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Abstract Several methods have been used to estimate the Weibull parameters such as least square method (LSM), weighted
least square method (WLSM), method of moments (MOM), and maximum likelihood (MLE). The maximum likelihood
method is the most popular method (MLE). Newton-Raphson method has been applied to solve the normal equations of
MLE’s in order to estimate the Weibull parameters. The method was used to find the optimal values of the Weibull distribution
parameters for which the log-likelihood function is maximized. We tried to find the approximation solution to the normal
equations of the MLE’s because there is no close form for get analytical solution. In this work, we tried to carry out a study
that show the difference between two strategies to solve the MLE equations using Newton-Raphson algorithm. Both two
strategies are provided an optimal solution to estimate the Weibull distribution parameters but which one more easer and
which one converges faster. Therefore, we applied both strategies to estimate the Weibull’s shape and scale parameters using
two different types of data (Real and simulation). We compared between the results that we got by applying the two strategies.
Two studies have been done for comparing and selecting the optimal strategy to estimate Weibull distribution parameters
using maximum likelihood method. We used some measurements to compare between the results such as number of steps
for convergence (convergence condition), the estimated values for AIC, BIC and the RMSE value. The results show the
numerical solution that we got by applying first strategy convergence faster than the solution that we got by applying second
strategy. Moreover, the MRSE estimated by applying the first strategy is lower than the MRSE estimated by applying second
strategy for the simulation study with different noise levels and different samples size.
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1. Introduction

It is important to know which strategy is more accurate and which one is easier to apply. We can use several
methods to estimate the Weibull parameters. For instance, least square method (LSM), weighted least square
method (WLSM), method of moments (MOM), and maximum likelihood (MLE) [1]. The Weibull distribution
is one of the most popular distributions used for modeling nonnegative data [2]. The distribution widely used
in many fields, and the popularity of the distribution comes from its simplicity into estimating the distribution
parameters and flexibility of fitting the data[3]. The Weibull distribution is used in many real applications such
as engineering, biology, and finance[4]. The Weibull density function includes two parameters, shape parameter
η and scale parameter ν. The MLEs derived from the probability density function of the Weibull distribution to
estimate the parameters [2]. The parameters estimation using MLE can be done two different ways [5]. First, we
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need to combine the two simultaneous equations to find one simultaneous equation, and then we need to solve
the equation numerically using the Newton algorithm method. In this technique, we need only one guess value to
initialize the unknown parameter [6]. Second, we apply the Newton- Raphson algorithm with two initial guesses
for the Weibull distribution parameters and then come up with another estimate for the parameters that are closer to
the previous solution [8]. We continue with this process until an optimal solution converges. The optimal solution
must be maximize the likelihood function of the Weibull distribution [9]. The main objective of this work is to
determine which technique of the MLEs provide a better estimation for the parameters. Moreover, the two unknown
parameters of the Weibull distribution are derived with the MLE. We discussed which method converges with a
low root mean square error (RMSE), Akaike information criterion (AIC), and Bayesian information criterion (BIC)
[10].

1.1. Weibull Distribution

The non-negative random variable ti, i = 1, 2, 3, . . . , n where n the sample size has a Weibull distribution if the
density function given:

f(ti, η, ν) =
η

ν
(
ti
ν
)ν−1e−(

ti
ν )η

Where η and ν are shape and scale parameters. The density formula depends on the parameter values. The
distributed converges to exponential when (η = 1) and to approximation to normal when (η > 3.4) [11],[12]. The
measures of central tendency of the time t when t follow Weibull distribution are:

M1 = νΓ(1 +
1

η
),M2 = ν log 2

1
η ,M3 = ν(1− 1

ν
)
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Figure 1. Weibull density function with different shape parameters.

