
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 4, December 2016, pp 278–288.
Published online in International Academic Press (www.IAPress.org)

Robust C-optimal Design For Estimating Multiple EDp Under The
4-parameter Logistic Model

Anqing Zhang ∗, Seung Won Hyun

Department of Statistics, North Dakota State University, USA.

(Received: 10 October 2016; Accepted: 12 November 2016)

Abstract The four-parameter logistic model is often used to describe dose-response functions in many toxicological
studies. In this study, under the four-parameter logistic model, optimal designs to estimate the EDp are studied. The EDp

is the dose achieving p% of the expected difference between the maximum and the minimum responses. C-optimal design
works the best for estimating the EDp, but the best performance is only guaranteed when the goal is for estimating a single
EDp. If the c-optimal design for studying a specific EDp is used for studying different EDp values, it may work poorly.
This paper shows that the c-optimal design for estimating the EDp truly depends on the value of p under the 4-parameter
logistic model. We present a robust c-optimal design that works well for the change in the value of p, so that the design can
be used effectively for studying multiple EDp values. In addition, this paper presents a two-stage robust c-optimal design
for estimating multiple EDp that is not substantially affected by the mis-specified nominal parameter values.
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1. Introduction

A dose-finding trial is a fundamental part in clinical trials. One common objective of a dose-finding trial is to study
a target dose level such as EDp [4, 13]. The EDp is the dose level that achieves p% of the anticipated difference
between the maximum and the minimum expected response within the observed dose range[16]. In this paper, we
study optimal designs for estimating the various EDps accurately.

An optimal design provides the most efficient design to study an interesting objective accurately with limited
resources. It identifies dose levels to be tested and how to allocate subjects to the selected doses in the most efficient
manner [2, 4, 7]. Different types of optimal designs are used for different purposes. For instance, D-optimal design
enables researchers to estimate the shape of dose-response accurately, and c-optimal design allows researchers to
precisely estimate an interesting target dose level. In this paper, we study c-optimal designs for estimating the EDp.
The ED50 is a common interesting dose level because it provides a reasonable expectation of the drug effect. Other
dose levels such as ED10 or ED90 are also interesting dose levels sometimes.

In general, multiple doses levels are used to conduct experimental designs in biological and toxicological
studies. For example, researchers choose doses ED40, ED50, ED60, and ED80 to establish dose-range studies for
daptomycin in infected mice [11]. Another example is the effective doses ED50 and ED80 were used to perform
nefopam experiments on patients who suffering from moderate pain in the postoperative period [5]. These multiple
doses need to be accurately estimated in early phase toxicology trials, and sometimes the objective is in estimating
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dual EDps such as ED10 and ED50 rather than estimating one specific EDp [17]. Then the question is how can
we construct an optimal design to estimate multiple EDps effectively?

C-optimal design minimizes an asymptotic variance of estimating the EDp, where the value of p is predetermined
at the beginning of the study. In general, optimal design works very well for studying a single objective but
works poorly for studying different objectives. Thus, c-optimal design for estimating the EDp performs well
for estimating a single specified EDp but there is no guarantee that the c-optimal design still performs well for
estimating other EDps. In this paper, we study the sensitivity of the c-optimal design for estimating the EDp on
the values of p, and we present a robust c-optimal design for estimating the EDp that works fairly well for the
change in the value of p. We employ several sets of model parameters and check the performance of the robust
c-optimal design. Another challenge in optimal designs for nonlinear models is that the optimal designs depend on
model parameter values [13]. To reduce this dependence problem, we present two-stage robust c-optimal design
for estimating the EDp as well.

We consider a flexible four-parameter logistic model to describe dose-response relationships [7]. The four-
parameter logistic model is a frequently used non-linear model in many dose response studies. In this paper, all
optimal designs are obtained under the four-parameter logistic model.

In Section 2, the dose-response model and the Fisher information matrix under the model is presented. In Section
3, c-optimal designs for estimating the EDp, the robust c-optimal design for estimating the EDp for the changes
in the value of p, and the two-stage robust c-optimal design are studied. Finally, brief summary is given in Section
4.

