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Abstract Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to
impute values fortunately in the case where data is missing completely at random. Following a short review of this method
we consider three possible improvements, one called the shrinkage method, a second called the weighted interval method,
and a third called the known variance method. Estimates of the population mean obtained from each of these methods are
compared to the mean method both analytically and by means of numerical examples.
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1. Introduction

The problem of missing data is a very common issue in real surveys as well as in experimental studies and may
arise for any number of reasons. If the data is missing completely at random (MCAR) things can be very hard
to handle in practice, particularly when no auxiliary information is available. Examples of data that is MCAR
are laboratory sample that is dropped, or a questionnaire that is lost in a mail survey and so resulting observations
became missing. Another recent example would be plant-studies that were affected by hurricane Mathew in Florida.
MCAR is a more difficult situation than missing at random (MAR), or cases where there is deliberate non-response.
More efforts are required to develop better imputation methods for MCAR where additional information could be
little helpful or could lead to wrong prediction. In addition, in some situations, a cheap and fast method is an
imputation technique which is being frequently used to substitute for missing values in order to improve inferential
properties of an estimator. For more detail on the concept of MCAR, one could refer to [4, 11, 3].

A general problem with many frequently employed imputation methods is an introduction of bias and an increase
in variance of the resultant estimators. A search for unbiased estimators under imputation should therefore be of
interest. For details on the history of imputation methods, one could refer to [7], where one finds that several
imputations methods such as hot deck, nearest neighbourhood, cold deck, warm deck, ratio method, regression
method and power method of imputation have been proposed. These methods either make use of a “deck” from a
past or the present survey, or make use of auxiliary information. A critical review in [7] shows that efforts have not
been made to improve the mean method of imputation in the absence of auxiliary information. We also conclude
that it is not an easy task to improve the mean method of imputation in the absence of any additional information
at hand. In this paper we suggest three new imputing methods in the absence of auxiliary information. Consider a
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finite population, Ω, of N units as Ω = {ω1, ω2, . . . , ωi, . . . , ωN} , Let y be the variable of interest in the population,
and yi the value of y for the unit i.

Let

Ȳ =
1

N

∑
i∈Ω

yi (1)

be the true population mean of the study variable y. Assume a simple random without replacement sample
(SRSWOR), s, of size n is drawn from the population Ω. Assume it was possible only to collect information
on r units out of the sampled n units from the population. In particular, let the set of r responding units be denoted
by A ⊆ s and that of (n− r) non-responding units be denoted by Ac. For every unit i ∈ A, the value of yi is
observed and the for that units i ∈ Ac, the value of yi is missing. Thus the sample data values have the following
structure:

y•i =

{
yi if i ∈ A
missing if i ∈ Ac (2)

Now the first choice is to forget or drop the missing (n− r) data values in the set Ac from the sample s of n data
values and consider an estimator of the population mean Ȳ as:

ȳr =
1

r

∑
i∈A

yi (3)

which is the sample mean of the r values in the responding set A. Assuming the data is missing completely at
random (MCAR), then applying the concept of two-phase sampling as given in [1], it is easy to verify that the
sample mean ȳr in (3) is an unbiased estimator of the population mean Ȳ with conditional variance, for a given
value of r, given by:

V (ȳr) = (
1

r
− 1

N
)S2

y (4)

where S2
y = 1

N−1

∑
i∈Ω

(yi − Ȳ )2 is the population mean squared error (or population variance) for the study variable.

Now consider imputing the missing data values by the mean method of imputation as follows:

ŷ•i =

{
yi if i ∈ A
ȳr if i ∈ Ac (5)

that is all the missing values are replaced by the sample mean ȳr of the responding values. Now consider the point
estimator of population mean, given by:

ȳpoint =
1

n

∑
i∈s

ŷ•i (6)

On using (5) in (6) we have

ȳpoint =
1

n

∑
i∈s

ŷ•i =
1

n
[
∑
i∈A

ŷ•i +
∑
i∈Ac

ŷ•i] =
1

n
[
∑
i∈A

yi +
∑
i∈Ac

ȳr] =
1

n
[rȳr + (n− r)ȳr] = ȳr (7)

From (7) and (3), the mean method of imputation leads to the same estimator(= ȳr) of the population mean Ȳ
with the same variance as given in (4). Thus, although the mean method of imputation is helpful in completing the
missing values in a sample, it does not provide any additional benefit in drawing inferences from the results.

