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Abstract In this paper, we study a ℓ1-norm regularized minimization method for sparse solution recovery in compressed
sensing and X-ray CT image reconstruction. In the proposed method, an alternating minimization algorithm is employed to
solve the involved ℓ1-norm regularized minimization problem. Under some suitable conditions, the proposed algorithm is
shown to be globally convergent. Numerical results indicate that the presented method is effective and promising.
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1. Introduction

In this paper, we mainly focus on the following ℓ1-norm regularized minimization problem

min
x∈Rn

1

2
∥Ax− b∥22 + λ∥x∥1, (1)

where A ∈ Rm×n(m ≪ n) is a linear operator, and b ∈ Rm is an observation, parameter λ > 0 is used to trade
off ℓ2 term and ℓ1 term for minimization. The above problem (1) is well-known as the unconstrained basis pursuit
denoising problem.

Up to now, numerous approaches have been proposed and analyzed for solving the aforementioned problem (1)
[7, 12, 23, 25]. Figueiredo et.al presented a GPSR [12] method, in which the ℓ1 problem (1) was reformulated as a
box-constrained quadratic program and was minimization by the Barzilai-Borwein gradient projection method [1]
with an efficient nonmonotone line search. Iterative shrinkage-thresholding algorithm (ISTA) is one of the most
widely studied methods for solving problem (1), which was first proposed for wavelet-based image deconvolution
[13, 18], and then was applied to many other filed [10, 11, 21, 22]. Using operator splitting, Hale, Yin and Zhang
derived the iterative shrinkage-thresholding fixed point continuation algorithm (FPC)[16, 17]. Another similar
method is the sparse reconstruction algorithm SpaRSA, which was proposed by Wright, Nowak and Figueiredo
in [24]. Recently, Beck and Teboulle proposed a FISTA algorithm with O(1/k2) convergence rate [4]. In [25],
Yin, Osher, Goldfarb and Darbon proposed a Bregman iterative regularization method to solving the problem
(1). Furthermore, a linearized Bregman method was proposed and analyzed subsequently in [7, 8, 26]. Using
the spectral gradient projection method with an efficient Euclidean projection on ℓ1-norm ball, Friedlander and
Van den Berg [27] proposed a SPGL1 method for problem (1). Becker, Bobin and Candès [3] proposed a NESTA
algorithm based on the Nesterov’s smoothing technique to solve the problem (1). Moreover, an alternating direction
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algorithms for ℓ1-norm regularized minimization problem were proposed, which was derived from either the primal
or the dual form of ℓ1-norm problem [28].

In this paper, based on the variable splitting scheme [14, 20], we present the following ℓ1-norm regularized
minimization model:

min
x,y∈Rn

1

2
∥Ax− b∥22 + λ∥u∥1, (2)

s.t. ∥x− u∥22 ≤ ε.

It is clear that the constrained problem (2) will reduce to (1) when ε = 0. However, in general, the constrained
problem (2) is a strict inequality constrained problem for the effect of noise. The parameter ε > 0 is the standard
deviation of additive noise. The above constrained problem can be transformed into an unconstrained problem as
follows:

min
x,u∈Rn

J (x, u) = min
x,u∈Rn

1

2λ1
∥Ax− b∥22 +

1

2λ2
∥u− x∥22 + ∥u∥1, (3)

where λ1 and λ2 are positive regularization parameters. In fact, this variable splitting method has been proposed in
image restoration [15], where the authors proposed a fast TV minimization method for image restoration.

For the problem (3), as we can see that, if we fixed u, it is a smooth quadratic optimization problem and if
we fixed x, the optimization problem on u has a closed form that it can be explicitly calculated by Iterative
Shrinkage/Thresholding Algorithm.

The rest of this paper is organized as follows. In Section 2, the alternating minimization algorithm is developed
to solve the proposed ℓ1-norm minimization problem (3) and its global convergence of the iterative algorithm is
established under some suitable conditions. In Section 3, numerical examples are presented to demonstrate the
effectiveness of the proposed model. Finally, we have a conclusion section.

2. Optimization algorithm

In this section, we present a variable splitting method (VSM) to solve the problem (3). Starting from an initial
guess u0, this method yields a sequence

u0 → x1 → u1 → x2 → u2 → · · · → xk → uk · · ·

such that 
SA(uk−1) := xk = argminxf(x) = argminx

1

2λ1
∥Ax− b∥22 +

1

2λ2
∥uk−1 − x∥22, (4a)

Sℓ1(xk) := uk = argminug(u) = argminu
1

2λ2
∥u− xk∥22 + ∥u∥1. (4b)

Then, we can obtain that
uk = Sℓ1(SA(uk−1)).

