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Abstract This paper is devoted to the study of optimality conditions and duality theory for a set-valued optimization
problem. By using the higher-order radial derivative of a set-valued map, we establish Fritz John and Kuhn-Tucker types
of necessary and sufficient optimality conditions for a weak minimizer of a set-valued optimization problem under the
assumption that set-valued maps in the formulation of objective and constraint maps are near cone-subconvexlike. As an
application of the optimality conditions, we prove weak, strong and converse duality theorems for Mond-Weir and Wolfe
types dual problems.
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1. Introduction

In recent years, there has been an increasing interest in the investigation of higher-order (generalized) derivatives,
higher-order optimality conditions and duality theory for set-valued optimization problems. Several kinds of
higher-order derivatives have been developed for set-valued mappings by different authors. To some extent, higher-
order derivatives in the related literatures can be divided into two categories: First, the existences of higher-
order derivatives depend on the choice of lower-order directions, for instance, higher-oder contingent (adjacent)
derivatives [1], the generalized higher-order contingent (adjacent) derivatives [2], cone-directed higher-order
contingent (adjacent) derivatives [3], higher-order generalized contingent (adjacent) epiderivatives [4], higher-order
weak epiderivatives [5], and variational sets [6, 7, 8], etc.; Second, the direction of higher-order derivatives does not
depend on lower-order direction, for example, Higher-order Studniarski derivative [9, 10, 11] enjoys this advantage.
In fact, much attention has been paid upon optimality conditions and related topics for vector optimization by using
Studniarski derivatives [9, 10, 11, 12, 13]. Another meaningful concept in this direction is radial derivative [14].
Radial derivatives take some advantages of other kinds of derivatives, and are proved to be applicable to nonconvex
problems and global optimal solutions [14, 15, 16, 17]. Recently, Anh etc. [18] made a higher-order extensions for
radial derivatives and presented optimality conditions in type of separating of sets for several kinds of efficiency
in set-valued optimization. However, the classical forms, such as: Fritz John and Kuhn-Tucker types, have not
been proposed. This is a motivation for our present work. For more recent works related to higher-order radial
derivatives, we refer the readers to [19, 20].

On the other hand, convex analysis is a powerful tool for the investigation of optimal solutions of set-valued
optimization problems. Various notions of generalized convexity have been introduced to weaken convexity. One
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of such generalizations in set-valued analysis is called cone-convexity [21], which plays a very important role in set-
valued optimization. Based upon this concept, some scholars developed further generalizations of cone-convexity
to vector optimization involving set-valued maps. For example, cone-preinvexity [22], cone-convexlikeness [23],
cone-subconvexlikeness [24], generalized cone-subconvexlikeness [25] and near cone-subconvexlikeness [25] etc.
Among these notions, the nearly cone-subconvexlikeness is more general than other generalized convexities. In
this paper, we shall take use of nearly cone-subconvexlikeness as the weaker condition on convexity assumption.

Duality assertions allow to study a minimization problem through a maximization problem and to know what
one can expect in the best case. Duality has many applications in optimization, and it has provided many unifying
conceptual insights into economics and management science. So, it is not surprising that duality is one of the
important topics in set-valued optimization. There are several papers dedicated to duality theory of set-valued
optimization by using higher-order derivatives [1, 2, 3, 4, 5]. Among results obtained in this field, Mond-Weir type
dual problems have been received much attention. In this note, we present a Wolfe tpype dual problem and prove
its duality theorems.

Based upon the above observations, this paper is focused on higher-order radial derivatives of set-valued maps
and weak minimizer of a set-valued optimization problem under weaker condition on convexity. The purpose of
this paper is two folds: first, we establish the optimality conditions for weak minimizers in Fritz John and Kuhn-
Tucker types; second, we provide an employment of optimality conditions for weak minimizers to obtain some
duality results for higher-order Mond-Weir and Wolfe types dual problems. The layout of this paper is as follows:
Section 2 contains some well-known definitions and results used in the paper. In Section 3 and Section 4, we give
the optimality conditions and duality theorems of weakly minimizers, respectively.

