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Abstract Tensor train decomposition is a powerful tool for processing high-dimensional data. Density matrix
renormalization group (DMRG) is an alternating scheme for low-rank tensor train decomposition of large tensors. However,
it may suffer from the curse of dimensionality due to the large scale of subproblems. In this paper, we proposed a novel
randomized proximal DMRG algorithm for low-rank tensor train decomposition by using TensorSketch to alleviate the
curse of dimensionality. Numerical experiments on synthetic and real-world data also demonstrate the effectiveness and
efficiency of the proposed algorithm.
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1. Introduction

Tensors are multidimensional arrays and generalization of matrices, which are widely used in many fields such
as machine learning, signal processing [19]. As real-world data explodes in volume and complexity, tensor
decomposition has become a powerful tool for large-scale data analysis. The idea of tensor decomposition is to
represent a high-dimensional tensor as a combination of multiple low-rank tensors, thus realising data downscaling
and capture the correlations, patterns and important features in the data effectively. The main tensor decompositions
include CP decomposition [15], Tucker decomposition [32], tensor train (TT) decomposition [26], tensor ring
decomposition [39] and so on. CP decomposition provides a useful way to factorize a tensor into the sum of rank-1
tensors. Unfortunately, it is not reliable due to the difficulty of determining the number of rank-1 components.
Tucker decomposition is more stable than CP decomposition, but it suffers from the curse of dimensionality. On
the other hand, TT decomposition is not affected by the curse of dimensionality and is more reliable. In this paper,
we mainly focus on TT decomposition which is becoming increasingly popular due to its stability and efficiency.

The tensor train decomposition can decompose a large tensor into the product of a series of third-order tensors.
Common methods for computing tensor TT decompositions include TT-SVD, TT-ALS. The former is based on the
truncated singular value decomposition (SVD) of auxiliary unfolding matrices, while the latter mainly updates each
core tensor alternatively by solving corresponding least squares problem. The density matrix renormalization group
(DMRG) is another efficient algorithm for low-rank tensor train decomposition, which was originally proposed to
find the ground state of Hamiltonians of many-body quantum systems [17]. It proceeds in the same fashion as
TT-ALS, but with one important difference: the optimization is performed over two neighboring cores. However,
both methods may suffer from the curse of dimensionality (the data size of a tensor increases exponentially with
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the increase of the dimensionality of the tensor). As datasets grow larger and larger, there is an increasing need for
methods to handle them. One possible solution to the challenge is the use of randomization, which has been proven
to be effective in computing the low-rank approximations of large-scale matrices [14, 21, 31, 4, 24].

Among the existing tensor decomposition methods, different randomized techniques have been applied to
accelerate the low-rank approximations of tensors [5, 25, 13, 7, 8, 1, 12]. For TT decomposition, Che et al.
proposed an adaptive randomized algorithm for computing the tensor train approximations of tensors [9]. Huber
et al. proposed randomized TT decomposition which is a robust alternative to the classical deterministic TT-SVD
algorithm at low computational expenses [16]. To make full use of TT format, Shi et al. proposed parallelizable
sketching algorithms that compute the low-rank TT decomposition from various tensor inputs [29]. Yu et al.
presented a randomized algorithm for low-rank tensor train approximation of tensors based on randomized block
Krylov subspace iteration [38]. It is worth mentioning that most of methods are based on the randomized SVD
for matrices [14], where the random Gaussian matrices are used. For large-scale tensors, this kind of methods is
bottlenecked by the operation called the tensor-times-matrix-chains. To alleviate the computation cost, many works
[36, 2, 11] has led to the technique of TensorSketch which is ideally suited for sketching Kronecker products. In this
way, the random matrix is very sparse and the accuracy could be also guaranteed with high probability. Recently,
the technique of TensorSketch has been used for computing low-rank approximations of CP decomposition [34],
Tucker decomposition [22, 20], tensor train decomposition [10] and tensor ring decomposition [23, 37]. The main
idea of these randomized algorithms is using TensorSketch to sketch the subproblems of alternating least squares
(ALS). Motivated by the work of [10], we apply TensorSketch and DMRG scheme to compute the low-rank TT
decomposition based on the regularized alternating least squares. Our contributions and the notations used in this
paper are listed in Subsections 1.1 and 1.2, respectively.

1.1. Contributions

In this paper, we propose a randomized proximal DMRG algorithm for low-rank TT decomposition by using
TensorSketch. The fast computation and approximation accuracy are also established. In summary, this paper has
the following contributions:

• Based on the DMRG, a novel randomized algorithm is proposed for low-rank TT decomposition by using
TensorSketch.