As shown in Figure 1, when (η ≥ 1) the Weibull density decreases fast as much as t increases, when η = 1 is
decreasing and converges to the exponential density function, and when η > 1 increases for a while and torn to
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decreases as well as if η ≥ 3.5 convergences to the approximation normal [13], [14], [15], [16]. To estimate the
Weibull distribution’s parameters using MLEs, we find the likelihood function of the sample t1, t2, t3, . . . , tn.

1.2. Maximum likelihood Estimation (MLE)

The MLEs which are derived from the probability density function of the Weibull distribution. Using the MLEs
we find the optimal values of the shape and scale for the density function of the Weibull distribution [7]. The
estimated value of the parameters are derived in order to maximize likelihood function [8]. To find the MLEs
requires computing the first and the second derivatives of the log-likelihood function in respect to the shape and
scale parameters [18]. The likelihood function using the probability density of the Weibull distribution is given as:

Ln(ti, η, ν) =

n∏
i

f(ti, η, ν) =

n∏
i

η

ν

(
ti
ν

)ν−1

e−(
ti
ν )η (1)

G(ti, η, ν) = νlog(η)− νηlog(ν) + (η − 1)

n∑
i=1

log(ti)−
∑n

i=1 t
η
i

νη
(2)

Where G(ti, η, ν) = log(Ln(ti, η, ν)). Those nonlinear system of equations can be solved using several methods
such as Newton-Raphson and separable nonlinear method[19] In order to obtain values of the unknown parameters
η and ν that maximize the system. We need to solve the nonlinear system numerically. The nonlinear system can
be defined by:

maximize G(ti, η, ν)

subject to
∂G(ti, η, ν)

∂η
= 0

∂G(ti, η, ν)

∂ν
= 0

ti, η, ν ≥ 0

(3)



∂G(ti,η,ν)
∂η

∂g(ti,η,ν)
∂ν

∂2G(ti,η,ν)
∂ η2

∂2G(ti,η,ν)
∂ν2

∂2G(ti,η,ν)
∂η∂ν


=



n
η − n log (ν) +

∑n
i=1 log (ti)−

∑n
i=1 tηi log (ti)−log (ν)

∑n
i=1 tηi

νη

−nη
ν +

η
∑n

i=1 tηi
νη+1

−
(

n
η2 +

νη ∑n
i=1 tηi log (ti)

2−η log (ν)
∑n

i=1 tηi log (ti)

ν2η

)
< 0

−
(

η(η+1)
∑n

i=1 tηi
νη+2 − nη

ν2

)
< 0

−n
ν +

η
∑n

i=1 tηi log (ti)+
∑n

i=1 tηi −η log (ν)
∑n

i=1 tηi
νη+1


(4)

The above systems of equations are not easily to solve analytically. So, solving and finding the optimal solution
for the previous system can be done using Newton-Raphson algorithm [25]. We used the Newton-Raphson method
to find the solution of the maximize likelihood function numerically. In order to apply Newton-Raphson method,
we need to assume that the second derivative of the likelihood function respect to the parameters exist. We can
apply Newton-Raphson method to find the optimal parameters of the likelihood of the Weibull density function in
two ways [6],[20],[21].

1.3. First Strategy (Shape model η)

The Newton algorithm is often used to solve the system of normal equations that are not easily solved numerically.
We can combine the two equations in 4 to get one equation in one unknown parameter η. The relationship is given

by ν =
(∑n

i=1 tηi
n

) 1
η

, also by simplifying and substituting 4 we get

g (η) =

∑n
i=1 t

η
i log (ti)∑n
i=1 t

η
i

− 1

n

n∑
i=1

log (ti)−
1

η
= 0 (5)
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Since g (η) is differentiable function with respect to the parameter η and it’s not easy to solve manually, then the
Newton algorithm method is the best method for finding the estimator η iterative [22]. We can suppose the initial
value for starting estimate shape parameter η of the Weibull distribution by:

ηi+1 = ηi −
(
∂2g (ηi)

∂η2

)−1 (
∂g (ηi)

∂η

)
, The initial value of the estimator η is obtained based on the best guess. We also use the convergence criteria∣∣∣ηi+1−ηi

ηi

∣∣∣ < δ; δ = 10−5. The next algorithm shows how is estimate shape η parameter iterative [23].