2. Preliminaries

Throughout the paper, it is assumed that X , Y and Z are real normed linear spaces with topological dual X∗, Y ∗

and Z∗, repectively. For any x ∈ X and x∗ ∈ X∗, the canonical form between X and X∗ is denoted by x∗Tx. We
assume A is a nonempty subset of Y , the closure of A is denoted by clA and the cone generated by A is denoted by
cone(A) = {λa : a ∈ A, λ ∈ R+}, where R+ denotes the set of nonnegative real numbers. Let D ⊂ Y and E ⊂ Z
be pointed closed convex cones, which are supposed to be solid, i.e., intD ̸= ∅ and intE ̸= ∅. We define

D∗ = {y∗ : y∗T d ≥ 0, ∀ d ∈ D},

and similarly for E∗.
Let F : X → 2Y be a set-valued mapping. The set

dom(F ) := {x ∈ X : F (x) ̸= ∅},

is called the domain of F . The set

graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}

is called the graph of the map F . For a subset M ⊂ X , we follow the convention F (M) =
∪

x∈M

F (x).

Let m ≥ 1 be an integer. Anh etc. [18] proposed the following higher-order radial derivatives:

Definition 2.1 (see [18]) Let F : X → 2Y be a set-valued map and u ∈ X . The mth-order outer radial derivative
of F at (x̄, ȳ) ∈ graph(F ) is defined as

Dm
RF (x̄, ȳ)(u) := {v ∈ Y : ∃tn > 0, un ∈ X, vn ∈ Y for ∀n

such that (un, vn) → (u, v), n → +∞ and ȳ + tmn vn ∈ F (x̄+ tnun)}.

Lemma 2.1 (see [18]) Let (x̄, ȳ) ∈ graph(F ). Then, for all x ∈ X and m ≥ 1,

F (x)− ȳ ⊂ Dm
RF (x̄, ȳ)(x− x̄).
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Remark 2.1 It is worthy mentioned that this higher-order radial derivatives does not need any convexity
assumptions. However, not all of derivatives possess this property. For example: the limit set of a set-valued
mapping (see Definition 1 in [26]) enjoys this property under additional pseudoconvexity condition.

The generalized convexity used in this paper is called nearly cone-subconvexlikeness.

Definition 2.2 (see [25]) Let M ⊂ X be a nonempty set and the set-valued mapping F : M → 2Y is said to be
near D-subconvexlike on M if cl[cone(F (M) +D)] is convex.

Remark 2.2 The notion of nearly cone-subconvexlikeness includes various known generalizations of convexity
given in the literatures as special cases, for example, cone-preinvexity [22], cone-convexlikeness [23], cone-
subconvexlikeness [23] and generalized cone-subconvexlikeness [24], etc.

The following conclusion is the alternative theorem for near D-subconvexlike set-valued map, which is
necessary for the results in the next section.

Lemma 2.2 (see [25]) Let M ⊂ X be a nonempty set and F : M → 2Y . Suppose that F is near D-subconvexlike
map on M . Then exactly one of the following conclusions holds:

(i) ∃ x ∈ M such that F (x) ∩ (−intD) ̸= ∅,
(ii) ∃ y∗ ∈ D∗\{0} such that y∗T y ≥ 0, ∀ y ∈ F (x), ∀x ∈ M .

Let S ⊂ X be a nonempty set, F : S → 2Y and G : S → 2Z be two set-valued maps and we assume that

domF = domG = S.

For x ∈ X , we use the notation (F ×G)(x) to denote (F (x), G(x)). We consider the following set-valued
optimization problem:

(SOP)


minimize F (x)

subject to G(x) ∩ (−E) ̸= ∅,
x ∈ S,

The feasible set of problem (SOP) is denoted by Ω :=
{
x ∈ S : G(x) ∩ (−E) ̸= ∅

}
.

Definition 2.3 (see [18]) Let (x̄, ȳ) ∈ graph(F ) with x̄ ∈ S. (x̄, ȳ) is said to be a weak minimizer of problem (SOP)
if (

F (S)− ȳ
)
∩ −intD = ∅.