• Numerical experiments on synthetic and real-world data also demonstrate the effectiveness and efficiency of
the proposed algorithm.

1.2. Notation

Throughout this paper, scalars are denoted by lower case letters, e.g. x; vectors are denoted by bold lower case
letters, e.g. x; matrices are denoted by capital letters, e.g. X; tensors of order 3 or higher are denoted by calligraphic
letters, e.g. X . For any positive integer n, denote [n] = {1, 2, . . . , n}. For any matrix A ∈ Rm×n, the ith row vector
and jth column vector of A are denoted by A(i, :) and A(:, j), respectively. The Kronecker product of two matrices
is denoted with “⊗”. The identity matrix of size n× n is denoted by In.

We use the multi-index i1i2 · · · id to denote the element in
[∏d

k=1 nk

]
such that

i1i2 · · · id = i1 + (i2 − 1)n1 + · · ·+ (id − 1)n1 · · ·nd−1

for any ij ∈ [nj ] and j ∈ [d]. For any 3rd-order tensor A ∈ Rn1×n2×n3 , the ith slice of A is denoted by A(i) ∈
Rn1×n3 for i ∈ [n2], the left unfolding AL ∈ Rn1n2×n3 is defined as AL(i1i2, i3) = A(i1, i2, i3) and the right
unfolding AR ∈ Rn1×n2n3 is defined as AR(i1, i2i3) = A(i1, i2, i3).

For any tensor A ∈ Rn1×n2×···×nd , the mode-k matricization A(k) ∈ Rnk×
∏

i̸=k ni is defined as A(k)(ik, j) =
A(i1, i2, . . . , id), where

j = 1 +

d∑
s=1
s ̸=k

(is − 1)

s−1∏
t=1
t ̸=s

nt,
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and the mode-(k, k + 1) matricization A(k,k+1) ∈ Rnknk+1×
∏

i̸=k,k+1 ni is defined as
A(k,k+1)

(
ikik+1, i1 · · · ik−1ik+2 · · · id

)
= A(i1, i2, . . . , id) for ij ∈ [nj ] and j ∈ [d]. The Frobenius norm of

A ∈ Rn1×n2×···×nd is defined as ∥A∥F =
√∑n1

i1=1

∑n2

i2=1 · · ·
∑nd

id=1A(i1, i2, . . . , id)2.

Definition 1 (k-mode product [19])
The k-mode product of a tensor X ∈ Rn1×n2×···×nd and a matrix A ∈ Rm×nk is denoted by X ×k A and is of size
n1 × · · · × nk−1 ×m× nk+1 × · · · × nd with each element given by

(X ×k A)(i1, . . . , ik−1, j, ik+1, . . . , id) =

nk∑
ik=1

X (i1, . . . , ik−1, ik, ik+1, . . . , id)A(j, ik).

Definition 2 (Face-splitting product [30])
Given A ∈ Rm×n1 and B ∈ Rm×n2 , the face-splitting product C = A□B ∈ Rm×n1n2 is defined by the row-wise
Kronecker product of matrices A and B, i.e.,

C(i, :) = A(i, :)⊗B(i, :), i ∈ [m].

Definition 3 (Slice-wise product[10])
GivenA ∈ Rr1×n×r2 and B ∈ Rr2×n×r3 , the slice-wise product C = A ⋆ B ∈ Rr1×n×r3 is defined by the slice-wise
product of tensors A and B, i.e.,

C(i) = A(i)B(i), i ∈ [n].

The above notations are summarized in Table 1.

Table 1. Description of notations.

Notation Meaning
x Scalar
x Vector
X Matrix
X dth-order tensor (d ≥ 3)

[n] The set {1, 2, . . . , n}
A (i, :) The ith row vector of matrix A

A (:, j) The jth column vector of matrix A

⊗ Kronecker product
In Identity matrix of size n× n

A(i) The ith slice of 3rd-order tensor A
AL The left unfolding of 3rd-order tensor A
AR The right unfolding of 3rd-order tensor A
A(k) The mode-(k) matricization of tensor A
A(k,k+1) The mode-(k, k + 1) matricization of tensor A
∥·∥F Frobenius norm
×k k−mode product
□ Face-splitting product
⋆ Slice-wise product

1.3. Organization

This paper is organized as follows. Some preliminaries are introduced in Section 2. In Section 3, we propose the
randomized proximal DMRG algorithm for low-rank TT decomposition based on TensorSketch and analysis the
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computational complexity and accuracy of our algorithm. In Section 4, numerical experiments for synthetic and
real-world problems are presented to show the validity of proposed algorithm. Finally, the conclusions are drawn
in Section 5.