First Strategy: algorithm for estimating one parameter of Weibull distribution
1 Initialization a first guess for η = η0
2 Using Newt method to solve g (η)

3 Calculating J (ηi) =
(

∂g(ηi)
∂η

)(
∂2g(ηi)
∂η2

)−1

4 If
∣∣∣ηi+1−ηi

ηi

∣∣∣ < δ; δ = 10−5, go to 9

5 ηi+1 = ηi + J(ηi)

6 i = i+ 1

7 Calculating ηi and g(ηi)

8 Go to 3
9 End

The solution of the systems of nonlinear equations begins with an initial guess. Moreover, the solution must
be numerically estimated using an iterative process. This process continues until it converges to the optimal
solution. This solution contains the parameter estimates for which the observed data have the highest probability
of occurrence.

1.4. Second Strategy (Shape η and scale ν model)

We reformulate an optimization problem in order to find the first and second derivative with respect to the
parameters (Gradient and Hessian) [9]. To maximize the objective function (Log likelihood function), we need
to verify that the matrix of the second partial derivatives is negative definite, and that the solution is the global
maximum rather than a local maximum [25]. The log likelihood function derivations can be summarized by:

G = gradient =

[
∂G(ti,η,ν))

∂η
∂G(ti,η,ν))

∂ν

]
, H =

[
∂2G(ti,η,ν))

∂ η2

∂2G(ti,η,ν))
∂η∂ν

∂2G(ti,η,ν))
∂ν∂η

∂2G(ti,η,ν))
∂ν2

]
(6)

[
ηi+1

νi+1

]
=

[
ηi
νi

]
+∆ ∗H−1G

where ∆ is step size and i = 0, 1, 2, 3, . . ... For more details [24]. Newton’s method for this case starts with two
initial guesses for the shape and scale parameters. We can also use the Fisher information matrix to find the variance
of the estimated parameters and the confidence interval of the estimates [25] [26]. The variance covariance matrix
defined as:

V ar =

[
var (η) cov (η, ν)
cov (η, ν) var (ν)

]
= −E

[
∂2G(ti,η,ν)

∂ η2

∂2G(ti,η,ν)
∂η∂ν

∂2G(ti,η,ν)
∂ν∂η

∂2G(ti,η,ν)
∂ν2

]−1

(7)
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Second Strategy: algorithm for estimating two parameters of Weibull distribution
1 Initialization a first guess for η = η0 and ν = ν0
2 Using Newton method to calculate Calculating 2× 1 gradient
3 Calculating 2× 2 Hessian matrix
4 If Convergence go to 9
5 Calculating the inverse of Hessian matrix H−1

6 Calculating H−1G

7
[
ηi+1

νi+1

]
=

[
ηi
νi

]
+∆ ∗H−1G

8 Go to 2
9 End

1.5. Contributions

In this article the main contribution was to optimize one of two strategies that used for solving nonlinear
optimization problem of the maximum likelihood function. Because Weibull distribution is a very important
distribution to estimate the survival model as well as to estimate regression model, we need a better method or
strategy for estimating its parameters. Therefore, we compare between those strategies to determine which strategy
is easily for applying, more accurate for results, and fast for converging.

2. Application Study

We investigate a real-application study to determine the performance of the various maximum likelihood
estimators. Two strategies are considered for estimating the Weibull distribution parameters. Using the survival
time data, we used the MLE to estimate the parameters of the Weibull distribution. The data used indicated the
survival time of 272 patients who were diagnosed with breast cancer [16],[27]. The Weibull parameters estimation
is done iterative using the survival time of the patients with breast cancer. The estimated parameters of the Weibull
distribution from the survival time data are made using the R-Studio program. We established both models, the
shape model and the shape and scale model. The results are presented in the Table 1 and Table 2 for each model
including the estimation parameters and the corresponding goodness of fit of the model.