In the following sections, we propose new imputing techniques which fill the missing data values with more
accurate predicted values, and which lead to more efficient estimators of the population mean under various
situations. In section 2, we introduce a new shrinkage estimation technique. In section 3, we introduce a new
weighted interval method of imputation and in section 4 we introduce a new method of imputation when the
population variance of the study variable is known.
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2. SHRINKAGE METHOD OF IMPUTATION

Following [12, 13], we propose the following shrinkage method of imputation given by

ŷ•i =

{
yi if i ∈ A
λȳr if i ∈ Ac (8)

where λ is called the shrinkage parameter and which is to be determined based on some criterion, such as that
the resultant estimator has minimum mean squared error. Under the proposed shrinkage method of imputation, the
point estimator of the population mean ȳ is given by

ȳshrink = (
r

n
+ λ(1− r

n
))ȳr (9)

The percentage relative bias in the proposed shrinkage estimator ȳshrink is given by

RB(ȳshrink) = −(1− r

n
)(1− λ)× 100% (10)

It may be worth pointing out that the value of percent relative bias is free from the value of the population mean.
The mean squared error of the proposed shrinkage estimator ȳshrink is given by

MSE(ȳshrink) = [
r

n
+ λ(1− r

n
)]2(

1

r
− 1

N
)S2

y + [(1− r

n
)(1− λ)Ȳ ]2 (11)

The optimum value of λ which minimises the mean squared error of the proposed shrinkage estimator ȳshrink is
given by

λ =
(1− r

n )−
r
n (

1
r − 1

N )C2
y

(1− r
n )[1 + ( 1r − 1

N )C2
y ]

(12)

where Cy = Sy/Ȳ denotes the value of the coefficient of variation of the study variable. The resultant minimum
mean squared error of the shrinkage estimator ȳshrink is given by

minMSE(ȳshrink) =
( 1r − 1

N )S2
y

1 + ( 1r − 1
N )C2

y

(13)

The optimum percent relative bias in the proposed shrinkage estimator ȳshrink is given by

RB(ȳshrink)o = −
( 1r − 1

N )C2
y

{1 + ( 1r − 1
N )C2

y}
× 100% (14)

The optimum percentage relative efficiency of the proposed shrinkage method of imputation over the mean method
of imputation is given by

RE(ȳshrink)o = {1 + (
1

r
− 1

N
)C2

y} × 100% (15)

Note that the percent relative efficiency is an increasing function of the value of coefficient of variation Cy and the
difference between 1

r and 1
N . The proposed shrinkage method of imputation obviously will perform better than the

mean method of imputation in case the value of response r is low and the value of the coefficient of variation Cy is
large. It seems that the proposed shrinkage method of imputation will be very useful when it is very expensive to
obtain responses from the respondents and variation among the units in the population is large. Note that the percent
relative efficiency RE(ȳshrink)o value is a function of r, N and Cy, and the percent relative bias RB(ȳshrink) is a
function of r, N , C2

y and S2
y . We investigated the behaviour of RE(ȳshrink)o, RB(ȳshrink)o and optimum value of