2. Model

he mean response for the four-parameter logistic model at a given dose xi is

µ(xi,Θ) = θ1 + (θ2 − θ1)(
xi

θ4

xi
θ4 + θ3

θ4
) (1)

where xi is the ith dose; θ1 is the mean response at the minimum dose; θ2 is the mean response at the maximum
dose; θ3 is the dose corresponding to the mean response that is halfway between the minimum and the maximum
expected responses (we also call it ED50); θ4 is the slope parameter that controls the steepness of the curve.

To perform our study, we assume that the dose response Y is a continuous response and is modeled by

Yij = µ(xi,Θ) + εij , ε ∼ N(0, σ2),

where µ(xi,Θ) is given by the four-parameter logistic model (1); Θ = (θ1, θ2, θ3, θ4); j = 1, 2, · · · , ni; i =
1, 2, · · · , k; and n1 + n2 + · · ·+ nk = n. Here ni is the number of subjects assigned at xi and n is the total number
of subjects. We assume that the variance σ2 is an unknown constant. Let ξ = {(xi, wi)}k1 denote an approximate
design. The approximate design tells the number of doses k, the location of each dose xi, and the proportional
allocation wi of subjects at each dose xi. In practice, the closest integer of nwi becomes ni. Under this model
setup, the normalized Fisher information matrix for Θ is obtained below

M(ξ,Θ) =
1

σ2

n∑
i=1

ωif(xi,Θ)f(xi,Θ)
T (2)

where,

f(xi,Θ) =

(
∂µ(xi,Θ)

∂θ1
,
∂µ(xi,Θ)

∂θ2
,
∂µ(xi,Θ)

∂θ3
,
∂µ(xi,Θ)

∂θ4

)T

=

(
θ3

θ4

xi
θ4 + θ3

θ4
,

xi
θ4

xi
θ4 + θ3

θ4
,
θ4(θ1 − θ2)θ3

(θ4−1)xi
θ4

(xi
θ4 + θ3

θ4)
2 ,

θ4(θ2 − θ1)θ3
θ4xi

θ4 ln xi

θ3

(xi
θ4 + θ3

θ4)2

)T

Stat., Optim. Inf. Comput. Vol. 4, December 2016



280 ROBUST C-OPTIMAL DESIGN FOR ESTIMATING MULTIPLE EDP

This Fisher information matrix plays a very important role to search c-optimal designs for estimating the EDp in
next section.

3. Designs

We find c-optimal designs for estimating the EDp under the four-parameter logistic model. V-algorithm is a
common numerical algorithm to obtain locally optimal designs and was developed by Fedorov in 1972 [8, 9]. The
algorithm selects one dose that maximizes the sensitive function which is derived from the directional derivative
of the optimal criterion at each iteration and stops once the design satisfies the Equivalence Theorem [1, 2, 14].
The problem for V-algorithm is that sometime it takes very long time to converge to the locally optimal designs.
[19] proposed a state-of-the art algorithm(YBT algorithm) to find locally optimal designs for a single objective
and showed that it outperformed to other current algorithms including V-algorithm. Starting from a randomly
selected initial design, the YBT algorithm selects the dose that maximizes the sensitivity function and adds to
the previously selected designs. At the same time, their optimal weights are obtained directly using the Newton-
Raphson method[15]. However, the problem in YBT is that if the selected initial design points far from the optimal
design points, then the YBT requires a lot more time to converge to an optimal design and sometimes it failed to
do so. In this paper, the modified YBT algorithm [10] was employed to obtain the c-optimal designs. [10] modified
the procedure by selecting better starting design points via the V-algorithm, and this improved the search speed to
obtain the optimal designs. The modified algorithm performs greatly to obtain all the optimal designs in this paper.

To illustrate the c-optimal designs, we adopt the experimental setup in [13]. The dose range is from 0 to 8, and
three sets of nominal model parameter values are considered using different θ3 values: Θ1=(0, -1.7, 1, 5); Θ2=(0,
-1.7, 4, 5); Θ3=(0, -1.7, 6, 5). Under the four-parameter logistic model, it is known that the optimal designs that
minimize(maximize) a convex-concave function of Fisher information matrix do not depend on the parameters θ1
and θ4 [18], and researchers often want to see how the designs are changed by the value of θ3. All the obtained
optimal designs are verified by the General Equivalence Theorem.