Table 1. Estimated Weibull Parameters and the Corresponding Goodness-of- Fit Measures of the Model

#Iteration η ν AIC BIC loglike

1 1.111881 8.187956 1643.662 1650.874 -819.831
2 2.110064 9.061385 1496.293 1503.505 -746.147
3 2.420629 9.307614 1500.412 1507.624 -748.206
4 0.896314 7.979087 1729.989 1737.201 -862.995
5 1.743297 8.756242 1516.295 1523.506 -756.147
6 2.764516 9.568494 1522.915 1530.127 -759.458

Table 1 shows the estimated Weibull parameters obtained from the survival time data using first strategy. Survival
time of the patients was used for estimating the shape and scale parameters iterative. In Table 1 we include also
the corresponding model goodness of fit and the values of the log-likelihood at each iteration. From the results, we
can observe that the optimal values for shape and scale are 2.11 and 9.06 respectively. These estimated values are
maximizing the log-likelihood function as well minimizing AIC and BIC for the model.
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Table 2. Estimated Weibull Parameters and the Corresponding Goodness-of- Fit Measures of the Model

#Iteration η ν AIC BIC loglike

1 1.028204 4.39166 1808.52 1815.731 -902.260
2 2.552918 11.09261 1548.971 1556.183 -772.486
3 2.429676 8.349539 1521.810 1529.022 -758.905
4 2.207286 8.797020 1497.720 1504.932 -746.860
5 2.196138 9.096453 1495.724 1502.935 -745.862
6 2.189379 9.124781 1495.701 1502.912 -745.850
7 2.189326 9.125237 1495.701 1502.912 -745.850
8 2.189326 9.125237 1495.701 1502.912 -745.850
9 2.189326 9.125237 1495.701 1502.912 -745.850
10 2.189326 9.125237 1495.701 1502.912 -745.850

G = gradient =

[
−0.011096767
0.007797494

]

V ar =

[
var (η) cov (η, ν)
cov (η, ν) var (ν)

]
=

[
0.010796234 0.008648985
0.008648985 0.070799018

]
Table 2 demonstrates the results of the estimated values of the Weibull distribution parameters and the model

goodness of fit estimated using second strategy for solving the MLEs. The gradient vector and the Hessian matrix
which contain the value of the second derivative are

Figure 2. The log-likelihood values with shape and scale vectors for both strategies (first strategy: left & second strategy:
Right).

Figure 2 shows the contour plots of the log-likelihood function using different values of shape η and scale ν
parameters that were estimated using first strategy and second strategy.

3. Simulation Study

A simulation study was carried out in order to illustrate and compare the estimated parameters of the Weibull
distribution using the first strategy and second strategy that used for solving the MLEs. Random samples that
size, n=25, 50, and 100 generated the from stander uniform distribution U Unif (0, 1) and (1− U) Unif (0, 1).
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Table 3. Monte Carlo Simulation Results of two Weibull Parameters η = 2, ν = 3, with 5% Random Noise

Model n η̂ Sη̂ ν̂ Sν̂ AIC BIC RMSE
Strategy I 25 1.97 0.016 3.08 0.056 86.5 88.9 0.105
Strategy II 2.43 0.014 3.05 0.011 88.1 90.5 0.443

Strategy I 50 1.88 0.01 2.99 0.008 175.5 179.3 0.114
Strategy II 2.38 0.012 3.18 0.009 181.1 184.9 0.426

Strategy I 100 1.99 0.011 3.13 0.006 353.6 358.8 0.131
Strategy II 2.2 0.01 3.18 0.005 355.1 360.2 0.275