2. Preliminaries

2.1. Tensor Train decomposition

The tensor train (TT) decomposition is to represent a high-order tensor as the product of a series of third-order
tensors, which was originally proposed by Oseledets [26]. Specifically, the main idea of TT decomposition is to
re-express each element of a tensor A ∈ Rn1×n2×···×nd as

A(i1, i2, · · · , id) = G1(i1)G2(i2) · · · Gd(id), (2.1)

where Gk ∈ Rrk−1×nk×rk , k = 1, 2, . . . , d are called TT-cores. Here we assume r0 = rd = 1 such that the product
on the right-hand side of (2.1) is a scalar. The quantities r0, r1, . . . , rd are called TT-ranks. The tensor A is also
denoted by

A = [[G1,G2, . . . ,Gd]].

Let n = max{n1, n2, . . . , nd} and r = max{r0, r1, . . . , rd}. It turns out that tensor train decomposition transforms
the storage complexity of an nd tensor into O(dnr2). The numerical stability of TT decomposition comes from the
process of left and right orthogonalization [26]. Figure 1 illustrates the TT decomposition of a third-order tensor
A ∈ Rn1×n2×n3 .

Figure 1. TT decomposition for A ∈ Rn1×n2×n3

2.2. DMRG scheme

The idea of the Density Matrix Renormalization Group (DMRG), proposed by White [35], was only later realized as
an idea of constrained optimization in the matrix product. The DMRG method is an alternating least square method,
but with one minor modification. Instead of minimizing over one core, the objective function is minimized over a
pair of cores (Gk,Gk+1) simultaneously for k ∈ [d− 1]. A new supercore Wk ∈ Rrk−1×nknk+1×rk+1 is computed
by

Wk

(
ikik+1

)
= Gk(ik)Gk+1(ik+1) (2.2)

for ik ∈ [nk] and ik+1 ∈ [nk+1]. This removes the information about the rk. The optimization problem over
Wk is a linear least squares problem. After Wk is updated, the supercore Wk is reshaped into the matrix
Wk ∈ Rrk−1nk×nk+1rk+1 . It follows that the TT-cores Gk and Gk+1 are recovered from (2.2) by means of the
singular value decomposition (SVD). The most important thing is that the rank rk can be determined adaptively.
This rank-reduction is called the decimation step of the DMRG scheme.
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2.3. TensorSketch

TensorSketch is a technique for high-dimensional tensor approximation and dimensionality reduction. It restricts
the hash map to a specific format, enabling fast multiplication of the sketching matrix with the chain of Kronecker
products. The hash map in TensorSketch maps the indices of the tensor to a format that allows for efficient
multiplication with the sketching matrix. This enables the algorithm to compute the sketch of a tensor quickly
for various tasks, such as tensor decomposition and regression. Before introducing the definition of TensorSketch,
we first give the definitions of CountSketch and k-wise independent hash map[18, 27].

Definition 4 (CountSketch)
The CountSketch matrix is definied as S = ΩD ∈ Rm×n, where

(1) h : [n]→ [m] is a hash map such that Pr[h(i) = j] = 1
m for all i ∈ [n] and j ∈ [m].

(2) Ω ∈ Rm×n is a matrix with Ω(j, i) = 1 if j = h(i) and Ω(j, i) = 0 otherwise.
(3) D ∈ Rn×n is a diagonal matrix with diagonal a Rademacher vector v ∈ Rn (each entry is +1 or −1 with

equal probability).

Definition 5 (k-wise independent)
A hash map h : [n]→ [m] is called k-wise independent if the hash code of any fixed i ∈ [n] is uniformly
distributed in [m], and the hash codes h(i1), h(i2), . . . , h(ik) are independent random variables for any distinct
i1, i2, . . . , ik ∈ [n].

Note that there is a bijection between the set of indices i ∈
[∏d

k=1 nk

]
and the d-tuples (i1, i2, . . . , id) ∈

[n1]× [n2]× · · · × [nd] according to the reverse lexicographic order. For simplicity, we use the notation f(i) =

f(i1, ..., id) for the funtion f on the domain [n1]× [n2]× · · · × [nd], where i = 1 +
∑d

s=1(is − 1)
∏s−1

t=1 nt.