3.1. C-optimal designs to estimate the EDp

In this section, we present c-optimal designs for estimating the EDp under the four-parameter logistic model. The
EDp is the solution of xi in the following equation [13]:

p =
f(xi,Θ)− θ1

θ2 − θ1
,

where p represents p% of the difference between the maximum and the minimum expected responses; f(xi,Θ) is
the mean response at xi; Under the four-parameter logistic model, the EDp is expressed in explicit form:

EDp = θ3

(
p

1− p

) 1
θ4

.

Let ÊDp denotes the maximum likelihood estimate of EDp, then the asymptotic variance of estimating the EDp

is,
V ar(ÊDp) = [ED′
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− is a generalized inverse of M (ξ,Θ) in equation (2) and
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The c-optimal design for estimating the EDp, ξEDP
minimizes the asymptotic variance of estimating the EDp.

According to the Equivalence Theorem, the design ξEDp is the c-optimal design if and only if{
fT (x,Θ)M

(
ξEDp ,Θ

)−
ED′

p

}2

− [ED′
p]

TM
(
ξEDp ,Θ

)−
ED′

p ≤ 0, (4)

where the equality holds if x is the dose level in the c-optimal design. The left side of (4) is the sensitivity function
and it is used to select the optimal dose levels in the modified algorithm. In order to illustrate the c-optimal designs
for estimating the EDp, we consider five different values of p = (10, 30, 50, 70, 90), see Table 1.

Table I. C-optimal designs for estimating the EDp under Θ1, Θ2, and Θ3. Each row gives three c-optimal designs for the
EDp based on the different parameter sets.

ξEDP
Θ1=(0, -1.7, 1, 5) Θ2=(0, -1.7, 4, 5) Θ3=(0, -1.7, 6, 5)

ξED10

(
.0001 .77 1.31
.36 .50 .14

) (
.001 3.11 5.22
.36 .50 .14

) (
.0001 4.67 7.85
.36 .50 .14

)
ξED30

(
.0001 .88 1.57
.32 0.50 .18

) (
.001 3.51 7.99
.32 .50 .18

) (
2.43 5.93 7.99
.20 .50 .30

)
ξED50

(
.0001 .99 7.99
0.25 .50 0.25

) (
.99 4.18 7.99
.21 .50 .29

) (
4.12 6.35 7.99
.18 .50 .32

)
ξED70

(
.50 1.13 7.99
.18 .50 .32

) (
2.46 4.60 7.99
.17 .50 .33

) (
.0001 4.18 6.35 7.99
0.8 .25 .42 .25

)
ξED90

(
.77 1.28 7.99
.14 .50 .36

) (
.001 3.02 4.90 7.99
.05 .20 .45 .30

) (
.0001 4.17 6.39 7.99
.14 .29 .36 .21

)

Table I displays the c-optimal designs for the three different nominal sets of Θ, and we can see that they are
changed depending on the different θ3 values. Each paharenthesis represents the sought c-optimal design. In the
paharenthesis, the first line represents the sought optimal dose levels and the second line represents the optimal
allocation of subject to the corresponding dose levels. For example, under Θ2, the c-optimal design for estimating
the ED50, ξED50 allocates 21% of the subjects to .99, 50% of the subjects to 4.18, and 29% of the subjects to
7.99. Except few cases, the c-optimal designs have three dose levels and about 50% of the subjects are assigned at
the middle dose levels. Figure 1 shows the verification of the c-optimal design for estimating the ED50 under Θ2

based on the Equivalence Theorem (4). The plot shows that the sensitivity function is bounded above by 0 with the
equality at the optimal dose levels. All other c-optimal designs are also verified by the Equivalence Theorem.

3.2. Efficiency

A design efficiency shows how a design performs with respect to some optimality criterion[6]. EffEDp(ξ)
measures the efficiency of a design ξ for estimating the EDp against ξEDp and it is obtained as,

EffEDp(ξ) =
[ED′

p]
TM

(
ξEDp ; Θ

)−1
ED′

p

[ED′
p]

TM (ξ; Θ)
−1

ED′
p

. (5)

Since ξEDp provides the minimum variance of estimating the EDp, the EffEDp(ξ) is between 0 and 1. When
the efficiency of a design ξ is q, it implies that the design ξ needs 100(1/q − 1)% more subjects to provide the same
accuracy for estimating the EDp as the c-optimal design provides. For example, EffEDp(ξ) = .5 implies that
100(1/.5− 1)% = 100% more subjects are needed for the design ξ to estimate the EDp with the same accuracy as
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Figure 1. Verification of the c-optimal design for estimating the ED50 under Θ2.

the c-optimal design provides. If a design ξ works very close to the c-optimal design for estimating the EDp, then
EffEDp(ξ) ≈ 1. Otherwise, EffEDp(ξ) becomes far from 1.

