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Abstract In this paper we consider a stochastic version of predator-prey systems with Watt-type functional response.
We first prove the existence and uniqueness of the positive global solution by using the comparison theorem of stochastic
equations. Then, we study the boundedness of moments of the solution. Furthermore, the growth rates, persistence and
extinction of species are investigated.
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1. Introduction

It is well known that the predator-prey system is one of the most important models in ecology. The first predator-
prey system, described by a system of differential equations, was proposed by Volterra in 1920’s. Since then, based
on different settings, various types of predator-prey models have been proposed and studied by ecologists and
mathematicians, such as considering different functional response types: Holling types [7], Hassel-Varley type [6],
Beddington-DeAngelis type [3, 4] and ratio-dependence type [1], adding a prey self-competition term [16], etc.
We refer the reader to the book [18] for a detailed presentation.

On the other hand, it is also known that the environmental noise is an important component in an ecosystem.
Indeed, for instance, in [15], Mao et al. shown that even a sufficiently small noise can suppress explosions in
population dynamics. Since the real world are full of random perturbations, it is of great significance to take into
account the effect of noise in the investigation of deterministic predator-prey systems. In fact, a lot of stochastic
version of existing deterministic models have been introduced recently by different authors and here we only
mention some of them. For example, Khasminskiǐ and Klebaner in [10] gave an analysis of Lotka-Volterra system
with small random perturbations, Ji and Jiang in [9] analyzed a stochastic predator-prey system with Beddington-
DeAngelis functional response, Bandyopadhyay and Chattopadhyay in [2] studied the effect of environmental
fluctuations on a ratio-dependent predator-prey system, Mandal and Banerjee in [13] investigated stochastic
persistence and stationary distribution of a Holling-Tanner type prey-predator model, Dung in [5] provided an
explicit solution to delayed logistic equations with fractional noise, etc.
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46 A STOCHASTIC PREDATOR-PREY SYSTEM WITH WATT-TYPE FUNCTIONAL RESPONSE

A well-known model of deterministic systems is the predator-prey model with a Watt-type functional response,
proposed by Watt [23], which can be described by the following differential equations

dx(t)
dt = x(t)[a1 − b1x(t)]− c1y(t)

[
1− exp

(
− cx(t)

y(t)m

)]
dy(t)
dt = −a2y(t) + c2y(t)

[
1− exp

(
− cx(t)

y(t)m

)] (1)

where x(t) and y(t) are functions of time representing population density of prey and predator, and all parameters
are positive constants, a1 is the intrinsic growth rate of prey, c1 the maximum number of prey that can be eaten by
a predator per unit of time, c2 a conversion efficiency and a2 the mortality rate of the predator.

Although some improvements to the original model (1) have been extensively suggested (see, for instance,
[12, 21, 22]), the question of the effect of environmental noise on this model has not yet been addressed. The aim
of this paper is to study a stochastic version of (1). More specifically, we assume that the relevant parameters a1, a2
are random, then they can be modeled by

a1(ω) = a1 + ε1Ẇ1(t), a2(ω) = a2 + ε2Ẇ2(t), (2)

where a1 = E[a1(ω)], a2 = E[a2(ω)] and ε1, ε2 are deterministic and Ẇ1(t), Ẇ2(t) are independent white noises.
Inserting (2) into the system (1), we get a new stochastic version in the following form

dx(t) =

(
x(t)[a1 − b1x(t)]− c1y(t)

[
1− exp

(
− cx(t)

y(t)m

)])
dt+ σ1x(t)dW1(t)

dy(t) =

(
− a2y(t) + c2y(t)

[
1− exp

(
− cx(t)

y(t)m

)])
dt+ σ2y(t)dW2(t),

(3)

where W1(t),W2(t) are independent standard Brownian motions, σ1, σ2 represent the intensities of the white
noises. The initial conditions x0, y0 > 0.

In this paper, to investigate the nonlinear stochastic system (3), we mainly use Itô’s formula, the theory of
stochastic differential equations and the method of Lyapunov functionals to estimate its solution, and to analyze
the long time behavior of the system. The structure of the paper is as follows. In Section 2, we establish the
existence of unique positive global solution and give an estimate for moments of the solution. In Section 3, we
study some features of the system, including the growth rates, persistence and extinction of predator and prey. The
conclusion is given in Section 4.

