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1. Introduction

Generalized convexity notions have always been a significant aid in the progress of optimization theory. In 1981
Hanson [6] generalized convexity to invexity. Kaul and Kaur [11] named differentiable invex functions as η-convex
and further generalized them to η-pseudoconvex and η-quasiconvex functions. Craven [5] extended the concept of
convex functions to cone-convex functions. Recently Ivanov [7, 8, 9] illuminated the following definition of a
second-order directional derivative obtained by solving the Taylor expansion formula of a function with respect to
the second-order term.

Definition 1.1 ([7, 8, 9])
Let S be a nonempty open subset of Rn and f : S → R be a differentiable function. The second-order directional
derivative f ′′(x, d) of f at the point x ∈ S in the direction d ∈ Rn is defined as an element of R given by

f ′′(x, d) = lim
s→0+

2

s2
[f(x+ sd)− f(x)− s∇f(x)d] .

If f ′′(x, d) exists and is finite, then f is said to be second-order directionally differentiable at the point x ∈ S in
the direction d ∈ Rn and f ′′(x, d) is called its second-order directional derivative. The function f is said to be
second-order directionally differentiable on S if the derivative f ′′(x, d) exists for each x ∈ S and every direction
d ∈ Rn.
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Remark 1.2
If f is twice differentiable in a neighbourhood of x ∈ S, then f ′′(x, d) exists for every d ∈ Rn and f ′′(x, d) =
dt∇2f(x)d, where ∇2f(x) is the Hessian matrix of f at x.

Ivanov [8] used the above definition of second-order directional derivative to introduce a second-order invex
function in the following manner:

Definition 1.3 ([8])
The function f is said to be second-order invex (or 2-invex) at x ∈ S if there exist vector-valued functions
η, ξ : S × S → Rn such that for all y ∈ S, the second-order directional derivative f ′′(x, ξ(x, y)) exists and

f(y)− f(x) ≥ ∇f(x)η(y, x) + f ′′(x, ξ(y, x)).

If the above inequality holds for all x, y ∈ S, then f is called second-order invex on S.

In this paper, we unify the notions of η-convex functions [11] and second-order invex functions [8] to define
a new class of second-order cone-(η, ξ)-convex functions. We also define related classes of second-order cone-
pseudoconvex and second-order cone-quasiconvex functions.

Second-order optimality conditions for vector optimization problems have been widely studied in the past,
mainly due to their usefulness in sensitivity analysis of optimal solutions and convergence analysis of various
algorithms. Several researchers, like Andreani [1], Ben-Tal [2], Burke [4], Kawasaki [12], have considered second-
order optimality conditions in terms of Hessians of the involved functions. However, various kinds of second-order
directional derivatives have also been introduced to enable the development of second-order optimality conditions
in the absence of second-order differentiability (see for example Ben-Tal, Zowe [3], Ivanov [7, 8, 9], Studniarski
[15], Yang [16] and the references therein).

We employ the introduced classes of functions to obtain second-order necessary and sufficient Karush-Kuhn-
Tucker (KKT) type conditions for a vector optimization problem over cones in terms of the second-order directional
derivatives of the functions involved. Furthermore, a second-order Mond-Weir type dual is associated to the
considered problem and weak and strong duality results are established.

2. Second-order cone-convexity and related concepts

In this section, we introduce the following new classes of second-order cone-(η, ξ)-convex functions.
Let S be a nonempty open subset of Rn and f = (f1, . . . , fm)t : S → Rm be a differentiable vector-valued

function.

Definition 2.1
The function f is said to be second-order K-(η, ξ)-convex at x̄ ∈ S on S if there exist vector-valued functions
η, ξ : S × S → Rn such that for all x ∈ S, the second-order directional derivative f ′′(x̄, ξ(x, x̄)) exists and

f(x)− f(x̄)−∇f(x̄)η(x, x̄)− f ′′(x̄, ξ(x, x̄)) ∈ K ,

where ∇f(x̄) = (∇f1(x̄), . . . ,∇fm(x̄))t and f ′′(x̄, ξ(x, x̄)) = (f ′′
1 (x̄, ξ(x, x̄)), . . . , f

′′
m(x̄, ξ(x, x̄))t.