3. Higher order optimality conditions

In this section, we establish higher-order necessary and sufficient optimality conditions in Fritz John and Kuhn-
Tucker types of weak minimizers to problem (SOP). To begin we present a necessary optimality condition in Fritz
John type for a weak minimizer of (SOP).

Theorem 3.1 Let (x̄, ȳ) ∈ graph(F ) and z̄ ∈ G(x̄) ∩ (−E). Suppose that (x̄, ȳ) is a weak minimizer of (SOP) and
(F − ȳ)×G is near D × E-subconvexlike. Then, there exists (y∗, z∗) ∈ (D∗ × E∗)\{(0Y ∗ , 0Z∗)} such that for all
(y, z) ∈ Dm

R (F ×G)(x̄, ȳ, z̄)(x), x ∈ domDm
R (F ×G)(x̄, ȳ, z̄),

y∗T y + z∗T z ≥ 0,

and
z∗T z̄ = 0.
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Proof Since (x̄, ȳ) is a weak minimizer of (SOP), we get that(
(F ×G)(S)− (ȳ, 0)

)
∩ −int(D × E) = ∅.

Since (F − ȳ)×G is near D × E-subconvexlike map on S, it follows from Lemma 2.2 that there exists (y∗, z∗) ∈
(D∗ × E∗)\{(0Y ∗ , 0Z∗)} such that

y∗T (y − ȳ) + z∗T z ≥ 0, ∀ (y, z) ∈ (F ×G)(S).

Taking y = ȳ and z = z̄, we obtain z∗T z̄ ≥ 0. Then, it follows from z∗T z̄ ≤ 0 (because z̄ ∈ −E) that z∗T z̄ = 0.
So,

y∗T (y − ȳ) + z∗T (z − z̄) ≥ 0, ∀ (y, z) ∈ (F ×G)(S).

On the other hand, let (y, z) ∈ Dm
R

(
F ×G

)
(x̄, ȳ, z̄)(x) for x ∈ domDm

R

(
F ×G

)
(x̄, ȳ, z̄), then there exist {tn}

with tn > 0 and {(xn, yn, zn)} in X × Y × Z with (xn, yn, zn) → (x, y, z) such that

(ȳ, z̄) + tmn (yn, zn) ∈
(
F ×G

)
(x̄+ tnxn).

Thus, x̄n := x̄+ tnxn ∈ dom
(
F ×G

)
and there are (ȳn, z̄n) ∈

(
F ×G

)
(x̄n) such that

(ȳ, z̄) + tmn (yn, zn) = (ȳn, z̄n).

Noticing that (yn, zn) → (y, z), we obtain that

ȳn − ȳ

tmn
→ y

and
z̄n − z̄

tmn
→ z.

So, for large enough n, we have

y∗T
( ȳn − ȳ

tmn

)
+ z∗T

( z̄n − z̄

tmn

)
≥ 0.

Taking n → +∞, we obtain that y∗T y + z∗T z ≥ 0. This completes the proof.

Next, we establish a necessary optimality condition in Kuhn-Tucker type. It is derived from Theorem 3.1 by
adding the following constraint qualification on the mapping G in (SOP), that is

cl
(
cone(G(S) + E)

)
= Z.

This condition has been used by several authors, for instance: [27, 28]

Theorem 3.2 Let (x̄, ȳ) ∈ graph(F ), z̄ ∈ G(x̄) ∩ (−E) and (F − ȳ)×G be near D × E-subconvexlike on S.
Suppose that (x̄, ȳ) is a weak minimizer of (SOP) and cl

(
cone(G(S) + E)

)
= Z. Then, there exist y∗\{0Y ∗}

and z∗ ∈ E∗ such that for all (y, z) ∈ Dm
R (F ×G)(x̄, ȳ, z̄)(x), x ∈ domDm

R (F ×G)(x̄, ȳ, z̄),

y∗T y + z∗T z ≥ 0

and
z∗T z̄ = 0.

