probability plots to calculate closeness to the
diagonal line. SS is given as

SS =

n∑
j=1

[
FTL−HT−LLOGP (x(j); b̂, θ̂, δ̂, β̂)−

(
j − 0.375

n+ 0.25

)]2
, j = 1, 2, ...., n,

where x(j) is the jth ordered observed data value. In addition to the probability plots, the fitted densities, empirical
cumulative distribution function (ECDF), Kaplan-Meier (K-M) survival curve, total time on test (TTT) plots, and
hazard rate function (hrf) plots were also presented.

7.1. Growth Hormone Data

Human growth hormone, or somatotropin, is a single-chain polypeptide composed of amino acids produced by
somatotropic cells in the anterior pituitary gland (Brinkman et al. [5]). Initially recognized for its role in regulating
growth during childhood, human growth hormone is a vital hormone with diverse physiological functions. The
initial data set provides the estimated duration between the administration of growth hormone medication to the
attainment of the target age in the Programa Hormonal de Secretaria de Saude de Minas Gerais in 2009, according
to Alizadeh et al. [2]. The data is presented in the web appendix.
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Table 3. Estimates and GoF Statistics for Growth Hormone Data

GoF Statistics
Distribution Estimates and SEs -2log(L) AIC CAIC BIC CVM AD K-S p−value

b θ δ β
TL-HT-LLOGP 2.3713 75.1001 9.24×10−3 8.4912 154.2595 162.2595 163.5928 168.4809 0.0318 0.2201 0.0731 0.9920

(0.9661) (0.0405) (3.58×10−3) (3.6358)
a b α θ

TLWLx 0.1797 137.5700 1.4816 378.2200 155.1652 163.1652 164.4985 169.3866 0.0344 0.2471 0.0859 0.9585
(0.0124) (4.78×10−4) (0.2281) (2.11×10−4)

α θ γ
TIHT-W 1.7227 0.0530 1.0247 - 158.1126 164.1126 164.8868 168.7787 0.0818 0.5380 0.1324 0.5716

(0.2462) (0.0383) (0.4408)
α γ β

HTBPTW 1.9932 0.0279 1.2113 - 164.9772 170.9722 171.7514 175.6432 0.1639 1.0262 0.1454 0.4500
(0.2437) (0.0147) (0.8232)

δ β λ θ
EHLLLOGP 11.1020 0.2133 11.1030 2.46×10−8 155.4615 163.4615 164.7948 169.6829 0.0426 0.2836 0.0965 0.9003

(0.0657) (0.0274) (20.8230) (0.0153)
c α β θ

LLOGWP 2.5303 2.13×10−5 1.21×10−3 29.1180 155.5916 163.5963 164.9250 169.8130 0.0414 0.2812 0.0920 0.9287
( 0.3044) (0.3222) ( 2.4859) (14.2210)

β λ θ γ
ELOLLW 112.6600 0.7844 0.2513 1.4016 162.0931 170.0931 171.4265 176.3145 0.1257 0.8010 0.1331 0.5648

(4.07×10−4) (1.1037) (0.4958) (0.1667)
α λ a b

OEHLBXII 0.4337 4.15×10−3 19.5340 0.1386 183.2823 191.2823 192.6157 197.5037 0.2656 1.6324 0.1966 0.1338
(0.1799) (9.19×10−3) (3.08×10−4) (0.0434)
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Figure 7. Profile plots of the TL-HT-LLOGP on growth hormone data

From Table [3], we can draw the conclusion that the TL-HT-LLOGP distribution is superior to the contending
non-nested models. The p-values clearly show how the TL-HT-LLOGP model out-performs the other models. The
profile plots in Figure [7] show that the TL-HT-LLOGP distribution parameters on growth hormone data may be
uniquely identified.

The asymptotic confidence intervals at 95% confidence level for the model parameters are as follows: b ∈
[2.3713± 1.8936], θ ∈ [75.1001± 0.0794], δ ∈ [9.24× 10−3 ± 7.02× 10−3] and β ∈ [8.4912± 7.1262].
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Figure 8. Fitted densities and probability plots for growth hormone data

Figure [8] depicts the density functions superimposed on a histogram of growth hormone data as well as plots of
the observed probability versus their expected probabilities for the TL-HT-LLOGP distribution and the contending
distributions. In comparison, the TL-HT-LLOGP distribution fits better as evidenced by the smallest SS value
provided in the probability plots.
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Figure 9. Fitted ECDF curve and K-M survival plots for growth hormone data

Figure [9] presents the comparison between the observed and fitted ECDF and K-M survival curves for the growth
hormone data. The graphs show that the TL-HT-LLOGP distribution closely aligns with the ECDF and K-M
survival curves.
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Figure 10. Fitted TTT scaled and hrf plots for growth hormone data

Observing the TTT scaled plot and hrf plot depicted in Figure [10], it can be inferred that the data exhibits an
increasing hazard rate pattern.