The samples are drawn from the cumulative function of the stander uniform distribution and used to generate
Weibull distribution samples with considering the shape parameter η = 2 and scale parameter ν = 3. We use
F (t, η, ν) = 1− e−(

t
ν )

η

and t = ν (−log(1− U))
1
η to generate the random samples. We replicated the experiment

using Monte Carlo simulation technique for 1000 times with two levels 5% and 10% of Gaussian noise. The
comparisons were done based on the values of the root mean square error (RMSE), Akiak information criteria
(AIC), and Bayesian information criterion (BIC). The results of the comparison are presented in Table 3 and Table
4.
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Figure 3. With 5% random noise, the estimated Weibull density and Log-likelihood using two strategies.

3.1. Discussion

We used two strategies for solving the maximum likelihood equations using the Newton method. We obtained
the estimated parameters of the Weibull distribution through these strategies. For the application study, results
are presented in Table 1 and Table 2. From the results, we can observe that the algorithm of the first strategy
converges at the second iteration, while the second strategy algorithm needs more iterations to converge. Moreover,
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Table 4. Monte Carlo Simulation Results of two Weibull Parameters η = 2, ν = 3, with 10% Random Noise

Model n η̂ Sη̂ ν̂ Sν̂ AIC BIC RMSE
Strategy I 25 2.37 0.077 3.05 0.042 84.1 86.56 0.382
Strategy II 2.55 0.104 3.04 0.026 84.2 86.69 0.553

Strategy I 50 2.04 0.039 3.54 0.101 185.4 189.2 0.545
Strategy II 2.39 0.023 3.62 0.017 187.2 191.1 0.742

Strategy I 100 1.99 0.022 3.14 0.053 336.3 341.4 0.154
Strategy II 2.3 0.021 2.99 0.012 336.3 341.4 0.309
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Figure 4. With 10% random noise, the estimated Weibull density and Log-likelihood using two strategies.

the estimated values of Weibull parameters (shape and scale) using both methods are comparable. The optimal
shape and scale parameters using the first strategy are given by 2.11 and 9.06. We can also observe that the optimal
parameters are associated with lower values of the model’s goodness of fit. The value for AIC was 1496.293, while
for BIC was 1503.505. The optimal parameters estimated using the first strategy are maximizing the log-likelihood
-746.147. The estimated Weibull parameters using the second strategy are given in Table 2. From the results, we
can observe that the estimated Weibull’s parameters are comparable with those estimated using the first strategy.
The estimated shape and scale parameters are 2.18 and 9.12, respectively. We can see that values 2.18 and 9.12 are
the closing values of those estimated using the first strategy. Furthermore, the model’s goodness of fit estimated
using the second strategy is 1495.701 for AIC and 1502.912 for BIC. The log-likelihood value is -745.850. Finally,
we can say that the parameters estimated using the second strategy are comparable, even though the second strategy
needs more steps for convergence.
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4. Conclusion

The optimal strategy for estimating parameters of the Weibull distribution using the maximum likelihood method
involves finding the values that maximize the likelihood function. This method is commonly used in reliability
engineering to analyze failure data and predict the lifetime of products or systems. In this paper, we presented two
numerical methods that used for estimating the Weibull distribution parameters. The aim of this works is to compare
between solving the maximum likelihood equations using two strategies that scientists have been developed before.
These strategies are providing an approximal solution for a normal equation of the maximize likelihood function.
Our discussion started reviewing results and the strategies. We compared between two strategies using some
measurements such number of steps for convergence (convergence condition), the estimated values for AIC, BIC
and the RMSE value. Two studies have been done for comparing and selecting the optimal strategy to estimate
Weibull distribution parameters using maximum likelihood method. The results show the numerical solution that
we got by applying first strategy convergence faster than the solution got using second strategy. Moreover, the
MRSE estimated by applying the first strategy is lower than the MRSE estimated by applying second strategy for
the simulation study with different noises level and different samples size.
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