λ for various choices of the parameter. In the study, we considered nine different populations with different values
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of the coefficient of variation Cy equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 each of size N = 1000 units.
From each population we considered a sample of size n = 15 units, and assumed several different values of number
of respondents r equal to 3, 5, 7 and 9. It is noted that for r = 3, as the value of Cy varies between 0.1 and 0.5,
the absolute value of the optimum relative bias RB(ȳshrink)o remains less than 10% [1] and the percent relative
efficiency RE(ȳshrink)o varies between 100.33% and 108.31%; for r = 5 as the value of Cy varies between 0.1 and
0.7, the absolute value of the optimum relative bias RB(ȳshrink)o remains less than 10% and the percent relative
efficiency RE(ȳshrink)o varies between 100.20% and 109.75%; for r = 7 as the value of Cy varies between 0.1 and
0.8, the absolute value of the optimum relative bias RB(ȳshrink)o remains less than 10% and the percent relative
efficiency RE(ȳshrink)o varies between 100.14% and 109.08%; and for r = 9 as the value of Cy varies between
0.1 and 0.9, the absolute value of the optimum relative bias RB(ȳshrink)o remains less than 10% and the percent
relative efficiency RE(ȳshrink)o varies between 100.11% and 108.92%. From the analysis, we conclude that if a
good guess at or the true value of, the coefficient of variation Cy of the study variable is available, then it can be
used to obtain better imputed values than the mean method of imputation. It may be worth mentioning that if the
value of λ is unknown, it can be estimated by using a consistent estimator given by

λ̂ =
(1− r

n )−
r
n (

1
r − 1

N )Ĉ2
y

(1− r
n )[1 + ( 1r − 1

N )Ĉ2
y ]

(16)

where Ĉy = sy(r)/ȳr is a consistent estimator of Cy with s2y(r) = (r − 1)−1
∑
i∈A

(yi − ȳr)
2.

In the next section, we introduce a new interval method of imputation by making use of the sample standard
deviation of the responding units in addition to the sample mean. The standard interval method of estimation of
population mean available in almost all introductory statistics text books motivated the authors to think whether
such a method can be constructed to impute a pair of values for each respondent instead of a single value.

3. A NEW WEIGHTED INTERVAL METHOD OF IMPUTATION

In this section, we suggest a new method of imputation by using a weighted interval method of estimation given by

ˆ̂y•i =

{
yi if i ∈ A
α1(ȳr −

√
n

sy(r)

(n−r) ) + α2(ȳr +
√
n

sy(r)

(n−r) ) if i ∈ Ac (17)

where α1 and α2 are real constants such that α1 + α2 = 1. In (17) two values are imputed for each non-respondent,
one value to the left of the sample mean and another to the right of the sample mean. If one decides to choose
α1 = α2 = 1

2 , then the imputation method in (17) reduces to the mean method of imputation. Thus the question is
to decide about the possible best choice of the values of α1 and α2. One possibility is to determine the values of α1

and α2 such that the mean squared error of the resultant estimator is minimum. The point estimator (6) under the
weighted interval method of imputation in (17) becomes

ȳpoint =
1

n

∑
i∈s

ŷ•i

=
1

n
[
∑
i∈A

yi +
∑
i∈Ac

{α1(ȳr −
√
n

sy(r)

(n− r)
) + α2(ȳr +

√
n

sy(r)

(n− r)
)}]

= ȳr + (α2 − α1)
sy(r)√

n
= ȳw(int) (say) (18)

In order to study the asymptotic properties of the newly proposed estimator ȳw(int) based on the weighted interval
method of imputation, we find the bias, to the first order of approximation, is given by

B(ȳw(int)) =
(α2 − α1)√

n
Sy[1−

1

8
(
1

r
− 1

N
)(
µ4

S4
y

− 1)] (19)
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where Ȳ = N−1 Σ
i∈Ω

yi,S2
y = (N − 1)−1 Σ

i∈Ω
(yi − Ȳ )2, µ3 = (N − 1)−1 Σ

i∈Ω
(yi − Ȳ )3 and µ4 = (N − 1)−1 Σ

i∈Ω
(yi −

Ȳ )4 . The mean squared error of the estimator ȳw(int) is given by

MSE(ȳw(int)) ≈ (
1

r
− 1

N
)S2

y + (α2 − α1)
2
S2
y

n
+ (α2 − α1)