Remark 2.2 (i) If f is a scalar valued function and K = R+, the above definition reduces to second-order invexity
introduced by Ivanov [8].

(ii) If ξ ≡ 0 then Definition 2.1 becomes the definition of K-invexity given by Yen and Sach [17].

(iii) If f is a scalar valued function, K = R+ and ξ ≡ 0 then Definition 2.1 becomes the definition of η-convexity
given by Kaul and Kaur [11].

(iv) If ξ ≡ 0 and η(x, y) = x− y, x, y ∈ S, then the above definition reduces to the definition of cone-convex
functions introduced in [5].
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To justify the introduction of second-order K-(η, ξ)-convex functions, we give an example of a function which
is second-order K-(η, ξ)-convex but not K-invex.

Example 2.3
Let S = R and K = {(x, y) : x ≥ 0, y ≥ x}. Consider the following function f : S → R2, f(x) = (f1(x), f2(x)).

f1(x) =

x2, x ≥ 0

−15

7
x2, x < 0

f2(x) =

x3 + x2, x ≥ 0

−1

2
x2, x < 0

The function f is second-order K-(η, ξ)-convex at the point x̄ = 0, where ξ(x, x̄) =
1√
2
(x− x̄) and η is an

arbitrary function. However, f is not K-invex. For instance, at x = −1

2
,

f(x)− f(x̄)−∇f(x̄)η(x, x̄) =

(
−15

28
,−1

8

)
/∈ K .

Definition 2.4
The function f is said to be second-order K-(η, ξ)-pseudoconvex at x̄ ∈ S on S if there exist vector-valued
functions η, ξ : S × S → Rn such that for all x ∈ S, the second-order directional derivative f ′′(x̄, ξ(x, x̄)) exists
and

−{∇f(x̄)η(x, x̄) + f ′′(x̄, ξ(x, x̄))} /∈ intK ⇒ −{f(x)− f(x̄)} /∈ intK .

Equivalently,
{f(x)− f(x̄)} ∈ − intK ⇒ {∇f(x̄)η(x, x̄) + f ′′(x̄, ξ (x, x̄))} ∈ − intK.

Remark 2.5 (i) If f is twice differentiable and ξ = η, then the above definition becomes the definition of a K-
second order pseudoinvex function with respect to η at x̄ for p = η(x, x̄) ∈ Rn introduced by Mishra and Lai
[14].

(ii) If ξ ≡ 0 then Definition 2.4 becomes the definition of K-pseudoinvexity introduced by Khurana [13].

(iii) If f is a scalar valued function, K = R+ and ξ ≡ 0 then Definition 2.4 reduces to the definition of η-pseudo
convexity given by Kaul and Kaur [11].

It is clear that every second-order K-(η, ξ)-convex function is K-(η, ξ)-pseudoconvex. However the converse
may not be true as shown by the following example.

Example 2.6
Let S = R and K = {(x, y) : y ≤ 0, y ≤ x}. Consider the following function f : S → R2, f(x) = (f1(x), f2(x)).

f1(x) =

{
x3 − x2, x ≥ 0

x4 − 4x2, x < 0
f2(x) =

{
x3 + 2x2, x ≥ 0

x3, x < 0

At x̄ = 0, we have

f(x)− f(x̄) ∈ − intK ⇒ x > 0 ⇒ ∇f(x̄)η(x, x̄) + f ′′(x̄, ξ(x, x̄)) ∈ − intK,

where η(x, x̄) = x̄− x2 and ξ(x, x̄) = (x− x̄)2.