2. The positive solution and its moments

Throughout this paper, we use the following notations. Denote R2
+ = (0,∞)× (0,∞), (Ω,F , P ) the complete

probability space with a filtration {Ft}t≥0 satisfying the usual conditions, that is, it is right continuous and
increasing while F0 contains all P -null sets. Let W1(t),W2(t) denote the independent standard Brownian motions
defined on this probability space.

Since stochastic system (3) describes population dynamics, its solution has to be positive and not to explode at a
finite time. By using the Itô formula, first we show that there exists a unique positive local solution of the system (3)
and then by using the comparison theorem, we prove that this solution is global. We have the following theorem.

Theorem 2.1
The system (3) has a unique positive global solution on the interval [0,∞) for any the initial condition (x0, y0) ∈
R2

+.
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Proof
We first consider the following system

du(t) =

(
a1 − σ2

1

2 − b1e
u(t) − c1e

v(t)−u(t)
[
1− exp

(
− ceu(t)−mv(t)

)])
dt+ σ1dW1(t)

dv(t) =

(
− a2 − σ2

2

2 + c2
[
1− exp

(
− ceu(t)−mv(t)

)])
dt+ σ2dW2(t)

(4)

with the initial (u0, v0) = (lnx0, ln y0). Since the coefficients of (2.1) are locally Lipschitz continuous, there is
a unique local solution to (4) on the interval [0, τ), where τ is the explosion time. Hence, by Itô’s formula,
x(t) = eu(t), y(t) = ev(t) is the unique positive local solution to (3) with the initial (x0, y0) ∈ R2

+. To show the
solution is globally positive, we need to check that τ = ∞ almost surely.

On the interval [0, τ), x(t) and y(t) are positive and hence,

dx(t) ≤ x(t)[a1 − b1x(t)]dt+ σ1x(t)dW1(t),

dy(t) ≤ (c2 − a2)y(t)dt+ σ2y(t)dW2(t).

By the comparison theorem for stochastic differential equations (see, [8]) we have, for 0 ≤ t < τ :

0 < x(t) ≤ x̄(t) and 0 < y(t) ≤ ȳ(t), a.s., (5)

where x̄(t), ȳ(t) solve the following two equations, respectively

dx̄(t) = x̄(t)[a1 − b1x̄(t)]dt+ σ1x̄(t)dW1(t), (6)

dȳ(t) = (c2 − a2)ȳ(t)dt+ σ2ȳ(t)dW2(t). (7)

The equation (6) is well known as a stochastic logistic equation in population dynamics, its solution is given by

x̄(t) =
x0 exp

(
(a1 − σ2

1

2 )t+ σ1W1(t)
)

1 + x0

t∫
0

b1 exp
(
(a1 −

σ2
1

2 )s+ σ1W1(s)
)
ds

.

Similarly, the solution of (7) is given by

ȳ(t) = y0 exp
(
(c2 − a2 −

σ2
2

2
)t+ σ2W2(t)

)
.

Since both x̄(t) and ȳ(t) are defined globally, we conclude that τ = ∞.
The Theorem is proved.

Remark 2.1. Since τ = ∞, we have the following relations, for all t ≥ 0

0 < x(t) ≤ x̄(t) and 0 < y(t) ≤ ȳ(t), a.s.

Theorem 2.2
For each n > 0, the nth-moment of the prey species is bounded uniformly in time, i.e. there exists a finite constant
Kn > 0 such that

sup
t≥0

Ex(t)n ≤ Kn. (8)
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Proof
Applying the Itô’s formula to x(t)n shows that

dx(t)n =

(
nx(t)n[a1 − b1x(t)]− c1nx(t)

n−1y(t)
[
1− exp

(
− cx(t)

y(t)m
)]

+
1

2
n(n− 1)σ2

1x(t)
n

)
dt+ σ1nx(t)

ndW1(t).

Consequently,

Ex(t)n ≤ xn
0 +

t∫
0

(
(na1 +

1

2
n(n− 1)σ2

1)Ex(s)n − nb1Ex(t)n+1
)
ds.

Put g(t) = Ex(t)n and by Lyapunov’s inequality (Ex(t)n)
1
n ≤ (Ex(t)n+1)

1
n+1 we have

g(t) ≤ xn
0 +

t∫
0

(
(na1 +

1

2
n(n− 1)σ2

1)g(s)− nb1g(s)
1+ 1

n

)
ds,

which can be written as
g′(t) ≤ (na1 +

1

2
n(n− 1)σ2

1)g(t)− nb1g(t)
1+ 1

n , t ≥ 0. (9)

From (9) and by the differential inequality (see, [20]), g(t) is dominated by the solution of an ordinary Bernouilli
differential equation of the form:

z′(t) = (na1 +
1

2
n(n− 1)σ2

1)z(t)− nb1z(t)
1+ 1

n , z(0) = g(0).