1√
n
(
1

r
− 1

N
)
µ3

Sy
(20)

which will be minimum if:

(α2 − α1) = −
√
n

2
(
1

r
− 1

N
)
µ3

S3
y

The minimum mean squared error, to the first order of approximation, of the proposed estimator ȳw(int) is given by

MSE(ȳw(int)) = (
1

r
− 1

N
)S2

y [1−
1

4
(
1

r
− 1

N
)
µ2
3

S6
y

] (21)

The values of α1 and α2 are respectively given by

α1 =
1

2
−

√
n

4
(
1

r
− 1

N
)
µ3

S3
y

(22)

and

α2 =
1

2
+

√
n

4
(
1

r
− 1

N
)
µ3

S3
y

(23)

Note that the value of (µ3/S
3
y) = µ3/(S

2
y)

3/2 = β1 in (22) and (23) is the value of the coefficient of skewness of
the variable of interest. Thus the optimum values of α1 and α2 in (22) and (23) convey an important message. If
the value of the coefficient of skewness is positive, then the proposed left side interval estimate (ȳr −

√
n

sy(r)

(n−r) )

should be given smaller weight and the right side interval estimate (ȳr +
√
n

sy(r)

(n−r) ) should be given greater weight
so that the overall imputed value is given by

ȳw(int) = ȳr + (α2 − α1)
sy(r)√

n
< ȳr (24)

Thus for a data set skewed to the right, the imputed value of a non-respondent should be smaller than the sample
mean value of the responding units. If the value of the coefficient of skewness is negative, then the proposed left side
interval estimate (ȳr −

√
n

sy(r)

(n−r) ) should be given more weight and the right side interval estimate (ȳr +
√
n

sy(r)

(n−r) )

should be given less weight such that the overall imputed value is given by

ȳw(int) = ȳr + (α2 − α1)
sy(r)√

n
> ȳr (25)

Similarly for a data set skewed to the left, the imputed value of a non-respondent should be greater than the sample
mean value of the responding units.

Further note that if the value of the coefficient of skewness is zero, then the proposed left side interval estimate
(ȳr −

√
n

sy(r)

(n−r) ) should be given same weight as the right side interval estimate (ȳr +
√
n

sy(r)

(n−r) ) so that the overall
imputed value is given by

ȳw(int) = ȳr (26)

Thus for a data set which is symmetric, (say Normally distributed) the imputed value of a non-respondent reduced
to the sample mean value of the responding units.
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For the optimum value of α1 − α2 =
√
n
2 ( 1r − 1

N )µ3

S3
y

, the percent relative bias in the proposed weight interval
method of imputation is given by

RB(ȳw(int)) = −1

2
Cy(

1

r
− 1

N
)β1[1−

1

8
(
1

r
− 1

N
)(β2 − 1)]× 100% (27)

where β1 = µ3/(S
2
y)

3/2 is the coefficient of skewness, β2 = µ4/S
4
y is the coefficient of kurtosis and Cy is the

coefficient of variation. Note that if β1 = 0 then there is no relative bias and the proposed weighted method of
imputation reduces to the usual mean method of imputation for the optimum values of α1 and α2. If β1 < 0 then
the distribution is skewed to the left and if β1 > 0 then the distribution is skewed to the right. If β2 = 3 then
the distribution is mesokurtic which stands for normal distribution; if β2 > 3 then the curve will be more peaked
than the normal curve and it is called leptokurtic curve, while if β2 < 3 then the curve is flatter than the normal
curve and it is called platykurtic curve. The percent relative efficiency of the proposed weighted interval method of
imputation with respect to the mean method of imputation is defined as:

RE(ȳw(int)) =
1

[1− 1
4 (

1
r − 1

N )β2
1 ]

× 100% (28)

From (28), one obvious observation is that the value of the coefficient of skewness should be a real number
satisfying the condition:

− 2√
( 1r − 1

N )
≤ β1 ≤ 2√

( 1r − 1
N )

(29)

Thus we would be interested in studing the behaviour of the percent relative bias and percent relative efficiency
for values of β1 satisfying the condition (29), for various value s of Cy, and for a few values of β2 showing both
platykurtic and/ or leptokurtic type curves. In order to look at the magnitude of gain in efficiency for different
choice of parameters involved in the percent relative bias and percent relative efficiency expressions, we generated
four populations each of size N = 10000 units by using the model:

yi = 10 + y∗i (30)

where y∗i ∼ Gamma(α, β), that is, y∗i follows gamma distribution with parameters α and β. In other words, in each
of the generated population, the study variable yi follows gamma distribution with mean shifted up by 10 units.
The four populations are generated with four different choices of shape parameter α equal to 0.05, 0.15, 0.25 and
0.35 and only one choice of scale parameter β = 1. One can see that the purpose of adding 10 to the population
values is to reduce the value of the coefficient of variation to a reasonable value around 10% by following [1]. A
graphical presentation of four such populations is given in Figure 1.

For a population, with α = 0.05 we found Ȳ = 1.5489, Sy = 0.2208, Ymin = 1.5, Ymed = 1.500, Ymax =
6.1792, β1 = 8.76 and β2 = 106.18; with α = 0.15 we found Ȳ = 1.6495, Sy = 0.3826, Ymin = 1.5, Ymed =
1.506, Ymax = 8.8694, β1 = 4.94 and β2 = 36.91; with α = 0.25 we found Ȳ = 1.7581, Sy = 0.5205, Ymin = 1.5,
Ymed = 1.5438, Ymax = 8.8640, β1 = 3.98 and β2 = 22.42; and with α = 0.35 we found Ȳ = 1.8492, Sy =
0.5875, Ymin = 1.5, Ymed = 1.6039, Ymax = 8.6437, β1 = 3.28 and β2 = 15.92. Note that the moment generating
function of a gamma random variable is given by

My∗(t) = (1− βt)−α (31)

One can easily see that:

Ȳ = E(yi) = 10 + αβ (32)

µ2 = S2
y = E(yi − ȳ)2 = αβ2;µ3 = E(yi − ȳ)3 = 2αβ3; andµ4 = E(yi − ȳ)4 = 3α(α+ 2)β4. The value of the

coefficient of skewness is given by β1 = 2/
√
n. The value of the coefficient of kurtosis is given by β2 =
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Figure 1. Four populations considered in the study

3(α+ 2)/α. Note that: β2 − β2
1 − 1 > 0: The value of the coefficient of variation is given by Cy =

√
αβ/(10 + α).

Thus alternatively, with α = 0.05, we have Ȳ = 1.55, Sy = 0.2236, Cy = 0.1442, β1 = 8.944 and β2 = 123; with
α = 0.15, we have Ȳ = 1.65, Sy = 0.3873, Cy = 0.2347, β1 = 5.164 and β2 = 43; with α = 0.25, we have Ȳ =
1.75, Sy = 0.5000, Cy = 0.2857, β1 = 4.000 and β2 = 27; and with α = 0.35, we have Ȳ = 1.85, Sy = 0.5916,
Cy = 0.3197, β1 = 3.381 and β2 = 20.14;

Either one of these two sets of parameters can be used to study the percent relative efficiency and percent relative
bias as both have identical results, and the difference is due to the finite population of size N = 10000 taken from
such super-populations. To be more precise, we used the alternatively produced parameters with N = 10000 in
order to find the percent relative efficiency and percent relative bias. We consider n = 500, r = 50, 100, 150, 200,
250, 300, 350, 400 and 450.