7.2. Data on Head and Neck Cancer

This data set encompasses the observed duration of survival for a cohort comprising forty-nine (49) individuals
who have received a diagnosis of head and neck cancer. Efron [8] and Lee et al. [13]) conducted the analysis of the
data, which can be found in the supplementary materials in the web appendix.

7.2.1. Head and Neck Cancer Data (Complete Case): This subsection contains parameter estimates, standard
errors (SEs) of the estimates (in parentheses), GoF statistics, fitted densities, probability plots, K-M survival plot,
ECDF plot, TTT plot and hrf plot for forty (40) complete observations.

Table 4. Estimates of Parameters and GoF Statistics for the Head and Neck Cancer Data

GoF Statistics
Distribution Estimates and SEs -2log(L) AIC CAIC BIC CVM AD K-S p−value

b θ δ β
TL-HT-LLOGP 79.7650 30.3610 1.1168 0.1865 526.1938 534.1938 535.3366 540.9493 0.1184 0.6575 0.1216 0.5955

(2.59×10−4) (1.11×10−4) (0.0566) (0.0262)
a b α θ

TLWLx 0.0555 110.8200 5.6544 3.4617 526.2917 534.2917 535.4446 541.0572 0.1216 0.6737 0.1258 0.5512
(2.96×10−3) (4.07×10−4) (2.0769) (2.8330)

α θ γ
TIHT-W 1.2407 2.9439 1.22×10−4 - 529.1013 535.1013 535.7686 541.0339 0.1976 1.0838 0.1790 0.3542

(0.1434) (2.62×10−4) (1.05×10−4)
α γ β

HTBPTW 1.0731 2.28×10−3 0.9898 - 530.5814 536.5814 537.2481 541.6480 0.2232 1.2357 0.1564 0.2822
(0.1225) (1.75×10−3) (0.8787)

δ β λ θ
EHLLLOGP 224.2000 3.7208 0.3020 1.14×10−4 538.1685 546.1685 547.3114 552.9240 0.2131 1.2998 0.1643 0.2305

(9.18×10−7) (3.43×10−3) (3.85×10−5) (0.0408)
c α β θ

LLOGWP 0.4413 1.6264 0.1844 309.2200 530.3653 538.3653 539.5081 545.1208 0.1372 0.8189 0.1302 0.5067
( 0.4393) (0.5041) ( 0.0489) (1.53×10−3)

β λ θ γ
ELOLLW 433.1800 0.5301 0.0505 0.7517 527.9126 535.9126 537.0555 542.6681 0.1750 0.9604 0.1490 0.3371

(6.80×10−5) 3.4885) (0.2499) (0.0847)
α λ a b

OEHLBXII 0.3914 5.18×10−5 3.3566 0.4750 552.6883 560.6883 561.8311 567.4438 0.3962 2.2403 0.2191 0.0429
(0.0308) (4.33×10−5) (5.23×10−3) (0.0370)
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Figure 11. Profile plots of the TL-HT-LLOGP: Head and neck cancer data

From Table [4], we can draw the conclusion that the TL-HT-LLOGP model is superior to the contending
non-nested models. The profile plots in [11] give evidence that the TL-HT-LLOGP parameters on head and neck
cancer data can be uniquely determined.

The model parameters are estimated with 95% asymptotic confidence intervals as follows: b ∈ [79.7650±
5.08× 10−4], θ ∈ [30.3610± 2.18× 10−4], δ ∈ [1.1168± 0.1109] and β ∈ [0.1865± 0.0514].
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Figure 12. Density and probability plots for head and neck cancer

Figure [12] depicts the density functions superimposed on a histogram of head and neck cancer data, as well as
plots of the observed probability versus the expected probabilities of the TLHTLLOGP distribution and various
competing distributions. In comparison, the TL-HT-LLOGP distribution fits better.
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Figure 13. Plots of the fitted ECDF curve and K-M survival plots for the head and neck cancer data

Figure [13] displays the fitted ECDF and K-M survival curves both based observed for head and neck cancer data.
The graphs show that the TL-HT-LLOGP distribution closely follow the ECDF and K-M survival curves.
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Figure 14. Fitted TTT caled and hrf plots for head and neck cancer data

The complementary analysis of the TTT scaled and hrf plots in Figure [14] suggest that, the data follow an upside-
down bathtub hazard rate shape.