Thus, f is K-(η, ξ)-pseudoconvex at x̄ = 0. However, f fails to be K-(η, ξ)-convex at x̄ = 0. If we take x =
1

2
,

f(x)− f(x̄)−∇f(x̄)η(x, x̄)− f ′′(x̄, ξ(x, x̄)) =

(
0,

3

8

)
/∈ K.
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Remark 2.7
In the above example, f is a vector-valued function which is not twice differentiable. Hence, f is not K-second
order pseudoinvex as defined by Mishra and Lai [14]. Further, if ξ ≡ 0, then f is not K-pseudoinvex in the sense
of Khurana [13]. Therefore Definition 2.4 widens the field of applications of generalized convex functions.

Definition 2.8
The function f is said to be second-order K-(η, ξ)-strictly pseudoconvex at x̄ ∈ S on S if there exist vector-valued
functions η, ξ : S × S → Rn such that for all x ∈ S, f ′′(x̄, ξ(x, x̄)) exists and

−{f(x)− f(x̄)} ∈ K ⇒ −{∇f(x̄)η(x, x̄) + f ′′(x̄, ξ (x, x̄))} ∈ intK.

Definition 2.9
The function f is said to be second-order K-(η, ξ)-quasiconvex at x̄ ∈ S on S if there exist vector-valued functions
η, ξ : S × S → Rnsuch that for all x ∈ S, f ′′(x̄, ξ(x, x̄)) exists and

{f(x)− f(x̄)} /∈ intK ⇒ −{∇f(x̄)η(x, x̄) + f ′′(x̄, ξ (x, x̄))} ∈ K.

If f is second-order K-(η, ξ)-convex (pseudoconvex, strictly pseudoconvex, quasiconvex) at every x̄ ∈ S on S then
f is said to be second-order K-(η, ξ)-convex (pseudoconvex, strictly pseudoconvex, quasiconvex) on S.

We shall study the following vector optimization problem (VOP) over cones:

(VOP) K-minimize f(x)

subject to − g(x) ∈ Q,

where f : S → Rm and g : S → Rp are differentiable functions and K ⊆ Rm, Q ⊆ Rp are closed convex cones
with nonempty interior.

Let S0 = {x ∈ S : −g(x) ∈ Q} denote the set of feasible solutions to (VOP).

Definition 2.10
Let K ⊆ Rm be a closed convex pointed cone with nonempty interior and let intK denote the interior of K. The
positive dual cone K∗ and the strict positive dual cone Ks∗ of K, are respectively defined as

K∗ = {y∗ ∈ Rm : ⟨y, y∗⟩ ≥ 0 for all y ∈ K}, and
Ks∗ = {y∗ ∈ Rm : ⟨y, y∗⟩ > 0 for all y ∈ K \ {0}}.

Definition 2.11
A point x̄ ∈ S0 is said to be

(i) a weak minimum of (VOP) if for every x ∈ S0,

f(x)− f(x̄) /∈ − intK.
(ii) a minimum of (VOP) if for every x ∈ S0,

f(x)− f(x̄) /∈ −K \ {0}.

3. Second-order necessary conditions over cones

We now prove second-order necessary optimality conditions for the problem (VOP) in terms of second-order
directional derivatives.

Theorem 3.1
Let x̄ be a weak minimum of (VOP). If f ′′(x̄, ·) is K-subconvexlike and g′′(x̄, ·) is Q-subconvexlike on Rn, then
there exist λ ∈ K∗, µ ∈ Q∗ not both zero, such that

λt(∇f(x̄)d1 + f ′′(x̄, d2)) + µt(∇g(x̄)d1 + g′′(x̄, d2)) ≥ 0 , ∀ (d1, d2) ∈ Rn ×Rn (1)
µtg(x̄) = 0 . (2)
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Proof
Let G : Rn ×Rn → Rm ×Rp be defined as

G(d1, d2) = (∇f(x̄)d1 + f ′′(x̄, d2),∇g(x̄)d1 + g′′(x̄, d2) + g(x̄)).