Proof It follows from Theorem 3.1 that there exists (y∗, z∗) ∈ (D∗ × E∗)\{(0Y ∗ , 0Z∗)} such that for all (y, z) ∈
Dm

R (F ×G)(x̄, ȳ, z̄)(x), x ∈ domDm
R (F ×G)(x̄, ȳ, z̄), y∗T y + z∗T z ≥ 0 and z∗T z̄ = 0. So, it suffices to prove

y∗ ̸= 0. From the proof of Theorem 3.1, we get

y∗T (y − ȳ) + z∗T z ≥ 0, ∀ (y, z) ∈ (F ×G)(S).
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Suppose that y∗ = 0. Then z∗ ̸= 0 and z∗T z ≥ 0. On the other hand, it is obviously that z∗T e ≥ 0 for all e ∈ E.
Noticing that z∗ is a continuous linear functional, we get

z∗T z′ ≥ 0, ∀z′ ∈ cl
(
cone(G(S) + E)

)
= Z.

Thus z∗ = 0, which is impossible, because (y∗, z∗) ̸= (0Y ∗ , 0Z∗).

To end this section, we present the following sufficient optimality conditions for a weak minimizer of (SOP).
This result and Theorem 3.2 will be applied to the proofs of duality theorems in next section.

Theorem 3.3 Let (x̄, ȳ) ∈ graph(F ) and z̄ ∈ G(x̄) ∩ (−E). Suppose that there exist m ≥ 1, y∗ ∈ D∗\{0} and
z∗ ∈ E∗ such that

y∗T y + z∗T z ≥ 0, (y, z) ∈ Dm
R

(
F ×G

)
(x̄, ȳ, z̄)(x), x ∈ domDm

R

(
F ×G

)
(x̄, ȳ, z̄),

and
z∗T z̄ = 0.

Then, (x̄, ȳ) is a weak minimizer of (SOP).

Proof Suppose that (x̄, ȳ) is not a weak minimizer of (SOP). Then there is x ∈ Ω such that(
F (x)− ȳ

)
∩ (−intD) ̸= ∅.

Hence, there is y ∈ F (x) and z ∈ G(x) ∩ (−E) such that

y − ȳ ∈ −intD.

Noticing that y∗ ∈ D∗\{0}, we get that
y∗T (y − ȳ) < 0.

On the other hand, it yields from Lemma 2.1 that

(F ×G)(x)− (ȳ, z̄) ⊂ Dm
R

(
F ×G

)
(x̄, ȳ, z̄)(x).

Hence, we get that
y∗T (y − ȳ) + z∗T (z − z̄) ≥ 0.

Furthermore, it implies
y∗T (y − ȳ) ≥ −z∗T (z − z̄) = −z∗T z ≥ 0,

which is a contradiction.

4. Duality Theorems

4.1. Mond-Weir Type Duality

In this subsection, for the primal problem (SOP) we consider a higher-order Mond-Weir type dual problem. Let
(x′, y′) ∈ graph(F ) and z′ ∈ G(x′) ∩ −E. Considering the following Mond-Weir dual problem (MWD):

(MWD)



max y′

s. t. y∗T y + z∗T z ≥ 0, ∀ (y, z) ∈ Dm
R (F ×G)

(
x′, y′, z′

)
(x),

∀ x ∈ domDm
R

(
F ×G

)
(x′, y′, z′)

z∗T z′ ≥ 0,

(y∗, z∗) ∈ (D∗\{0Y ∗})× E∗.
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Denote by K1 the set of all feasible points of (MWD), i.e. the set of points (x′, y′, z′, y∗, z∗) satisfying all the
constraints of (MWD). Let W1 := {y′ ∈ F (x′) : (x′, y′, z′, y∗, z∗) ∈ K1}.

Definition 4.1.1 A feasible point (x′, y′, z′, y∗, z∗) of the problem (MWD) is said to be a weak maximizer of
(MWD) if

(W1 − y′) ∩ int(D) = ∅.
We begin with presenting the following weak duality theorem between (MWD) and (SOP).