Solving the Bernouilli equation we obtain for all t ≥ 0

[g(t)]
1
n ≤ e(a1+

1
2 (n−1)σ2

1)t

(g0)
−1
p +

t∫
0

b1e(a1+
1
2 (n−1)σ2

1)sds

=
e(a1+

1
2 (n−1)σ2

1)t

(g0)
−1
n + b1

(a1+
1
2 (n−1)σ2

1)
[e(a1+

1
2 (n−1)σ2

1)t − 1]

=
e(a1+

1
2 (n−1)σ2

1)t

1
x0

− b1
(a1+

1
2 (n−1)σ2

1)
+ b1

(a1+
1
2 (n−1)σ2

1)
e(a1+

1
2 (n−1)σ2

1)t
.

As a consequence,

[g(t)]
1
n ≤ max

{
a1 +

1
2 (n− 1)σ2

1

b1
, x0

}
, ∀ t ≥ 0.

We therefore have

sup
t≥0

Ex(t)n ≤
(
max

{
a1 +

1
2 (n− 1)σ2

1

b1
, x0

})n

:= Kn.

The Theorem is proved.

Remark 2.2. Let y(t) be the solution of the following equation

dy(t) = −a2y(t)dt+ σ2y(t)dW2(t).
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By the comparison theorem we have

y(t) ≥ y(t) = y0 exp
(
(−a2 −

σ2
2

2
)t+ σ2W2(t)

)
a.s.,

and then
Ey(t)n ≥ Ey(t)n = yn0 e

n(−a2+
1
2 (n−1)σ2

2)t ∀ t ≥ 0.

We observe that lim
t→∞

Ey(t)n = ∞ if n > 1 + 2a2

σ2
2
. Thus it is impossible to establish a similar estimate to (8) for

the predator species. When n = 1, we have the following.

Theorem 2.3
The first moment of the predator species is bounded uniformly in time:

sup
t≥0

Ey(t) ≤ c2
c1

max

(
(a1 + a2)

2

4a2b1
, x0 +

c1
c2

y0

)
.

Proof
Consider the following stochastic process

z(t) = x(t) +
c1
c2

y(t), t ≥ 0.

We have
dz(t) = x(t)[a1 + a2 − b1x(t)]− a2z(t) + σ1x(t)dW1(t) +

σ2c1
c2

y(t)dW2(t),

and

Ez(t) = z0 +

t∫
0

[(a1 + a2)Ex(t)− b1Ex(t)2 − a2Ez(s)]ds.

Obviously, (a1 + a2)Ex(t)− b1Ex(t)2 ≤ (a1 + a2)Ex(t)− b1[Ex(t)]2 ≤ (a1+a2)
2

4b1
. Therefore,

Ez(t) ≤ z0 +

t∫
0

[
(a1 + a2)

2

4b1
− a2Ez(s)

]
ds.

Once again, by the differential inequality

Ez(t) ≤ (a1 + a2)
2

4a2b1
−
(
(a1 + a2)

2

4a2b1
− z0

)
e−a2t ≤ max

(
(a1 + a2)

2

4a2b1
, z0

)
∀ t ≥ 0.

Since Ey(t) ≤ c2
c1
Ez(t), we obtain desired estimate.

The Theorem is proved.

3. The growth rates, persistence and extinction

In this section, we give some estimates for growth rates of prey and predator. We also point out the sufficient
conditions for the persistence and extinction of population in terms of its parameters. The obtained results confirm
a well-known fact that if the noise is sufficiently large, the population will become extinct with probability one.