We assert that the system

−G(d1, d2) ∈ int(K ×Q), (3)

has no solution (d1, d2) ∈ Rn ×Rn.
If possible, let there be a solution (d̂1, d̂2) ∈ Rn ×Rn of (3). Then,

−G(d̂1, d̂2) ∈ int(K ×Q) .

That is, −{∇f(x̄)d̂1 + f ′′(x̄, d̂2)} ∈ intK,

and −{∇g(x̄)d̂1 + g′′(x̄, d̂2) + g(x̄)} ∈ intQ.

Equivalently, −[∇f(x̄)d̂1 + lim
s→0+

2

s2
{f(x̄+ sd̂2)− f(x̄)− s∇f(x̄)d̂2}] ∈ intK,

and −[∇g(x̄)d̂1 + lim
s→0+

2

s2
{g(x̄+ sd̂2)− g(x̄)− s∇g(x̄)d̂2}+ g(x̄)] ∈ intQ.

Or, −{f(x̄+ sd̂2)− f(x̄)}+ o(s) ∈ intK,

and −g(x̄+ sd̂2) + o(s) ∈ −g(x̄) + intQ,

where lim
s→0+

o(s) = 0.

Since S is a nonempty open set, we can find s0 > 0 such that for all s ∈ (0, s0),

x̄+ sd̂2 ∈ S,

−{f(x̄+ sd̂2)− f(x̄)} ∈ intK,

and −g(x̄+ sd̂2) ∈ intQ,

which is a contradiction as x̄ is a weak minimum of (VOP). Hence the system (3) has no solution (d1, d2) ∈
Rn ×Rn. Also G is K ×Q-subconvexlike on Rn ×Rn as f ′′(x̄, ·) is K-subconvexlike and g′′(x̄, ·) is Q-
subconvexlike on Rn.

Therefore by the Alternative Theorem given in Jeyakumar [10], there exist λ ∈ K∗, µ ∈ Q∗ not both zero such
that

λt(∇f(x̄)d1 + f ′′(x̄, d2)) + µt(∇g(x̄)d1 + g′′(x̄, d2) + g(x̄)) ≥ 0, ∀ (d1, d2) ∈ Rn ×Rn . (4)

Taking d1 = d2 = 0 in the above inequality, we get µtg(x̄) ≥ 0. Also, µ ∈ Q∗, −g(x̄) ∈ Q implies µtg(x̄) ≤ 0.
Thus, µtg(x̄) = 0.

Hence, from (4) we obtain

λt(∇f(x̄)d1 + f ′′(x̄, d2)) + µt(∇g(x̄)d1 + g′′(x̄, d2)) ≥ 0, ∀ (d1, d2) ∈ Rn ×Rn .

Now we give an example to illustrate the result obtained in Theorem 3.1.

Example 3.2
Let S = R2. Consider the functions f : S → R2, f(x) = (f1(x), f2(x)) and g : S → R2, g(x) = (g1(x), g2(x)).

f1(x) =

{
−x2

1 − 1, x1 ≥ 0

−2x2
2 − 1, x1 < 0

f2(x) =

{
x2
1 + x4

2 + 1, x1 ≥ 0

2x2
2 + 1, x1 < 0

g1(x) =

{
x2 − x2

1 − x3
1, x1 ≥ 0

x2 − 1
2x

2
1, x1 < 0

g2(x) =

{
x2
2 + x3

2, x1 ≥ 0

4x2
2, x1 < 0
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Clearly x̄ = (0, 0) is a weak minimum for the problem,

(VOP) K-minimize f(x)

subject to −g(x) ∈ Q,

where K = {(x1, x2) : x1 ≥ 0, x2 ≥ x1} and Q = {(x1, x2) : x1 ≤ 0, x2 ≥ 0}.
We have, for d = (α, β) ∈ R2,

f ′′(x̄, d) =

{
(−2α2, 2α2), α ≥ 0

(−4β2, 4β2), α < 0

and

g′′(x̄, d) =

{
(−2α2, 2β2), α ≥ 0

(−α2, 8β2), α < 0

It can be seen that f ′′(x̄, ·) is K-subconvexlike and g′′(x̄, ·) is Q-subconvexlike on R2.
If we take λ =