Theorem 4.1.1 (Weak Duality) Let (x′, y′) ∈ graph(F ) and z′ ∈ G(x′) ∩ −E. Suppose that (x̄, ȳ) is a feasible
solution of (SOP) and (x′, y′, z′, y∗, z∗) is a feasible solution of (MWD). Then

ȳ − y′ /∈ −int(D).

Proof We prove it by contradiction. Suppose

ȳ − y′ ∈ −int(D).

We derive from y∗ ∈ D∗\{0} that
y∗T (ȳ − y′) < 0.

For the feasible solution (x̄, ȳ) of (SOP), we get from Lemma 2.1 that(
(F ×G)(x̄)− (y′, z′)

)
⊂ Dm

R (F ×G)
(
x′, y′, z′

)
(x̄− x′).

Since G(x̄) ∩ −E ̸= ∅, taking z̄ ∈ G(x̄) ∩ −E, we obtain from the constraint z∗ ∈ E∗ that

z∗T z̄ ≤ 0.

Therefore, due to the constraint z∗T z′ ≥ 0 (the second constraint condition in (MWD)), we have that

z∗T (z̄ − z′) ≤ 0.

Furthermore, it yields from the first constraint of (MWD) that

y∗T (ȳ − y′) + z∗T (z̄ − z′) ≥ 0.

So, we get
y∗T (ȳ − y′) ≥ 0.

This is a contradiction.

Theorem 4.1.2 (Strong duality) Let (x̄, ȳ) ∈ graph(F ) and z̄ ∈ G(x̄) ∩ (−E) and (F − ȳ)×G be near D × E-
subconvexlike on S. Suppose that (x̄, ȳ) is a weak minimizer of (SOP) and cl

(
cone(G(S) + E)

)
= Z. Then there

exists y∗ ∈ D∗\{0} and z∗ ∈ E∗ such that (x̄, ȳ, z̄, y∗, z∗) is a feasible solution of (MWD). Furthermore, if the
Weak Duality Theorem 4.1.1 holds, then (x̄, ȳ, z̄, y∗, z∗) is a weak maximizer of (MWD).

Proof Firstly, by Theorem 3.2, there are y∗ ∈ D∗\{0} and z∗ ∈ E∗ such that (x̄, ȳ, z̄, y∗, z∗) is a feasible solution
of (MWD). We only need to prove that (x̄, ȳ, z̄, y∗, z∗) is a weak maximizer of (MWD). We prove this by
contradiction. If there exists a feasible solution (x0, y0, z0, y

∗
0 , z

∗
0) of (MWD) such that

y0 − ȳ ∈ intD,

then
ȳ − y0 ∈ −intD,

which contradicts the Weak Duality Theorem 4.1.1.

Theorem 4.1.3 (Converse duality) Let (x′, y′) ∈ graph(F ) and z′ ∈ G(x′) ∩ (−E). If there exists y∗ ∈ D∗\{0}
and z∗ ∈ E∗ such that (x′, y′, z′, y∗, z∗) is a feasible solution of (MWD), then (x′, y′) is a weak minimizer of (SOP).

Proof It can be proved directly by utilizing Theorem 3.3.
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4.2. Wolfe Type Duality

Let us fix a point d0 ∈ D\{0}. Suppose that (x′, y′) ∈ graph(F ) and z′ ∈ G(x′) ∩ −E. Considering the following
problem (WD), which is called Wolfe type dual problem of (SOP):

(WD)



max y′ + z∗T z′ · d0
s. t. y∗T y + z∗T z ≥ 0, ∀ (y, z) ∈ Dm

R (F ×G)
(
x′, y′, z′

)
(x),

∀ x ∈ domDm
R

(
F ×G

)
(x′, y′, z′)

y∗T d0 = 1,

(y∗, z∗) ∈ (D∗\{0Y ∗})× E∗.