We first provide an upper bound for the growth rate of both prey and predator species.
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Theorem 3.1
If 0 < m < 1 then for any p1 > 0, p2 ≥ 0 we have the following estimate for any initial value (x0, y0) ∈ R+

lim sup
t→∞

ln[x(t)p1y(t)p2 ]

ln t
≤ p1 + p2 a.s. (10)

Moreover, for all m > 0, we have the following estimate for growth rate of prey species

lim sup
t→∞

lnx(t)

ln t
≤ 1 a.s. (11)

Proof
We recall that 

du(t) =

(
a1 − σ2

1

2 − b1x(t)− c1
y(t)
x(t)

[
1− exp

(
− cx(t)

y(t)m

)])
dt+ σ1dW1(t)

dv(t) =

(
− a2 − σ2

2

2 + c2
[
1− exp

(
− cx(t)

y(t)m

)])
dt+ σ2dW2(t)

(12)

Applying Itô’s formula to entu(t) and entv(t) we have, respectively

entu(t) = u0 +

t∫
0

nensu(s)ds

+

t∫
0

ens
(
a1 −

σ2
1

2
− b1x(s)− c1

y(s)

x(s)

[
1− exp

(
− cx(s)

y(s)m
)])

ds+

t∫
0

σ1e
nsdW1(s),

entv(t) = v0 +

t∫
0

nensv(s)ds

+

t∫
0

ens
(
− a2 −

σ2
2

2
+ c2

[
1− exp

(
− cx(s)

y(s)m
)])

ds+

t∫
0

σ2e
nsdW2(s).

Hence,

ent[p1u(t) + p2v(t)] = p1u0 + p2v0 +

t∫
0

ensg(x(s), y(s))ds+

t∫
0

σ1p1e
nsdW1(s) +

t∫
0

σ2p2e
nsdW2(s), (13)

where

g(x, y) = n[p1 lnx+ p2 ln y] + p1

(
a1 −

σ2
1

2
− b1x(s)− c1

y

x

[
1− exp

(
− cx

ym
)])

+ p2

(
− a2 −

σ2
2

2
+ c2

[
1− exp

(
− cx

ym
)])

.

Since 0 < m < 1, it is easy to check that there exists a positive constant K = K(n, p1, p2) such that

g(x, y) ≤ K ∀ x, y > 0.

Stat., Optim. Inf. Comput. Vol. 5, March 2017



N.T. DUNG 51

Inserting the above estimate into (13) we obtain

ent[p1u(t) + p2v(t)] ≤ p1u0 + p2v0 +

t∫
0

Kensds+

t∫
0

σ1p1e
nsdW1(s) +

t∫
0

σ2p2e
nsdW2(s).

Put

M1(t) =

t∫
0

σ1e
nsdW1(s), M2(t) =

t∫
0

σ2e
nsdW2(s),

then M1(t),M2(t) are continuous martingales that have finite quadratic variations:

⟨Mi,Mi⟩t =
t∫

0

σ2
i e

2nsds, i = 1, 2.

Fix ε ∈ (0, 1) and θ > 1, by applying the exponential martingale inequality (see [17] or [14, Theorem 7.4]) we have
for any k ≥ 1

P

(
sup

0≤t≤k

(
Mi(t)−

ε

2
e−nk⟨Mi,Mi⟩t

)
≥ enk ln kθ

ε

)
≤ 1

kθ
, i = 1, 2.

Since
∞∑
k=1

1
kθ < ∞, an application of Borel-Cantelli lemma yields there exist Ωi ⊂ Ω with P (Ωi) = 1, i = 1, 2 such

that for any ω ∈ Ωi there exists an integer ki(ω), when k ≥ ki(ω) and k − 1 ≤ t ≤ k,

Mi(t) ≤ ε
2e

−nk⟨Mi,Mi⟩t + θ enk ln k
ε

= ε
2e

−nk
t∫
0

σ2
i e

2nsds+ θ enk ln k
ε , i = 1, 2.

Thus for ω ∈ Ω1 ∩ Ω2, k ≥ k0(ω) = k1(ω) ∨ k2(ω) and k − 1 ≤ t ≤ k

ent[p1u(t) + p2v(t)] ≤ p1u0 + p2v0 +

t∫
0

Kensds+
ε

2
e−nk

t∫
0

σ2
1p1e

2nsds

+
ε

2
e−nk

t∫
0

σ2
2p2e

2nsds+ θ(p1 + p2)
enk ln k

ε
,

ent[p1u(t) + p2v(t)] ≤ p1u0 + p2v0 +
K

n
(ent − 1) +

ε

4n
e−nkσ2

1p1(e
2nt − 1)

+
ε

4n
e−nkσ2

2p2(e
2nt − 1) + θ(p1 + p2)

enk ln k

ε
,

and so

p1u(t) + p2v(t) ≤ p1u0 + p2v0 +
K

n
+

[
ε

4n
σ2
1p1 +

ε

4n
σ2
2p2

]
e−n(k−t) + θ(p1 + p2)

en ln k

ε
.