We found that, if α = 0.05 then the population is highly leptokurtic, having a value of β2 = 123 and skewed to
the right with a value of β1 = 8.944 and a reasonable value of the coefficient of variation Cy = 14.43%, then the
percent relative efficiency (RE) value increases from 104.4% to 166.1% as the value of r decreases from 450 to
50. The respective values of the percent relative bias (RB) remain negligible between −0.1369% and −1.2839% .
If the value of α is increased to 0.15, then the population is still leptokurtic with a value of β2 = 43.0 and skewed
to the right with a value of β1 = 5.164 and has a high value of the coefficient of variation Cy = 23.47%, so that
the percent relative efficiency (RE) value increases from 101.4% to 115.3% as the value of r decreases from 450 to
50. The value of the percent relative bias (RB) still remains negligible between −0.1455% and −1.2061%. Now if
the value of α is increased to 0.35, then the population is still leptokurtic with a value of β2 = 20.1, skewed to the
right with a value of β1 = 3.81 and has a high value of the coefficient of variation Cy = 31.98%, then the percent
relative efficiency (RE) value increases from 100.6% to 106.0% as the value of r decreases from 450 to 50. The
value of the percent relative bias (RB) remains negligible between −0.1147% and −1.0757%. It seems that if the
variation in a population is too large then it will be hard to impute missing values irrespective of the method one
uses. Thus consistency of a population must be investigated before implementing any imputation method.

We conclude that the proposed weighted interval method of imputation can be useful in imputing the missing
value if the value of the coefficient of skewness and coefficient of kurtosis in the population are known. The
proposed weighted interval method of imputation can perform better than mean method of imputation if the
distribution is skewed to right or left with a high value of β2. In practice, the distribution of income is found
to be skewed to the right in many populations of interest, and if it also has leptokurtic nature then the proposed
weighted method of imputation can be useful in imputing missing values in such surveys.

Stat., Optim. Inf. Comput. Vol. 6, December 2018



CHOUKRI MOHAMED, STEPHEN A. SEDORY AND SARJINDER SINGH 533

Among others, [6] made use of the known population variance of the study variable in improving the estimator
of population mean of the same study variable. In the next section, this motivated the authors to construct a new
method of imputation in the presence of a known population variance of the same variable.

4. A NEW IMPUTATION METHOD WHEN POPULATION VARIANCE IS KNOWN

In this section, we introduce a naive variance dependent imputing method as follows:

ˆ̂y•i =

{
yi if i ∈ A
ȳr + γ n

(n−r) (S
2
y − s2y(r)) if i ∈ Ac (33)

where γ is a constant to be determined such that the variance of the final estimator is minimum, and S2
y =

(N − 1)−1
∑
i∈Ω

(yi − Ȳ )2 is the known population variance of the study variable y.

If γ = 0 then the proposed variance dependent imputing method reduces to the usual mean method of imputation.
Under the proposed variance dependent imputation method in (33), the point estimator (6) can be written as:

ȳpoint =
1

n

∑
i∈s

ŷ•i = ȳr + γ(S2
y − s2y(r)) = ȳn(var) (34)

The proposed variance dependent estimator ȳn(var) is an unbiased estimator of the population mean. For the
optimum value of γ, the minimum variance of the proposed naive variance dependent estimator ȳn(var) is given by

Min.V (ȳn(var)) = (
1

r
− 1

N
)S2

y(1−
β2
1

(β2 − 1)
) (35)

The percent relative efficiency of the proposed naive variance dependent method of imputation estimator ȳn(var)
with respect to the mean method of imputation is defined as:

RE(ȳn(var)) =
β2 − 1

β2 − β2
1 − 1

× 100% (36)

It is interesting to note that the value of the percent relative efficiency is a function of only two parameters β1

and β2. We used the same four population for α equal to 0.05, 0.15, 0.25 and 0.35 as in the previous section. The
computed optimum values of γ are found to be 0.328, 0.317, 0.308 and 0.199 respectively with the percent relative
efficiency (RE) values of being 290.5%, 273.9%, 260.0% and 248.1%. A further look at the behaviour of the percent
relative efficiency as a function of value of α, finds that as the value of α increases from 1 to 49, the value of β1

decreases from 2 to 0.286, the value of β2 decreases from 9 to 3.122 (leptokurtic), the value of Cy decreases from
0.4 to 0.139, the optimum value of γ decreases from 0.25 to 0.019, and the percent relative efficiency decreases
from 200.00% to 104.0%.