Denote by K2 the set of all feasible points of (WD), i.e. the set of points (x′, y′, z′, y∗, z∗) satisfying all the
constraints of Problem (WD). Let W2 = {y′ + z∗T z′ · d0 : (x′, y′, z′, y∗, z∗) ∈ K2}.

Definition 4.2.1 A feasible point (x′, y′, z′, y∗, z∗) of the problem (WD) is said to be a weak maximizer of (WD) if(
W2 − (y′ + z∗T z′ · d0)

)
∩ int(D) = ∅.

Theorem 4.2.1 (Weak Duality) Let (x′, y′) ∈ graph(F ) and z′ ∈ G(x′) ∩ −E. Suppose that (x̄, ȳ) and
(x′, y′, z′, y∗, z∗) be feasible points for (SOP) and (WD), respectively. Then

ȳ − y′ − z∗T z′ · d0 /∈ −intD.

Proof Firstly, since x̄ ∈ S and G(x̄) ∩ (−E) ̸= ∅, we get from Lemma 2.1 that(
(F ×G)(x̄)− (y′, z′)

)
⊂ Dm

R (F ×G)
(
x′, y′, z′

)
(x̄− x′).

Taking z̄ ∈ G(x̄) ∩ (−E), it follows from the first constraint of problem (WD) that

y∗T (ȳ − y′) + z∗T (z̄ − z′) ≥ 0.

Suppose
ȳ − (y′ + z∗T z′ · d0) ∈ −intD.

Because z∗T z̄ ≤ 0, we get that z∗T z̄ · d0 ∈ −D and

ȳ + z∗T z̄ · d0 − (y′ + z∗T z′ · d0) ∈ −D − intD ⊂ −intD.

Noticing that y∗ ∈ D∗\{0Y ∗} and y∗T d0 = 1, we have

y∗T (ȳ − y′) + z∗T (z̄ − z′) < 0,

which is a contradiction. Thus, we obtain ȳ − y′ − z∗T z′ · d0 /∈ −int(D).

Theorem 4.2.2 (Strong duality) Let (x̄, ȳ) ∈ graph(F ) and z̄ ∈ G(x̄) ∩ (−E). Suppose that (x̄, ȳ) is a weak
minimizer of (SOP) and that for some (y∗, z∗) ∈ (D∗\{0})× E∗ with y∗T d0 = 1 such that for all (y, z) ∈
Dm

R (F ×G)(x̄, ȳ, z̄)(x), x ∈ domDm
R (F ×G)(x̄, ȳ, z̄),

y∗T y + z∗T z ≥ 0,

and
z∗T z̄ = 0.

Then, (x̄, ȳ, z̄, y∗, z∗) is a feasible solution for (WD). Furthermore, if the Weak Duality Theorem 4.2.1 holds, then
(x̄, ȳ, z̄, y∗, z∗) is a weak maximizer of (WD).
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Proof It is obviously that (x̄, ȳ, z̄, y∗, z∗) is a feasible solution of (WD) and

z∗T z̄ = 0.

Next, we show that
(W2 − ȳ − z∗T z̄ · d0) ∩ intD = ∅.

Let (x′, y′, z′, y∗1 , z
∗
1) be a feasible solution for (WD) such that

y′ + z∗T1 z′ · d0 ∈ (W2 − ȳ − z∗T z̄ · d0) ∩ intD.

It yields from z∗T z̄ = 0 that
y′ + z∗T1 z′ · d0 ∈ (W2 − ȳ) ∩ int(D).

Therefore,
y′ + z∗T1 z′ · d0 − ȳ ∈ int(D).

This contradicts the Weak Duality Theorem 4.2.1.

Theorem 4.2.3 (Converse duality) Let (x′, y′) ∈ graph(F ) and z′ ∈ G(x′) ∩ (−E). If there exists y∗ ∈ D∗\{0}
and z∗ ∈ E∗ such that (x′, y′, z′, y∗, z∗) is a feasible solution of (MWD) and z∗T z′ = 0, then (x′, y′) is a weak
minimizer of (SOP).

Proof It can be proved directly by using Theorem 3.3.
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