Definition 6 (TensorSketch)
The order d TensorSketch matrix is defined as S = ΩD ∈ Rm×

∏d
k=1 nk , where

• h : [n1]× [n2]× · · · × [nd]→ [m] is the hash map

h(i1, i2, . . . , id) =

(
d∑

k=1

(hk(ik)− 1) mod m

)
+ 1, (2.3)

where hk : [nk]→ [m] is a 3-wise independent hash map for k = 1, 2, . . . , d.
• Ω ∈ Rm×

∏d
k=1 nk is a matrix with Ω(j, i) = 1 if j = h(i) and Ω(j, i) = 0 otherwise.

• D ∈ R
∏d

k=1 nk×
∏d

k=1 nk is a diagonal matrix with diagonal vector v ∈ R
∏d

k=1 nk given by

v(i1, i2, . . . , id) =

d∏
k=1

vk(ik), (2.4)

where vk : [nk]→ {−1, 1} is a 4-wise independent hash map for k = 1, 2, . . . , d.

It is well-known that if hk is 3-wise independent for k ∈ [d], the hash map h constructed in TensorSketch is also
3-wise independent [6, 28].

3. Randomized DMRG algorithm for low-rank TT decomposition using TensorSketch

Given a tensor A ∈ Rn1×n2×···×nd and TT-ranks {rk}dk=0, the goal of low-rank tensor train decomposition is to
minimize the objective function

f(G1,G2, . . . ,Gd) =
1

2
∥[[G1,G2, . . . ,Gd]]−A∥2F (3.1)

Stat., Optim. Inf. Comput. Vol. 12, July 2024



1066 RANDOMIZED DMRG FOR LOW-RANK TENSOR TRAIN DECOMPOSITION

where Gk ∈ Rrk−1×nk×rk for k ∈ [d] and r0 = rd = 1. To minimize (3.1), DMRG algorithm updates each supercore
Wk alternatively while the other TT-cores are fixed [35]. To be specific, for k ∈ [d− 1], the supercore is updated
by solving the corresponding least squares problem, i.e.,

min
Wk

1

2

∥∥∥(G⊤
>k+1 ⊗G<k

)
W⊤

k(2) −A
⊤
(k,k+1)

∥∥∥2
F

(3.2)

where Wk ∈ Rrk−1×nknk+1×rk+1 are given by (2.2), G<k = reshape
(
[[G1,G2, . . . ,Gk−1]],

∏
i<k ni, rk−1

)
and

G>k+1 = reshape
(
[[Gk+2,Gk+3, . . . ,Gd]], rk+1,

∏
i>k+1 ni

)
. Here we define G<1 = G>d = 1. Typically, the

DMRG method converges quickly, and only a few sweeps (a sweep is the sequence of iterations where all pairs
(Gk,Gk+1) were optimized) are required. However, the solution of (3.2) may be not unique. Motivated by the
work of [10], proximal regularization is a powerful technique that enhances the training process by making the
subproblems well-defined and promoting faster convergence. In this paper, we consider DMRG with proximal
regularization:

min
Wk

1

2

∥∥∥(G⊤
>k+1 ⊗G<k

)
W⊤

k(2) −A
⊤
(k,k+1)

∥∥∥2
F
+

σ

2

∥∥∥Wk −W(t)
k

∥∥∥2
F

(3.3)

whereW(t)
k denotesWk at the tth iteration. The cost of solving subproblem (3.3) is O(ndr2) which is impractical

for large-scale problems, where n = max{n1, n2, . . . , nd} and r = max{r0, r1, . . . , rd}. So our idea is to find a
sketching matrix S ∈ Rm×

∏
i̸=k,k+1 ni to solve the sketched proximal least squares problem

min
Wk

1

2

∥∥∥SHk,k+1W⊤
k(2) − SA⊤

(k,k+1)

∥∥∥2
F
+

σ

2

∥∥∥Wk −W(t)
k

∥∥∥2
F
, (3.4)

where Hk,k+1 = G⊤
>k+1 ⊗G<k. It follows that the supercoreWk is updated by

W(t+1)
k(2) =

(
A(k,k+1)S

⊤SHk,k+1 + σW(t)
k(2)

) (
H⊤

k,k+1S
⊤SHk,k+1 + σI

)−1
. (3.5)

We can see that if σ > 0, (3.5) is always well-defined even though H⊤
k,k+1S

⊤SHk,k+1 is singular. Here we use
TensorSketch to construct the sketching matrix S in (3.4). TensorSketch is a special type of CountSketch, where
the hash map is restricted to a special format to allow fast multiplication of the sketching matrix with the chain of
Kronecker products. Denote by F ∈ Rm×m the Fourier transform matrix, i.e.,

F =


1 1 · · · 1
1 w · · · wm−1

...
...

. . .
...