It was showed that the c-optimal designs are changed by different p values in the previous section. Using the
efficiency, we want to see how the c-optimal designs perform when they are used for estimating different EDps.
For simplicity, we use the same five different values of p in the previous section and compute their efficiencies in
Table II.

Table II. Efficiencies of the c-optimal designs for estimating various EDps.

Θ Design Effξ10 Effξ30 Effξ50 Effξ70 Effξ90 Θ Design Effξ10 Effξ30 Effξ50 Effξ70 Effξ90

Θ1 ξED10 1 0 0 0 0 Θ3 ξED10 1 0 0 0 0

ξED30 0.003 1 0 0 0.001 ξED30 0 1 0 0 0

ξED50
0.001 0.002 1 0.003 0.002 ξED50

0 0 1 0 0

ξED70 0 0 0.001 1 0.004 ξED70 0.28 0.56 0.87 1 0.93

ξED90 0 0 0 0 1 ξED90 0.41 0.57 0.75 0.96 1

Θ2 ξED10 1 0 0 0 0

ξED30 0 1 0 0 0

ξED50 0.001 0.003 1 0.005 0.002

ξED70 0 0 0 1 0.002

ξED90 0.22 0.20 0.34 0.71 1

Notes: ’0’ represents Effξ < 0.001.

Table II shows that the c-optimal design for estimating one specified EDp works really poorly for estimating
other EDps and their changes are very dramatic. For example, under Θ1, the c-optimal design ξED50 has efficiency
1 when it is used for estimating the ED50, however the efficiency becomes less than 0.01 when it is used
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for estimating other EDps. Under Θ3, sometimes the c-optimal designs for estimating ED70 or ED90 provide
reasonable efficiencies for estimating higher EDp values like ED50, ED70, or ED90, but they still provide
considerably low efficiencies when they are used for estimating other EDp values.

3.3. Robust c-optimal design to estimate various EDps

In practice, researchers may want to study several different EDps at a single study to save cost. For example, they
want to estimate the ED10, ED50, and ED90 effectively from a single study and it is also possible they want to
estimate other EDps additionally from the collected data. As shown in the previous section, the c-optimal design
works the best for estimating a single EDp but the c-optimal design for estimating the EDp is changed by different
values of p, and it performs poorly when the targeted EDp is changed to other values. In this section, we present a
robust c-optimal design for estimating the EDp that works well under the changes in the value of p. For illustration,
we consider the five different values of p to obtain the robust c-optimal design, but this can be extended to any other
values of p. The robust c-optimal design combines the five c-optimality criteria into one optimality criterion using
the idea of compound design [3, 12]. The robust c-optimal design maximizes the weighted log product of the 5
efficiencies for estimating the five different EDps. Let p ∈ P = (10, 30, 50, 70, 90). The robust c-optimal design
for estimating the EDp, ξRob is,

ξRob = argmax
ξ

{
∑
p∈P

λp log(EffEDp(ξ))},

where
∑

p∈P λp = 1 and λp is a prespecified weight that represents the relative importance of corresponding EDp

in the set of P . Based on the Equivalence Theorem, ξRob is the robust c-optimal design if and only if,

∑
p∈P

λp

(fT (x,Θ)M(ξRob; θ)
−ED′

p)
2

[ED′
p]

TM(ξRob; θ)−ED′
p

≤ 1,

where the equality holds when x is a dose level in the design ξRob. We assume that the five different EDps are
equally important, and so λp = .2. Using the modified algorithm, the robust c-optimal designs for estimating the
five different EDps is presented in Table III.

Table III. Robust c-optimal designs for estimating the EDp under Θ1, Θ2, and Θ3.