The following remark is devoted to answer very valuable question raised by one of the reviewers:

5. Remark

(1) Are the new methods competitive with the EM or MI algorithm?

(a) EM-Algorithm: As per our understanding, the EM-Algorithm is making an assumption of know
distribution of data being imputed as is done in case of mathematical statistics. For example, refer to [5] and
it seems it was introduced by [2]. In survey sampling methodology, we do not make any such assumption
that the distribution of data is known or unknown. All the ratio, product and regression type estimators are
free from such assumptions. However sometime they assume known values of a few constants being used at
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the estimation stage are functions of the parameters being estimated. Later they show that the replacement
of those unknown constants with their consistent estimators is not altering the final mean square errors to
the first order of approximation. For example, the difference estimator

ȳdif = ȳ + β(X̄ − x̄) (37)

depends on a constant β whose optimum value is given by β =
Sxy

S2
x

, and it is estimated as β̂ =
sxy

s2x
and the

difference estimator becomes a regression estimator given by

ȳreg = ȳ + β̂(X̄ − x̄) (38)

It is shown is all textbooks, see [1], that V(ȳdif ) = MSE(ȳreg). One could also refer to [14].
In EM-Algorithm, it is not clear how one EM-Algorithm can be proved to be better than another EM-
Algorithm except through simulation study based on couple of thousands of iterations. Those simulation
results would change from data set to data set. In contrast, the ratio or regression type methods of
imputation are comparable based on fixed parameter called Mean Square Error (MSE), which is easy
to derive and compares based of theoretical justification. It results into one standard result, for example
in the present paper it is shown that the Searls method of imputation always has MSE less than the mean
method of imputation irrespective of the data set being used for imputation. Please see equation (15) on
page 2. Such theoretical justification is not possible in case of EM Algorithms.

(b) Multiple Imputations:As per our understanding, the Multiple Imputations can be interpreted in two
different meanings:

(i.) If we are imputing missing values for several variables, then the Searls imputing method proposed in
this paper will always provide better results than the mean method of imputations for each variable
being imputed. If missingness is considered as a very sensitive issue, then one should not impute
several variables simultaneously. Imputation needs to be done very carefully for each variable
separately, and if possible every single missing value should be imputed very carefully for every
variable.

(ii.) If we are imputing missing values several times for a single variable, then no doubt an EM-Algorithm
will provide a different value at each iterations of imputation based on the random start, and would
lead to suspicious that which imputed value should be considered. In contrast, each one of the mean,
ratio, regression, or the proposed Searls method of imputation will give us unique imputed value
based on the method being used. There will be no confusion which imputed value to be considered
or not.

(2) In what way can a measure of variability between imputations be produced from the new methods?
In mean, ratio and regression type methods of imputation, there is no question of variability between the
imputed values. The imputed values are unique by a given method. However such a problem of variability
between the imputed values by EM-Algorithm could make us suspicious which and why an imputed value
should be considered?

(3) Is it possible to produce multiple imputations using any of the three methods?
It depends how you define Multiple Imputations, if you are imputing one variable, then the answer is yes,
otherwise no. Here “ no ” is better than “ yes ”, because your imputed value is unique and removes any types
of confusion.

(4) Can new method only be applied if the mechanism of missing values is completely random-MCAR?
What should be done with the new methods in case of mechanism of missing values is MAR or MCAR?
So long as the mean method of imputation or the proposed Searls type method of imputation is concerned,
it should be applied only to the situation of MCAR. However, if some auxiliary information is available, the
proposed method can be extended on the lines of recent work of [8, 9, 10]. To our knowledge this idea of
proposing Searls method of imputation, and other two methods in the paper are completely new.
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Comments about the methods:

(1) From (37) and (38), and following [14], it is advisable to replace the parameters involved in the imputation
methods by their consistent estimator. The resultant estimators will again be consistent and will have same
asymptotic mean square errors. One could also refer to [8, 9, 10]. These findings of replacing unknown
parameters by their consistent estimates are well known in the literature, so are not discussed in detail in this
paper.