1 wm−1 · · · w2(m−1)


where w = e−i·2π/m. Similar with [10], we establish the fast computation of TensorSketch for DMRG algorithm.
The only difference is that we consider S(G⊤

>k+1 ⊗G<k) instead of S(G⊤
>k ⊗G<k).

Lemma 1 ([10])
Let S ∈ Rm×

∏
i∈[d]\{k,k+1} ni be the TensorSketch matrix generated by CountSketch matrices Si ∈ Rm×ni , i ∈

[d] \ {k, k + 1}. It holds that

S(G⊤
>k+1 ⊗G<k) = F−1[(FS>k+1G

⊤
>k+1)□(FS<kG<k)],

where S<k ∈ Rm×n1···nk−1 is the TensorSketch matrix generated by CountSketch matrices {Si}i<k and S>k+1 ∈
Rm×nk+2···nd is the TensorSketch matrix generated by CountSketch matrices {Si}i>k+1.

Lemma 2 ([10])
Let S<k and S>k be the TensorSketch matrices defined as Lemma 1. It holds that

FS<kG<k = [(G1 ×2 FS1) ⋆ (G2 ×2 FS2) ⋆ · · · ⋆ (Gk−1 ×2 FSk−1)]
L
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and
FS>k+1G

⊤
>k+1 =

[
((Gk+2 ×2 FSk+1) ⋆ (Gk+3 ×2 FSk+2) ⋆ · · · ⋆ (Gd ×2 FSd))

R
]⊤

.

The two lemmas above show that the computations of FS<kG<k and FS>k+1G
⊤
>k+1 could be divided into

the slice-wise products of corresponding TT-cores, respectively. Next, we give the computational complexity of
S
(
G⊤

>k+1 ⊗G<k

)
.

Theorem 1
Let n = max{n1, n2, . . . , nd} and r = max{r0, r1, . . . , rd}. The products of FS>k+1G

⊤
>k+1 and FS<kG<k could

be computed at a cost of O
(
(m+m logm+ n)(d− 2)r2

)
. As a result, the computation cost of S

(
G⊤

>k+1 ⊗G<k

)
is O

(
(m+m logm)(d− 1)r2 + n(d− 2)r2

)
.

Proof. For i ∈ [d] \ {k, k + 1}, the computation cost of Gi ×2 Si is O(nr2) due to the structure of CountSketch
matrices. It follows that the computation cost of Gi ×2 FSi is O(nr2 + r2m logm). By recursion, the slice-wise
products of (G1 ×2 FS1) ⋆ · · · ⋆ (Gk−1 ×2 FSk−1) and (Gk+2 ×2 FSk+2) ⋆ · · · ⋆ (Gd ×2 FSd) could be computed
at the cost of O

(
m(k − 1)r2

)
and O

(
m(d− k − 1)r2

)
, respectively. By lemma 2, the total computation cost

of FS>k+1G
⊤
>k+1 and FS<kG<k is O

(
(m+m logm+ n)(d− 2)r2

)
. Furthermore, the cost of face-splitting

product (FS>k+1G
⊤
>k+1)□(FS<kG<k) is O(mr2). By lemma 1, the total computation cost of S

(
G⊤

>k+1 ⊗G<k

)
is O

(
(m+m logm)(d− 1)r2 + n(d− 2)r2

)
when adding the cost of inverse fast Fourier transform.

In the following, we derive the theoretical result of sketch size for approximating the optimal value of (3.3)
according to the result of [10].

Lemma 3 (TensorSketch for Regularized Least Squares [10])
Given a full-rank matrix P ∈ Rn1n2···nq×s with n1n2 · · ·nq > s, B ∈ Rn1n2···nq×n, C ∈ Rs×n and
σ > 0, let S ∈ Rm×n1n2···nq be the TensorSketch matrix defined as in Lemma 2. Denote Xopt =

argminX
1
2 ∥PX −B∥2F + σ

2 ∥X − C∥2F and X̃opt = argminX
1
2 ∥SPX − SB∥2F + σ

2 ∥X − C∥2F . If
m = max

{
8s2(2 + 3q)/δ, 8s(2 + 3q)/(ϵδ)

}
where ϵ > 0, 0 < δ ≤ 1, the approximation

1

2

∥∥PX̃opt −B
∥∥2
F
+

σ

2

∥∥X̃opt − C
∥∥2
F
≤ (1 + ϵ) ·OPT

holds with probability at least 1− δ, where OPT = 1
2 ∥PXopt −B∥2F + σ

2 ∥Xopt − C∥2F .