(
−1

4 ,
1
2

)
and µ =

(
0, 7

8

)
, then for all (d1, d2) ∈ R2 ×R2, we have

λt(∇f(x̄)d1 + f ′′(x̄, d2)) + µt(∇g(x̄)d1 + g′′(x̄, d2)) ≥ 0 ,

µtg(x̄) = 0 .

We now introduce the following second-order Slater-type constraint qualification over cones.

Definition 3.3
The problem (VOP) is said to satisfy second-order Slater-type cone-constraint qualification at x̄ if g is Q-(η, ξ)-
convex at x̄ and there exists x̂ ∈ S such that −g(x̂) ∈ intQ.

Theorem 3.4
Let x̄ be a weak minimum of (VOP) at which second-order Slater-type cone-constraint qualification holds. If
f ′′(x̄, ·) is K-subconvexlike and g′′(x̄, ·) is Q-subconvexlike on Rn, then there exist λ ∈ K∗ \ {0} and µ ∈ Q∗

such that (1) and (2) hold.

Proof
Since x̄ is a weak minimum of (VOP), by Theorem 3.1, there exist λ ∈ K∗, µ ∈ Q∗, not both zero, such that (1)
and (2) hold.

Since second-order Slater-type cone-constraint qualification holds at x̄, g is Q-(η, ξ)-convex at x̄ and there exists
x̂ ∈ S such that −g(x̂) ∈ intQ. We have to prove that λ ̸= 0.

Let if possible λ = 0, then µ ̸= 0 and from (1) we get

µt(∇g(x̄)d1 + g′′(x̄, d2)) ≥ 0, ∀ (d1, d2) ∈ Rn ×Rn. (5)

Also since g is Q-(η, ξ)-convex at x̄ there exist vector-valued functions η, ξ : S × S → Rn such that for all x ∈ S,
the second-order directional derivative g′′(x̄, ξ(x, x̄)) exists and

g(x)− g(x̄)−∇g(x̄)η(x, x̄)− g′′(x̄, ξ(x, x̄)) ∈ Q,

which gives, µt{g(x)− g(x̄)−∇g(x̄)η(x, x̄)− g′′(x̄, ξ(x, x̄))} ≥ 0.
Using (2) and (5) for d1 = η(x, x̄), d2 = ξ(x, x̄) in the above inequality, we get µtg(x) ≥ 0, ∀ x ∈ S, which

contradicts −g(x̂) ∈ intQ, µ ∈ Q∗, µ ̸= 0 implying µtg(x̂) < 0. Hence, λ ̸= 0.

Theorem 3.5
Let x̄ be a weak minimum of (VOP) at which second-order Slater-type cone-constraint qualification holds. If
f ′′(x̄, ·) is K-subconvexlike and g′′(x̄, ·) is Q-subconvexlike on Rn, then there exist λ ∈ K∗ \ {0} and µ ∈ Q∗

such that

λt∇f(x̄) + µt∇g(x̄) = 0, (6)
λtf ′′(x̄, d) + µtg′′(x̄, d) ≥ 0, ∀ d ∈ Rn (7)
µtg(x̄) = 0. (8)
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Proof
Since all the conditions of Theorem 3.4 hold, there exist λ ∈ K∗ \ {0} and µ ∈ Q∗ such that (1) holds along with
µtg(x̄) = 0.

Taking d2 = 0 in (1), we have

λt∇f(x̄)d1 + µt∇g(x̄)d1 ≥ 0, ∀ d1 ∈ Rn.

As the above inequality holds for all d1 ∈ Rn, we get

λt∇f(x̄) + µt∇g(x̄) = 0.