In the above inequality, let t → ∞ we obtain

lim sup
t→∞

p1u(t) + p2v(t)

ln t
≤ θen

ε
(p1 + p2).
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Taking the limits θ → 1+, ε → 1− and n → 0+ we get

lim sup
t→∞

ln[x(t)p1y(t)p2 ]

ln t
= lim sup

t→∞

p1u(t) + p2v(t)

ln t
≤ p1 + p2,

which deduces (10) because P (Ω1 ∩ Ω2) = P (Ω1) + P (Ω2)− P (Ω1 ∪ Ω2) = 1.
The inequality (11) follows from (10) by choosing p2 = 0 and using that fact that for any m > 0

g(x, y) = np1 lnx+ p1

(
a1 −

σ2
1

2
− b1x(s)− c1

y

x

[
1− exp

(
− cx

ym
)])

≤ K ∀ x, y > 0.

The Theorem is proved.

Remark 3.1. In the context of method of Lyapunov functionals, the condition 0 < m < 1 is inevitable one. Indeed,
when m ≥ 1 we have for fixed x

lim
y→∞

c1
y

x

[
1− exp

(
− cx

ym
)]

∈ {0, cc1},

and so, lim
y→∞

g(x, y) = ∞, i.e. g(x, y) cannot be bounded by a finite constant K.

Lemma 3.1
(Strong law of large numbers) Let W (t) is a standard Brownian motion. We have

lim
t→∞

W (t)

t
= lim

t→∞

min
0≤s≤t

W (s)

t
= lim

t→∞

max
0≤s≤t

W (s)

t
= 0.

Proof
Refer [19].

We next study the prey species in the case without the predator species.

Theorem 3.2
I. If a1 − σ2

1

2 < 0, then the prey dies with a probability one even if there is no predator.

lim sup
t→∞

lnx(t)

t
≤ a1 −

σ2
1

2
a.s.

II. In the case of a1 − σ2
1

2 > 0, if the predator is absent, i.e., y(t) = 0 a.s. then

lim
t→∞

1

t

t∫
0

x(s)ds =
a1 − σ2

1

2

b1
a.s.,

in other words, the prey species is stable in time average.

Proof
I. From the proof of Theorem 2.1 we known that x(t) = eu(t), where

du(t) =

(
a1 −

σ2
1

2
− b1x(t)− c1

y(t)

x(t)

[
1− exp

(
− cx(t)

y(t)m
)])

dt+ σ1dW1(t). (14)

Hence,

lnx(t) = u(t) ≤ u0 +

t∫
0

(a1 −
σ2
1

2
)ds+ σ1W1(t).
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This, together with strong law of large numbers for Brownian motion W1(t), implies that

lim sup
t→∞

lnx(t)

t
≤ lim

t→∞

lnx0

t
+ (a1 −

σ2
1

2
) + σ1 lim

t→∞

W1(t)

t
= a1 −

σ2
1

2
, a.s.

II. When y(t) = 0 a.s. we have x(t) = x̄(t), where

x̄(t) =
x0 exp

(
(a1 − σ2

1

2 )t+ σ1W1(t)
)

1 + x0

t∫
0

b1 exp
(
(a1 − σ2

1

2 )s+ σ1W1(s)
)
ds

.

It is clear that

1

x̄(t)
= e−σ1W1(t)

[
1

x0
e−(a1−

σ2
1
2 )t +

t∫
0

b1e
−(a1−

σ2
1
2 )(t−s)+σ1W1(s)ds

]

≥ e−σ1W1(t)

[
1

x0
e−(a1−

σ2
1
2 )t + e

min
0≤s≤t

σ1W1(s)
t∫

0

b1e
−(a1−

σ2
1
2 )(t−s)ds

]
.

Since min
0≤s≤t

σ1W1(s) ≤ W1(0) = 0, we can get

1

x̄(t)
≥ e

min
0≤s≤t

σ1W1(s)−σ1W1(t)
[
1

x0
e−(a1−

σ2
1
2 )t +

t∫
0

b1e
−(a1−

σ2
1
2 )(t−s)ds

]
, (15)

ln x̄(t) ≤ σ1W1(t)− min
0≤s≤t

σ1W1(s)− ln

[
b1

a1 − σ2
1

2

+

(
1

x0
− b1

a1 − σ2
1

2

)
e−(a1−

σ2
1
2 )t

]
.