Theorem 2
Let r = max{r0, r1, . . . , rd}. If m = max

{
8r4(2 + 3d−2)/δ, 8r2(2 + 3d−2)/(ϵδ)

}
, there is at least 1− δ

probability thatW(t+1)
k computed by (3.5) is a solution with a relative error of ϵ from the optimal value of (3.3). In

particular, if 0 < ϵ < 1/r2, the result holds if m = 8r2(2 + 3d−2)/(ϵδ).

The proposed density matrix renormalization group (DMRG) algorithm for low-rank tensor train decomposition
using TensorSketch is described in Algorithm 1. Based on the above analysis, we know that the computation
cost of S

(
G⊤

>k+1 ⊗G<k

)
goes linearly with the order d, whereas the naive matrix multiplication would cost

O(mnd−2r2) which goes exponentially with the order d. The special structure of TensorSketch matrices makes the
computation more practical for large-scale problems. In fact, the mode products {Gi ×2 FSi}i∈[d]\{k,k+1} could
be also computed in parallel to reduce the cost. Moreover, there is no need to store the whole tensor A since only a
few fibers are used to compute SA⊤

(k,k+1) in (3.4). In particular, if A is sparse, the computation cost of SA⊤
(k,k+1)

is O (nnz(A)), where nnz(A) denotes the number of nonzero elements of A.

4. Experimental results

To show the efficiency of the proposed algorithm (denoted by DMRG-TS), we compare it with other two
algorithms. The first one is the deterministic algorithm TT-DMRG [35], which serves as the baseline for low-
rank tensor train decomposition. The second one is the randomized algorithm called DMRG-Random which is
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Algorithm 1 DMRG algorithm for low-rank tensor train decomposition using TensorSketch

Input: A ∈ Rn1×n2×···×nd , TT-ranks {rk}d−1
k=1, tolerable error ϵ, sketch size m and σ > 0

Output: Approximate tensor Ã with TT-cores {Gk}dk=1

1: Initialize TT-cores {Gk}dk=1 of prescribed ranks
2: while err > ϵ do
3: Execute right-to-left orthogonalizion for {Gk}dk=1

4: Define TensorSketch operators Sk ∈ Rm×nk , k ∈ [d]
5: for k = 1, 2, . . . , d− 1 do
6: Compute S(G⊤

>k+1 ⊗G<k) by F−1[(FS>k+1G
⊤
>k+1)□(FS<kG<k)]

7: Compute SA⊤
(k,k+1) by using some fibers of A

8: UpdateWk according to (3.5)
9: Wk ← reshape(Wk, rk−1 ∗ nk, nk+1 ∗ rk+1)

10: [U, S, V ]← compute SVD of Wk

11: Gk ← reshape(U(:, 1 : rk), rk−1, nk, rk)
12: Gk+1 ← reshape(S(1 : rk, 1 : rk)V (:, 1 : rk)

⊤, rk, nk+1, rk+1)
13: end for
14: Ã ← [[G1,G2, . . . ,Gd]]

15: err =
∥Ã−A∥2

F

∥A∥2
F

16: end while

motivated by [33], and the sketching matrix in (3.4) is chosen such that the rows of Hk,k+1 are chosen randomly
with equal probability. In all three algorithms, the TT-cores are updated from left to right, and we developed
our own implementations based on specific problems. All three algorithms take the same TT-ranks as input (the
boundary ranks are set to 1). To ensure fairness, we use the third-order zero tensors as the initial core tensor for our
experiments, with stopping criteria of either reaching the maximum number of iterations or the algorithm reaching
a tolerable error. To avoid the singularity of subproblems, we add a regularization term to the subproblems. The
accuracy evaluation for the algorithms is measured by computing the relative error (denoted by “err” ) between the
original tensor and the approximate tensor, calculated by the following formula:

err =

∥∥∥Ã − A∥∥∥2
F

∥A∥2F
.

All experiments were conducted by using Matlab R2016b on a computer with an AMD E2 7TH-GEN @2.20GHz
CPU and 8 GB of RAM. We utilized the MATLAB Tensor Toolbox [3] to perform the experiments.

4.1. Experimental Results for Synthetic Data

In the first synthetic experiment, we randomly generate a fourth-order tensor A1 ∈ R50×50×50×50 with TT-format,
where the entries of each core are drawn independently from a standard normal distribution. For simplicity, the TT-
ranks are equal, i.e., r1 = r2 = r3. The true rank of the generated tensor is denoted by rtrue while the target rank
used in the algorithms is denoted by r. We set the sketch size m = 100, r = rtrue = 10 and compare the numerical
performance of DMRG-TS and DMRG-Random under the case σ = 0 and σ = 0.5 respectively. The numerical
results are presented in Figure 2.
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Figure 2. Iteration vs. relative error for randomly generated tensor A1 with target rank r = rtrue = 10.