7.2.2. Head and Neck Cancer Data (Censored Case): This section contains parameter estimates and GoF statistics
for head and neck cancer data including censored observations. The data is contained in the web appendix.
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Table 5. Parameter Estimates and GoF Statistics: Censored Case

GoF Statistics
Distribution Estimates and SEs -2log(L) AIC CAIC BIC SS

b θ δ β
TL-HT-LLOGP 3.3755 42.7234 0.0737 0.8863 559.3177 567.3177 568.2268 574.8850 0.0361

(0.9687) (0.0270) (0.0496) (0.3501)
a b α θ

TLWLx 0.0563 1.90×103 3.2538 9.2257 559.5581 567.5581 568.4672 575.1254 0.0423
(8.41×10−4) (5.21×10−5) (0.3823) (0.0519)

α θ γ
TIHT-W 1.0230 2.6973 3.28×10−4 - 564.5581 570.5581 571.0914 576.2336 0.0593

(0.1236) (4.23×10−4) (2.52×10−5)
α γ β

HTBPTW 0.9141 3.89×10−3 0.9999 - 566.8449 572.8449 568.3782 578.5244 0.0604
(0.1106) (2.77×10−3) (0.7409)

δ β λ θ
EHLLLOGP 14.5281 0.0248 20.9891 3.5890 562.1811 570.1811 571.0902 577.7484 0.0561

(3.9227) (8.52×10−3) (4.2365) (1.6813)
c α β θ

LLOGWP 0.0589 7.64×10−3 0.8612 3.6817 586.0382 594.0382 594.9473 601.6055 0.0732
(0.2526) (0.0177) (0.2961) (1.3379)

β λ θ γ
ELOLLW 236.4900 7.0294 0.0149 0.6234 563.7936 571.7936 572.7027 579.3609 0.0589

(1.28×10−8) (5.48×10−6) (8.85×10−3) (0.0733)
α λ a b

OEHLBXII 0.5647 1.20×10−3 1.2497 0.8457 587.8382 595.8382 596.7473 603.4055 0.0711
(0.1172) (9.86×10−3) (0.2374) (0.1621)

Table [5] gives the MLEs with their corresponding SEs (in parentheses) of the unknown parameters of the TL-HT-
LLOGP distribution for the censored data found by maximizing the log-likelihood function in Equation (18).
The asymptotic confidence intervals at a 95% confidence level for the model parameters are: b ∈ [3.3755± 1.8987],
θ ∈ [42, 7234± 0.0530], δ ∈ [0.0737± 0.0972] and β ∈ [0.8863± 0.0682], respectively.

The analysis of the GoF statistics shown in Tables [5] provides compelling evidence that the TL-HT-LLOGP
model exhibits superior performance than its selected non-nested models when applied to the censored head and
neck cancer data.

8. Summary

In summary, the current study has made significant contributions to the field of statistical modeling by introducing
the TL-HT-GPS CoDs. This novel class of continuous distributions has demonstrated the ability to effectively
model heavy-tailed data and a wide range of hazard rate patterns, both monotonic and non-monotonic. The
comprehensive investigation of the statistical properties of the TL-HT-GPS CoDs, along with the successful
implementation of the MLE technique for parameter estimation, has strengthened the theoretical and practical
applicability of this distribution. The study’s comparative analysis has demonstrated the superior performance
of the TL-HT-LLOGP CoDs, a member of the TL-HT-GPS CoDs, in fitting real-life data sets when compared
to existing non-nested models. This highlights the flexibility and adaptability of the TL-HT-GPS distribution in
handling a wide range of data, including cases with censored observations.

While the current study has laid a solid foundation for the TL-HT-GPS CoDs, there remain several avenues
for future research. Exploring other members of the TL-HT-GPS CoDs and their potential applications,
investigating the performance of the distribution in modeling specific types of real-life data and other statistical
properties could lead to valuable insights. The application of TL-HT-GPS CoDs in areas such as risk management,
survival analysis, and reliability engineering holds significant promise. Additionally, extending this distribution
to the multivariate case through copula-based extensions and exploring Bayesian estimation techniques offer
compelling avenues for future research. Overall, the present study has paved the way for further advancements in
the realm of statistical modeling and data analysis.
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Appendix

To access the appendix, kindly click on the link provided below:
https://drive.google.com/file/d/1xXdo1rCGBsiixLthkSd8fJUVDmdpKqAP/view?usp=
sharing
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