Again, taking d1 = 0 in (1), we obtain

λtf ′′(x̄, d2) + µtg′′(x̄, d2) ≥ 0, ∀ d2 ∈ Rn.

Or, λtf ′′(x̄, d) + µtg′′(x̄, d) ≥ 0, ∀ d ∈ Rn.

This completes the proof.

4. Second-order sufficient optimality conditions over cones

We now provide several second-order sufficient conditions for the existence of a weak minimum or minimum for
(VOP).

Theorem 4.1
Let f be second-order K-(η, ξ)-convex and g be second-order Q-(η, ξ)-convex at x̄ ∈ S0 on S,
where η, ξ : S × S → Rn. Suppose that there exist λ̄ ∈ K∗ \ {0} and µ̄ ∈ Q∗ such that

λ̄t(∇f(x̄)d1 + f ′′(x̄, d2)) + µ̄t(∇g(x̄)d1 + g′′(x̄, d2)) ≥ 0, ∀ d1, d2 ∈ Rn (9)
µ̄tg(x̄) = 0, (10)

then x̄ is a weak minimum of (VOP).

Proof
Assume on the contrary that x̄ is not a weak minimum of (VOP), then there exists x̂ ∈ S0 such that

f(x̄)− f(x̂) ∈ intK. (11)

Since f is K-(η, ξ)-convex at x̄ on S, we have

f(x̂)− f(x̄)−∇f(x̄)η(x̂, x̄)− f ′′(x̄, ξ(x̂, x̄)) ∈ K. (12)

Adding (11) and (12), we get −∇f(x̄)η(x̂, x̄)− f ′′(x̄, ξ(x̂, x̄)) ∈ intK.

As, λ̄ ∈ K∗ \ {0}, we obtain

λ̄t∇f(x̄)η(x̂, x̄) + λ̄tf ′′(x̄, ξ(x̂, x̄)) < 0. (13)

Similarly, g is Q-(η, ξ)-convex at x̄ on S, therefore g(x̂)− g(x̄)−∇g(x̄)η(x̂, x̄)− g′′(x̄, ξ(x̂, x̄)) ∈ Q, so that,
µ̄t{g(x̂)− g(x̄)−∇g(x̄)η(x̂, x̄)− g′′(x̄, ξ(x̂, x̄))} ≥ 0.

However, x̂ ∈ S0 and µ̄ ∈ Q∗ implies µ̄tg(x̂) ≤ 0. This together with (10) gives

µ̄t∇g(x̄)η(x̂, x̄) + µ̄tg′′(x̄, ξ(x̂, x̄)) ≤ 0. (14)

Adding (13) and (14), we get

λ̄t(∇f(x̄)η(x̂, x̄) + f ′′(x̄, ξ(x̂, x̄))) + µ̄t(∇g(x̄)η(x̂, x̄) + g′′(x̄, ξ(x̂, x̄))) < 0,

which is a contradiction to (9) for d1 = η(x̂, x̄), d2 = ξ(x̂, x̄).
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Theorem 4.2
Let f be second-order K-(η, ξ)-pseudoconvex and g be second-order Q-(η, ξ)-quasiconvex at x̄ ∈ S0 on S, where
η, ξ : S × S → Rn. Assume that there exist λ̄ ∈ K∗ \ {0} and µ̄ ∈ Q∗ such that (9) and (10) hold. Then x̄ is a weak
minimum of (VOP).

Proof
Suppose to the contrary that x̄ is not a weak minimum of (VOP), then there exists x̂ ∈ S0 such that f(x̄)− f(x̂) ∈
intK.

By second-order K-(η, ξ)-pseudoconvexity of f at x̄, we get ∇f(x̄)η(x̂, x̄) + f ′′(x̄, ξ(x̂, x̄)) ∈ − intK.
Since λ̄ ∈ K∗ \ {0}, we have

λ̄t∇f(x̄)η(x̂, x̄) + λ̄tf ′′(x̄, ξ(x̂, x̄)) < 0. (15)

Also, x̂ ∈ S0 implies µ̄tg(x̂) ≤ 0. On using (10), we get µ̄t{g(x̂)− g(x̄)} ≤ 0.