Figure 2 shows the relationship between the number of iterations and the relative error for DMRG-TS and
DRMG-Random at the same sketch size. As shown in Figure 2, for both DMRG-TS and DRMG-Random, the
relative error fluctuates sharply with the number of iteration steps when σ = 0 while the relative error converges
steadily with the number of iteration steps when σ = 0.5. This indicates the advantage of proximal regularization.

Next, we randomly generate a sixth-order tensor A2 ∈ R10×10×···×10 with TT-format, where the entries of each
core are drawn independently from a standard normal distribution. Besides, the generated tensor has been added by
Gaussian noise with standard deviations of 0.1 and 0.01, respectively. The numerical results are reported in Figures
3 and 4. In addition, we also compared TT-TS which is proposed in [10] and DMRG-TS, and the corresponding
numerical experimental results are shown in Figure 5.

Figure 3. Iteration vs. relative error for randomly generated tensor A2 with target rank r = rtrue = 5 and σ = 0.5.
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Figure 4. Time vs. relative error for A2 with target rank r = rtrue = 5 and σ = 0.5.

Figure 5. TT-TS vs. DMRG-TS for A2 with target rank r = rtrue = 5 and σ = 0.5.

Figure 3 shows the relationship between the number of iterations and the relative error for DMRG-TS and
DRMG-Random at the same sketch size, and all the data in the figures are the mean of 10 runs. As we can see,
when the sketch size is low (sketch size = 150), our method (DMRG-TS) requires on average only 30 iterations
to achieve an accuracy close to that of TT-DMRG, whereas DMRG-Random shows little improvement in terms
of error reduction. When the sketch size is increased to 200, DMRG-Random also shows little improvement in
terms of error reduction. Furthermore, in the presence of Gaussian noise, DMRG-Random requires more iterations
than our method to achieve the same accuracy. In contrast, our method requires only a small number of samples
to achieve an accuracy close to that of TT-DMRG. Figure 4 shows the relationship between the time and the
relative error for DMRG-TS, DRMG-Random and TT-DMRG. From Figure 4, we can see that DMRG-TS requires
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the least amount of time to achieve the approximation error when computing the TT decomposition of a large-
scale tensor. This is because the complexity of our method is much lower than that of TT-DMRG, while its
accuracy is much higher than that of DMRG-Random. Figure 5 shows that under the same conditions (sketch
size, proximal parameter, Gaussian noise), both the number of iteration steps and time required for DMRG-TS to
reach the convergence accuracy are less than that of TT-TS. This also demonstrates the superiority of DMRG-TS
over TT-TS for low-rank TT decomposition.

4.2. Experimental Results for One-dimensional Functions

In the second experiment, we use DMRG-Random and DMRG-TS to approximate three one-dimensional functions
y = (x+ 1) sin(100(x+ 1)2), y = x− 1

4 sin( 23x
3
2 ) and y = sin( 4x ) cos(x

2), which are chosen from the highly
oscillatory functions considered in [23]. We evaluated these three functions at 410 points within the intervals
[−1, 1], [0, 100] and [0, 1], respectively. Then, we used the command reshape in MATLAB to transform the
function values within the intervals into tenth-order tensors, denoted as A3,A4,A5 ∈ R4×4×···×4, respectively.
During the approximation process, we set the target rank r = 15, σ = 0.5 and sketch size m = 150 uniformly. The
numerical results are shown in Figure 6, which demonstrate the accuracy of the approximation using DMRG-TS
and DMRG-Random after 25 iterations. Additionally, Figure 7 shows the relationship between the time and relative
error for the three algorithms with σ = 0.5.

Figure 6. One-dimensional function approximation for A3, A4 and A5 with σ = 0.5.

Figure 7. Time vs. relative error for A3, A4 and A5 with σ = 0.5.
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The experimental results show that the approximations obtained from the DMRG-TS algorithm are more
accurate than that obtained from the DMRG-Random algorithm at the same number of iterations. To sum up,
under the same experimental conditions, our method outperforms the DMRG-Random algorithm. In terms of time
cost, the DMRG-TS algorithm takes the least amount of time to achieve an accuracy comparable to that of the TT-
DMRG algorithm. Thus we can conclude that our method is fast and efficient for the low-rank TT approximation
of one-dimensional functions.

4.3. Experimental Results for Real Data

In this section, we consider three real datasets consisting of hyperspectral and video data. Next, we provide a brief
overview of the data required for the experiments, which is summerized in Table 2.