Θ ξRob

Θ1

(
.001 .84 1.19 7.99
.21 .29 .29 .21

)
Θ2

(
.001 3.22 4.58 7.99
.20 .27 .32 .21

)
Θ3

(
.001 4.28 6.18 7.99
.19 .27 .30 .24

)

The robust c-optimal designs have four dose levels and include the lower and upper bounds of the dose range. The
middle two dose levels and the optimal weights are changed by the parameter values. Take Θ2 as an example: The
robust c-optimal design allocates 20% of the subjects to the lower bound in the design space, 27% and 32% of the
subjects to the middle two dose levels respectively, and 21% of the subjects to the upper bound in the design space.
All the optimal designs in Table III are verified by the Equivalence Theorem and Figure 2 shows the verification
plot of the robust c-optimal design under Θ2.

In order to check the performance of the robust c-optimal design, we check its efficiencies for estimating various
EDps and compare with the ones of uniform designs. A uniform design is commonly used in practice because of its
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Figure 2. Verification of the robust c-optimal design under Θ2.

simplicity. For the comparisons, two different uniform designs are considered: ξU1 and ξU2 represent the uniform
designs with 8 and 11 equally spaced dose levels with equal weights, respectively.

Table IV. Efficiencies of the designs for estimating various EDps.

Θ Design Effξ10 Effξ20 Effξ30 Effξ40 Effξ50 Effξ60 Effξ70 Effξ80 Effξ90 Effξ99

Θ1 ξRob 0.621 0.657 0.626 0.665 0.846 0.67 0.794 0.576 0.639 0.747

ξU1 0.009 0.01 0.011 0.017 0.048 0.177 0.337 0.059 0.030 0.02

ξU2 0.256 0.249 0.197 0.165 0.170 0.122 0.145 0.114 0.142 0.2

Θ2 ξRob 0.575 0.557 0.6 0.677 0.668 0.651 0.626 0.654 0.756 0.83

ξU1 0.386 0.397 0.449 0.5 0.457 0.409 0.371 0.375 0.429 0.474

ξU2 0.388 0.401 0.451 0.5 0.455 0.406 0.368 0.373 0.427 0.473

Θ3 ξRob 0.515 0.58 0.649 0.66 0.715 0.816 0.873 0.903 0.919 0.914

ξU1 0.503 0.508 0.421 0.373 0.389 0.442 0.477 0.502 0.523 0.544

ξU2 0.510 0.48 0.382 0.338 0.354 0.406 0.442 0.468 0.492 0.518

Figure 3, 4, and 5 display their relative efficiencies for estimating the EDp under the tree nominal sets of model
parameter values when the p is changed from 0.1 to 0.99. All the three figures show that the robust c-optimal
designs outperform the uniform designs for estimating all different EDps. The efficiencies of uniform designs are
pretty low and it is not guaranteed that the uniform design with more design points provides higher efficiency for
estimating various EDps. The robust c-optimal designs provide the efficiency as low as 52% and as high as 92%
for estimating various EDps. Although only five different EDps were considered to construct the robust c-optimal
designs, they work quite well for estimating other EDps that were not considered. The efficiencies corresponding
to the Figure 3, 4, and 5 are listed in Table IV as well.
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Figure 3. Efficiencies of the designs for estimating EDps under Θ1.

Figure 4. Efficiencies of the designs for estimating EDps under Θ2.

3.4. Two-stage robust c-optimal design

The optimal designs under nonlinear model truly depend on the nominal parameter values and the robust c-optimal
design in the previous section has the same problem. The best performance of the robust c-optimal design for
estimating various EDps may not be guaranteed when the predetermined nominal parameter values are not close
to their true values. In order to overcome this dependence problem, a two-stage design approach is used. Two-stage
robust c-optimal design for estimating various EDps assigns half of the subjects according to a uniform design at
the first stage, and then assigns the other half of the subjects according to the augmented robust c-optimal design
at the second stage. The augmented robust c-optimal design is the robust c-optimal design taking into account the
uniform design at the first stage and is obtained based on the model parameter values estimated from the first stage.
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Figure 5. Efficiencies of the designs for estimating EDps under Θ3.