If µ̄ ̸= 0, then we have g(x̂)− g(x̄) /∈ intQ.

Again, by second-order Q-(η, ξ)-quasiconvexity of g at x̄, we obtain

∇g(x̄)η(x̂, x̄) + g′′(x̄, ξ(x̂, x̄)) ∈ −Q.

Therefore,

µ̄t∇g(x̄)η(x̂, x̄) + µ̄tg′′(x̄, ξ(x̂, x̄)) ≤ 0. (16)

If µ̄ = 0, then also (16) holds.
Now proceeding as in last part of Theorem 4.1, we arrive at a contradiction.
Hence, x̄ is a weak minimum of (VOP).

Theorem 4.3
Let f be second-order K-(η, ξ)-convex and g be second-order Q-(η, ξ)-convex at x̄ ∈ S0 on S, where η, ξ :
S × S → Rn. Suppose that there exist λ̄ ∈ Ks∗ and µ̄ ∈ Q∗ such that (9) and (10) hold. Then x̄ is a minimum
of (VOP).

Proof
Let if possible, x̄ be not a minimum of (VOP), then there exists x̂ ∈ S0 such that

f(x̄)− f(x̂) ∈ K \ {0}. (17)

As f is second-order K-(η, ξ)-convex at x̄ on S, we have

f(x̂)− f(x̄)−∇f(x̄)η(x̂, x̄)− f ′′(x̄, ξ(x̂, x̄)) ∈ K. (18)

From (17) and (18), we get

−[∇f(x̄)η(x̂, x̄) + f ′′(x̄, ξ(x̂, x̄))] ∈ K\{0}. (19)

Since λ̄ ∈ Ks∗ , we obtain
λ̄t∇f(x̄)η(x̂, x̄) + λ̄tf ′′(x̄, ξ(x̂, x̄)) < 0.

This leads to a contradiction as in Theorem 4.1. Hence x̄ is a minimum of (VOP).

Theorem 4.4
Let f be second-order K-(η, ξ)-strictly pseudoconvex ant g be second-order Q-(η, ξ)-quasiconvex at x̄ ∈ S0 on S,
where η, ξ : S × S → Rn. Assume that there exist λ̄ ∈ K∗ \ {0} and µ̄ ∈ Q∗ such that (9) and (10) hold. Then x̄
is a minimum of (VOP).
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Proof
Suppose to the contrary that x̄ is not a minimum of (VOP). Then there exists x̂ ∈ S0 such that (17) holds.

Since f is second-order K-(η, ξ)-strictly pseudoconvex at x̄ on S, therefore, we have

−[∇f(x̄)η(x̂, x̄) + f ′′(x̄, ξ(x̂, x̄))] ∈ intK.

Proceeding on the lines of Theorem 4.2, we obtain a contradiction. Hence x̄ is a minimum of (VOP).

5. Second-order Mond-Weir type duality over cones

We associate the following Mond-Weir type dual problem (VUD) with the primal problem (VOP):

(VUD) K-maximize f(y)

subject to
λt(∇f(y)d1 + f ′′(y, d2)) + µt(∇g(y)d1 + g′′(y, d2)) ≥ 0, ∀ d1, d2 ∈ Rn (20)
µtg(y) ≥ 0 (21)
y ∈ S, λ ∈ K∗\{0}, µ ∈ Q∗.

Let SD denote the set of feasible solutions of (VUD).

Theorem 5.1 (Weak Duality)
Let x ∈ S0 and (y, λ, µ) ∈ SD. Assume that f is second-order K-(η, ξ)-convex and g is second-order Q-(η, ξ)-
convex at y on S, where η, ξ : S × S → Rn. Then,

f(y)− f(x) /∈ intK.