• The first data is Indian pines, which is a hyperspectral image dataset of size 145× 145× 220 sourced from
Hyperspectral Remote Sensing Scenes†. It is a third-order tensor containing hyperspectral images, where
the first two dimensions represent the height and width of the image, and the third dimension represents the
number of spectral bands.

• The second data is Skate, which is a video dataset of size 720× 1280× 3× 420 sourced from Pixabay‡. It
is a fourth-order tensor representing color video of a man surfing on the sea. The various dimensions of this
tensor represent different aspects of the video data, including its resolution, color space, and frame rate. In
our experiment, we selected the information from the first 10 frames.

• The third data is Bench, which is also a video dataset of size 1080× 1920× 3× 364 sourced from Pixabay§.
It is a fourth-order tensor representing color video of a man resting on a park bench. In our experiment, we
selected the information from the first 10 frames.

Table 2. Size and type of real data.

Data Size Type
Indian pines 145× 145× 220 Hyperspectral Image

Skate 720× 1280× 3× 10 Video
Bench 1080× 1920× 3× 10 Video

For hyperspectral image data, we use the command reshape in MATLAB to transform the data into
145× 145× 2× 110 and set the TT-ranks as (1, 20, 20, 20, 1) and the experimental results are shown in Figure
8. In Figure 8, we consider the effect of the three algorithms on the approximation of the original data when the
proximal parameter σ = 0.5, and the relationship between the time and relative error for the three algorithms with
σ = 0.5 are shown in Figure 9. In the experiments, we draw the spectral curve of the hyperspectral image for pixel
at position (1, 1). The accuracy of approximation is measured by the relative error (denoted by “err” in the figures)
between the original spectral curve and the approximate spectral curve. As can be seen from Figures 8 and 9, the
approximation of DMRG-TS is always better than that of DMRG-Random under the same settings (the values
of sketch size, proximal parameter and iteration number). As the sketch size increases, both the approximations
of DMRG-TS and DMRG-Random become more accurate and the gap between DMRG-TS and TT-DMRG gets
smaller and smaller.

†https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes
‡https://pixabay.com/videos/skate-sport-water-action-exercise-110734/
§https://pixabay.com/videos/bench-park-people-rest-pause-114/
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Figure 8. Numerical results for hyperspectral image with σ = 0.5.

Figure 9. Time vs. relative error for hyperspectral image with σ = 0.5.

For the video data, we use the command reshape in MATLAB to transform the Skate into 24× 30×
32× 40× 3× 10 and Bench into 27× 40× 48× 40× 3× 10. Both of the datas are set the TT-ranks as
(1, 10, 10, 10, 10, 10, 1), and σ = 0.5. To verify the efficiency of randomized algorithms, we record the average
computation time of each sweep for the tensors generated by the first 10 frames of the videos. The numerical results
of the three algorithms are presented in Table 3. For visualization purpose, we only present the approximation
results of the first frame of the video, as shown in Figure 10. From Table 3, we can see that DMRG-TS and
DMRG-Random take much less time than TT-DMRG. According to Figure 10, the PSNR of DMRG-TS is greater
than the DMRG-Random when σ = 0.5, which demonstrates the superiority of DMRG-TS over DMRG-Random
under the same conditions.

Table 3. The average computation time of each sweep for video dataset with TT-ranks r = (1, 10, 10, 10, 10, 10, 1) and
σ = 0.5.

Data Skate Bench

Data size 24× 30× 32× 40× 3× 10 27× 40× 48× 40× 3× 10

Methods TT-DMRG DMRG-Random DMRG-TS TT-DMRG DMRG-Random DMRG-TS
Sketch size All 1000 2000 1000 2000 All 1000 2000 1000 2000

Time(s) 2.77 0.25 0.38 0.24 0.35 5.77 0.60 0.63 0.60 0.61
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Figure 10. Numerical results for video experiment with sketch size m = 1000 and TT-ranks r = (1, 10, 10, 10, 10, 10, 1).

5. Conclusion

In this paper, we proposed a novel randomized proximal DMRG algorithm for low-rank tensor train decomposition
by using TensorSketch. Numerous experiments on both synthetic and real datasets were conducted to demonstrate
the effectiveness and efficiency of the proposed algorithm. The numerical results showed the superiority of our
algorithm in terms of computation complexity and accuracy for low-rank TT decomposition. On the other hand,
TensorSketch is one of the randomized techniques to compute the low-rank approximations of large-scale tensors.
Other efficient randomized techniques would be considered in the future.
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