Using the strong law of large numbers and the assumption a1 − σ2
1

2 > 0, the above inequality gives us the following
estimate

lim sup
t→∞

ln x̄(t)

t
≤ 0 a.s. (16)

Similarly, with noting that max
0≤s≤t

σ1W1(s) ≥ W1(0) = 0, we also have

ln x̄(t) ≥ σ1W1(t)− max
0≤s≤t

σ1W1(s)− ln

[
b1

a1 − σ2
1

2

+

(
1

x0
− b1

a1 − σ2
1

2

)
e−(a1−

σ2
1
2 )t

]
and

lim inf
t→∞

ln x̄(t)

t
≥ 0 a.s. (17)

Combining (16) and (17) shows that

lim
t→∞

ln x̄(t)

t
= 0 a.s. (18)

An application of Itô’s formula to ū(t) = ln x̄(t) yields

dū(t) =
(
a1 −

σ2
1

2
− b1x̄(t)

)
dt+ σ1dW1(t), (19)

which leads us to

ū(t)

t
=

u0

t
+
(
a1 −

σ2
1

2

)
− b1

1

t

t∫
0

x̄(s)ds+ σ1
W1(t)

t
. (20)
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This, together with (18), implies that

lim
t→∞

1

t

t∫
0

x̄(s)ds =
a1 − σ2

1

2

b1
a.s.

The Theorem is proved.

Definition 3.1. The population x(t) is said to be strongly persistent in mean if

lim inf
t→∞

1

t

t∫
0

x(s)ds > 0, a.s.

Let us now consider the case there is the appearance of the predator species. We have the following properties
for the prey species.

Theorem 3.3
If m = 1 and a1 − σ2

1

2 − cc1 > 0, then the prey species is strongly persistent in mean. Moreover, we have

a1 − σ2
1

2 − cc1

b1
≤ lim inf

t→∞

1

t

t∫
0

x(s)ds ≤ lim sup
t→∞

1

t

t∫
0

x(s)ds ≤
a1 − σ2

1

2

b1
, a.s.

Proof
Since 1− exp

(
− cx(t)

y(t)

)
≤ cx(t)

y(t) , we have

dx(t) ≥ x(t)[a1 − cc1 − b1x(t)]dt+ σ1x(t)dW1(t).

Consequently,

x(t) ≥ x(t) :=

x0 exp
( t∫
0

(a1 − σ2
1

2 − cc1)ds+ σ1W1(t)
)

1 + x0

t∫
0

b1 exp
( s∫
0

(a1 −
σ2
1

2 − cc1)du+ σ1W1(s)
)
ds

.

Since a1 − σ2
1

2 − cc1 > 0, similarly to (18), we also have

lim
t→∞

lnx(t)

t
= 0 a.s. (21)

Combining (18) and (21) we obtain

lim
t→∞

lnx(t)

t
= 0 a.s.

Hence, from (14) and the strong law of large numbers we get

lim
t→∞

1

t

t∫
0

(
b1x(s) + c1

y(s)

x(s)

[
1− exp

(
− cx(s)

y(s)

)])
ds = a1 −

σ2
1

2
, a.s.

Consequently,

lim sup
t→∞

1

t

t∫
0

x(s)ds ≤
a1 − σ2

1

2

b1
, a.s.

Stat., Optim. Inf. Comput. Vol. 5, March 2017



N.T. DUNG 55

On the other hand, it is easy to see that

c1
y

x

[
1− exp

(
− cx

y

)]
< cc1, ∀ (x, y) ∈ R2

+,

and then

lim inf
t→∞

1

t

t∫
0

x(s)ds ≥
a1 − σ2

1

2 − cc1

b1
> 0, a.s.

The Theorem is proved.

We end this paper with the properties of the predator species in the cases where our system contains or does not
contain the prey species.

Theorem 3.4
I. If the prey is absent, i.e., x(t) = 0 a.s. for all t ≥ 0, then the predator dies with a probability one. Furthermore,
the death’s rate of predator is exponential

lim
t→∞

ln y(t)

t
= −a2 −

σ2
2

2
, a.s. (22)

II. If a1 − σ2
1

2 > 0, i.e. the prey species is not extinction. We have

lim sup
t→∞

ln y(t)

t
≤ min{0, c2 − a2 −

σ2
2

2
}.