Let ξ1 denote a uniform design used at the first stage. For the uniform design, four equally spaced dose levels in
the dose interval with equal weights are used:

ξ1 =
{

.001 2.67 5.33 8
.25 .25 .25 .25

}
Then the augmented robust c-optimal design ξAC at the second stage is given by:

ξAC = arg min
ξ

{∑
p∈P

λplog([ED′
p]

TM∗(ξ, Θ̂)ED′
p)

}
,

where M∗(ξ, Θ̂) = αM(ξ1, Θ̂) + (1− α)M(ξ, Θ̂) and Θ̂ is the maximum likelihood estimate of Θ obtained from
the first stage. Here M(ξ1, Θ̂) is the information matrix evaluated at ξ1; α is the proportion of subjects assigned to
the first stage. The Equivalence Theorem demonstrates that ξAC is the true augmented robust c-optimal design if
and only if: ∑

p∈P

λp

{
f(x)TM∗(ξAC ,Θ)−ED′

p

}2
[ED′

p]
TM∗(ξAC ,Θ)−M(ξAC ,Θ)M∗(ξAC ,Θ)−ED′

p

≤ 1,

For simplicity, we assign 30% of subjects to the first stage and 70% of subjects to the second stage , then α = .3.
This proportion can be changed based on the researcher’s set-up for the experiment. For example, if researcher
wants to put more number of subjects, say half of the subjects to the first stage and the other half to the second
stage, we can set α = .5. For illustration purpose, it is assumed that earlier three parameter sets are the estimated
parameter values from the first stage, and the previously used five different EDps with the same values of λs
are used to search the augmented robust c-optimal design. Using the modified algorithm, the augmented robust
c-optimal designs are obtained in Table V. Again, the augmented robust c-optimal designs are verified by the
Equivalence Theorem. As an example, the verification plot for Θ2 is given in Figure 6.

The two-stage robust c-optimal design ξtwo−stage assigns 100α% of the subjects according to ξ1 and 100(1−
α)% of the subjects according to ξAC . Under Θ2, for example, ξtwo−stage is:

ξtwo−stage =
{

.001 2.67 3.28 4.53 5.33 8
.19 .08 .19 .21 .08 .25

}
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Table V. Augmented robust c-optimal designs at the second stage under Θ1, Θ2, and Θ3.

Θ ξAC

Θ1

(
.001 .84 1.18 7.99
.16 .30 .46 .08

)
Θ2

(
.001 3.28 4.53 7.99
.16 .27 .30 .27

)
Θ3

(
.001 4.33 6.20 7.99
.10 .24 .40 .26

)

Figure 6. Verification of the augmented robust c-optimal design at the second stage for Θ2.

Based on the efficiencies for estimating the EDp, the performances of the two-stage robust c-optimal designs
for estimating various EDps under Θ1, Θ2, and Θ3 are shown in Figure 7. The three efficiency plots under the
three sets of parameter values are very similar to the ones for the previous robust c-optimal designs. The two-stage
design uses 30% of the subject at the first stage to estimate the model parameter values and uses the other 70% of
the subjects to estimate the EDps, but it does not lose much efficiency for estimating various EDps.

4. Conclusion

Optimal design plays an important role in designing experiments efficiently. It specifies how to use resources in
the most efficient way. Different types of optimal designs have different goals. In this paper, we study c-optimal
designs for estimating the EDp. We found that the c-optimal design for estimating the EDp is changed by the
value of p under the four-parameter logistic model, and the c-optimal design performs very poorly when the value
of p is changed. In order to reduce this dependence on the value of p, we present the robust c-optimal design
for estimating various EDps, and it works fairly well for estimating various EDps. Another common problem of
optimal designs under non-linear models is that it truly depends on the nominal parameter values. In order to avoid
this dependence problem, the two-stage robust c-optimal designs for estimating EDps are presented. The two-stage
robust c-optimal design can reduce the risk of using mis-specified parameter values, and at the same time, it works
fairly well as the robust c-optimal design for estimating various EDps.
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Figure 7. Efficiencies of the two-stage robust c-optimal designs for estimating various EDps under Θ1, Θ2, and Θ3.

In this paper, the modified YBT algorithm was used to search all the optimal designs. When multiple criteria
are combined into one criterion like our case, the modified YBT algorithm works very greatly. This algorithm can
be applied to any other types of optimal designs as long as its criterion is a convex (or concave) function of the
information matrix. Interested readers may also write to the first author for the codes.
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