(2) If the knowledge of the population variance is lacking, then it can be estimated from the responding data set,
and the resultant imputing method will be a consistent estimator and will have same mean squared error to
the first order of approximation.

6. Conclusion

In conclusion, the results from the computations using the four populations that the proposed variance dependent
method of imputation is more efficient than the mean method as well as more efficient than the proposed interval
method. The reason may be due to the fact that the optimum value of γ makes use of both the value of coefficient
of skewness β1 and the value of the coefficient of kurtosis β2, i.e., because it makes use of more information
at the prediction stage, it is likely to be more efficient than its existing competitors. Overall, we conclude that
the variance dependent method could be more efficiently used to impute missing values in comparison to other
methods discussed in the present investigation.

Acknowledgement

The authors are thankful to the Field Editor: Paulo Rodrigues, Admin: David G. Yu and a learned referee for very
constructive comments on the original version of this manuscript. The comments were so lovely that the authors
decided to give special Remark in the revised version. The authors also would like to thank to Dr. Polly Allred,
Department of Mathematics, Texas A&M University-Kingsville, TX for editing the manuscript.

REFERENCES

1. Cochran, W.G. (1963). Sampling Techniques. John Wiley and Sons: New York.
2. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm (with

Discussion). Journal of the Royal Statistical Society, B, 39(1), 1-38.
3. Hansen, M.H. and Hurwitz, W.N. (1946). The problem of non-response in sample surveys. J . Amer. Statist. Assoc., 41,517–529.
4. Heitjan, D.F. and Basu S. (1996). Distinguishing Missing At Random and Missing Completely At Random. The American Statistician,

50, 207-213.
5. Johnson, Richard A., and Dean W. Wichern (1982). Applied Multivariate Statistical Analysis, pages 209-213: Prentice Hall Inc.

Englewood Cliffs,.N.J.
6. Kataria, P. and Singh, S. (1989).On the estimation of mean when population variance is known. J. Indian Soc. Agri. Statist., 41(2),

173-175.
7. Mohamed, C. (2015). Improved Imputation Methods in Survey Sampling. Unpublished MS thesis submitted to the Department of

Mathematics, Texas A&M University-Kingsville, TX.
8. Mohamed, C., Sedory, S.A. and Singh, S. (2016). Comparison of different imputing methods for scrambled responses. Handbook

of Statistics: Data Gathering Analysis and Protection of Privacy Through Randomized Response Techniques: Qualitative and
Quantitative Human Traits, 34, 471-495.

9. Mohamed, C., Sedory, S.A. and Singh, S. (2017). Imputation using higher order moments of an auxiliary variable. Communications
in Statistics: Simulation and Computations, 46(8), 6588-6617.

10. Mohamed, C., Sedory, S.A. and Singh, S. (2018). A fresh imputing survey methodology using sensible constraints on study and
auxiliary variables: dubious random non-response. Journal of Statistical Computations and Simulations, 88:7, 1273-1294.

11. Rubin, D.B. (1976). Inference and missing data. Biometrika, 63(3), 581 -592
12. Searls, D.T. (1964). The utilization of a known coefficient of variation in the estimation procedure. J. Amer. Statist. Assoc., 59,

1225–1226.
13. Searls, D.T. (1967). A note on the use of an approximately known co-efficient of variation. American Statistician, 21(2), 20–21.
14. Singh, S., Mangat, N.S., and Mahajan, P.K. (1995). General class of estimators. J. Indian Soc. of Agricul. Statist. 47, 129-133.

Stat., Optim. Inf. Comput. Vol. 6, December 2018