Proof
I. When x(t) = 0 a.s., the dynamic of predator species is expressed by

y(t) = y(t) = y0 exp
(
(−a2 −

σ2
2

2
)t+ σ2W2(t)

)
.

Therefore

lim
t→∞

ln y(t)

t
= lim

t→∞

ln y0
t

− a2 −
σ2
2

2
+ σ2 lim

t→∞

W2(t)

t

This, together with strong law of large numbers, gives us (22).
II. We recall that

y(t) ≤ ȳ(t) = y0 exp
(
(c2 − a2 −

σ2
2

2
)t+ σ2W2(t)

)
.

Then, by using the same arguments as the proof of Part I, we have

lim sup
t→∞

ln y(t)

t
≤ c2 − a2 −

σ2
2

2
, a.s. (23)

From the inequality 1− exp
(
− cx(t)

y(t)m

)
≤ cx(t)

y(t)m , and by comparison theorem we have y(t) ≤ Y (t), where Y (t)

solves the following equation

dY (t) =

(
− a2Y (t) + cc2x(t)Y (t)1−m

)
dt+ σ2Y (t)dW2(t), Y (0) = y0. (24)

The solution of (24) can be found explicitly (for instance, see [11, page 125]). Hence,

y(t) ≤ Y (t) = e−(a2+
σ2
2
2 )t+σ2W2(t)

(
ym0 +mcc2

t∫
0

x(s)e−m(−(a2+
σ2
2
2 )s+σ2W2(s))ds

) 1
m
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or equivalently,

y(t)m ≤ e−m(a2+
σ2
2
2 )t+mσ2W2(t)

(
ym0 +mcc2

t∫
0

x(s)em(a2+
σ2
2
2 )s−mσ2W2(s)ds

)
,

which leads us to the following estimate

y(t)m ≤ e
mσ2W2(t)− min

0≤s≤t
mσ2W2(s)

(
ym0 e−m(a2+

σ2
2
2 )t +mcc2

t∫
0

x(s)e−m(a2+
σ2
2
2 )(t−s)ds

)
. (25)

We recall that x(t) ≤ x̄(t). Since a1 − σ2
1

2 > 0, from (15) we have

x(t) ≤ x̄(t) ≤ K̄e
σ1W1(t)− min

0≤s≤t
σ1W1(s)

, ∀ t ≥ 0.

where
K̄ =

1

inf
t≥0

[
1
x0
e−(a1−

σ2
1
2 )t +

t∫
0

b1e−(a1−
σ2
1
2 )(t−s)ds

] =
1

min{ 1
x0
, b1

a1−
σ2
1
2

}
.

Hence, it is easy to see that

max
0≤s≤t

x(s) ≤ K̄e
max

0≤s≤t
σ1W1(s)− min

0≤s≤t
σ1W1(s)

. (26)

Noting that max
0≤s≤t

σ1W1(s)− min
0≤s≤t

σ1W1(s) ≥ 0. Inserting (26) into (25) we find that

y(t)m ≤ ¯̄Ke
max

0≤s≤t
σ1W1(s)− min

0≤s≤t
σ1W1(s)+mσ2W2(t)− min

0≤s≤t
mσ2W2(s)

(27)

where

¯̄K = sup
t≥0

(
ym0 e−m(a2+

σ2
2
2 )t +mcc2K̄

t∫
0

e−m(a2+
σ2
2
2 )(t−s)ds

)
= max

{
cc2K̄

a2 +
σ2
2

2

, ym0

}
.

By the strong law of large numbers

lim sup
t→∞

ln y(t)

t
≤ 0 (28)

We finish the proof the Theorem by combining (23) and (28).

Remark 3.2. Theorem 3.4 gives us some interesting ecological interpretations. Firstly, if the system has no the
prey species, then the predator population will go to extinction, which is consistent with our expectation. Secondly,
although the prey population will survive, the predators die out because the diffusion coefficient σ2

2 is too large
(c2 − a2 − σ2

2

2 < 0). This means that a relatively large stochastic perturbation can cause the extinction of the
population.

4. Conclusion

In this paper, we discuss a stochastic predator-prey system with Watt-type functional response. We show that
the model admits a unique global positive solution, and investigate the uniformly finite moments. Moreover,
we use the Lyapunov functionals, the strong law of large numbers for Brownian motion and the theory of Itô’s
stochastic differential equations to study the long-term behaviors of solutions. Our obtained results partly enrich
the knowledge of theory of stochastic predator-prey systems.
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