Proof
Let if possible,

f(y)− f(x) ∈ intK. (22)

Since f is second-order K-(η, ξ)-convex at y on S, we have

f(x)− f(y)−∇f(y)η(x, y)− f ′′(y, ξ(x, y)) ∈ K. (23)

Adding (22) and (23), we get −∇f(y)η(x, y)− f ′′(y, ξ(x, y)) ∈ intK.
As, λ ∈ K∗ \ {0}, we obtain

λt∇f(y)η(x, y) + λtf ′′(y, ξ(x, y)) < 0. (24)

Also, µ ∈ Q∗ and g is second-order Q-(η, ξ)-convex at y on S, therefore

µt[g(x)− g(y)−∇g(y)η(x, y)− g′′(y, ξ(x, y))] ≥ 0. (25)

Adding (24) and (25), we have

µtg(x)− µtg(y) > λt[∇f(y)η(x, y) + f ′′(y, ξ(x, y))] + µt[∇g(y)η(x, y) + g′′(y, ξ(x, y))].

Since (y, λ, µ) ∈ SD, therefore (20) holds for d1 = η(x, y), d2 = ξ(x, y) and we get µtg(y) < µtg(x). As x ∈ S0

and µ ∈ Q∗, we have µtg(x) ≤ 0, so that µtg(y) < 0. This contradicts the feasibility of (y, λ, µ) and completes the
proof.
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Theorem 5.2 (Weak Duality)
Let x ∈ S0 and (y, λ, µ) ∈ SD. Suppose f is second-order K-(η, ξ)-pseudoconvex and g is second-order Q-(η, ξ)-
quasiconvex at y on S, where η, ξ : S × S → Rn. Then,

f(y)− f(x) /∈ intK.

Proof
The proof follows on the lines of Theorem 4.2.

Theorem 5.3 (Strong Duality)
Suppose x̄ is a weak minimum of (VOP) and second-order Slater-type cone-constraint qualification holds at
x̄. Further assume that f ′′(x̄, ·) is K-subconvexlike and g′′(x̄, ·) is Q-subconvexlike on Rn, then there exist
λ̄ ∈ K∗ \ {0}, µ̄ ∈ Q∗ such that (x̄, λ̄, µ̄) is a feasible solution of (VUD). Moreover, if the conditions of Weak
Duality Theorem 5.1 (Theorem 5.2) hold for all x ∈ S0 and (y, λ, µ) ∈ SD, then (x̄, λ̄, µ̄) is a weak maximum of
(VUD) and the objective function values for (VOP) and (VUD) are equal.

Proof
Since all the conditions of Theorem 3.4 are satisfied, therefore there exist λ̄ ∈ K∗ \ {0}, µ̄ ∈ Q∗ such that

λ̄t(∇f(x̄)d1 + f ′′(x̄, d2)) + µ̄t(∇g(x̄)d1 + g′′(x̄, d2)) ≥ 0, ∀ d1, d2 ∈ Rn,

µ̄tg(x̄) = 0 .

Thus, (x̄, λ̄, µ̄) ∈ SD and the objective function values for (VOP) and (VUD) are equal. Further if (x̄, λ̄, µ̄) is not a
weak maximum of (VUD), then there exists (y, λ, µ) ∈ SD such that

f(y)− f(x̄) ∈ intK,

which contradicts Theorem 5.1 (Theorem 5.2). Hence (x̄, λ̄, µ̄) is a weak maximum of (VUD).

6. Conclusions

In this paper, we use the idea of cones to generalize the definition of second-order invex functions given by
Ivanov [8]. The second-order optimality conditions obtained herein apply to a wider range of functions than others
in the literature. The fundamental contribution of the paper is the second-order necessary optimality conditions
which aid the search for optimal solutions of (VOP) by reducing the candidate set of solutions in the absence of
second-order differentiability.
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