Let T (·) = Sℓ1(SA(·)), then
uk = T (uk−1). (5)

2.1. Minimization with respect to x

The subproblem (4a) is a quadratic convex optimization problem, which is equivalent to solving a linear system:

(ATA+
λ1

λ2
I)x = AT b+

λ1

λ2
u, (6)

where (ATA+ λ1

λ2
I) is a symmetric positive definite matrix.
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In this paper, the conjugate gradient method was utilized to solve (4a). The iterative scheme is as follows:

xk+1 = xk + αkdk,

where αk = argminαf(xk + αdk), dk is the conjugate gradient direction,

dk =

{
−∇f(xk) if k = 0,

−∇f(xk) + βkdk−1 otherwise.

where βk =
∇f(xk)

T yk−1

dT
k−1yk−1

, yk−1 = ∇f(xk)−∇f(xk−1).

Remark: The optimal step size can be determined by

αk =
λ2(Adk)

T b+ λ1d
T
k uk − λ2(Adk)

TAxk − λ1d
T
k xk

λ2(Adk)TAdk + λ1dTk dk
.

2.2. Minimization with respect to u

Since u is separable in the subproblem (4b), each of its components can be independently obtained by the shrinkage
operator in [9], i.e.,

ui
k = max{xi

k − λ2, 0}sgn(xi
k), i = 1, 2, · · · , n (7)

where ui
k is the ith component of the uk.

2.3. Convergence analysis

This section is devoted to analysis the convergence of the poposd algorithm for (3). First, let us give some
definitions.

Definition 1
An operator P is called nonexpansive if, for any x1, x2 ∈ RN , we have

∥P(x1)− P(x2)∥ ≤ ∥x1 − x2∥.

If there exists some nonexpansive operator A and κ ∈ (0, 1) such that P = (1− κ)I + κA, then P is called κ-
averaged nonexpansive.

In the following, we give the Lemma 2.4 in [6].

Lemma 1
Let φ be convex and semicontinuous and β > 0. Suppose û is defined as follows:

û = argminu∥u− x∥22 + βφ(u).

Define S such that û = S(x) for each x, Then S is 1
2 -averaged nonexpansive.

It is known that ∥u∥1 is convex and semicontinuous function. By Lemma 1, we can derive that Sℓ1 is 1
2 -averaged

nonexpansive.

Lemma 2
The operator T defined in (5) is nonexpansive.

Proof: Since ATA+ λ1

λ2
I is symmetric positive definite and its eigenvalues are larger than λ1

λ2
, then for any u, v

∥λ2

λ1
(ATA+

λ1

λ2
I)−1(u− v)∥2 ≤ ∥u− v∥2.
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Therefore,

∥T (u)− T (v)∥2 = ∥Sℓ1(SA(u))− Sℓ1(SA(v))∥
≤ ∥SA(u)− SA(v)∥2

= ∥(ATA+
λ1

λ2
I)−1(AT b+

λ1

λ2
u)− (ATA+

λ1

λ2
I)−1(AT b+

λ1

λ2
v)∥2

= ∥λ2

λ1
(ATA+

λ1

λ2
I)−1(u− v)∥

≤ ∥u− v∥2. (8)

The result follows. 2

Definition 2
Let C be a convex closed set in Banach space X , a mapping F : C → C is asymptotically regular if, for any x ∈ C,

lim
n→∞

∥Fn+1(x)− Fn(x)∥2 = 0.

Lemma 3
Let {uk} be generated by (5), then we have

lim
k→∞

∥uk+1 − uk∥2 = 0.

Proof: We consider the Taylor series expansion of J (x, uk) in the first variable, and we have

J (xk, uk) = J (xk+1, uk) + (xk − xk+1)
T ∂J
∂x

(xk+1, uk)

+
1

2
(xk − xk+1)

T ∂2J
∂x2

(xk − xk+1). (9)

Since xk+1 = argminJ (x, uk), it holds that

∂J
∂x

(xk+1, uk) = 0,

and
∂2J
∂x2

(xk+1, uk) = ATA+
λ1

λ2
I.

As (ATA+ λ1

λ2
I) is symmetric positive definite and its eigenvalues are larger than λ1

λ2
, then we can obtain that

J (xk, uk)− J (xk+1, uk) =
1

2
(xk − xk+1)

T (ATA+
λ1

λ2
I)(xk − xk+1)

≥ λ1

λ2
∥xk − xk+1∥22. (10)

Since uk+1 = argminJ (xk+1, u), then J (xk+1, uk+1) ≤ J (xk+1, uk), therefore,

J (xk, uk)− J (xk+1, uk+1) ≥ J (xk, uk)− J (xk+1, uk)

≥ λ1

λ2
∥xk − xk+1∥22. (11)

Since Sℓ1 is nonexpansive, by Lemma 1, we have that

∥xk − xk+1∥22 ≥ ∥Sℓ1(xk)− Sℓ1(xk+1)∥2 = ∥uk − uk+1∥22.
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Hence, we obtain that

J (xk, uk)− J (xk+1, uk+1) ≥
λ1

λ2
∥uk − uk+1∥22.

It follows that
∑∞

k=0 ∥uk − uk+1∥22 is bounded, and follows that limk→∞ ∥uk+1 − uk∥2 = 0. 2

Taking the Lemma 3 into account, we can prove that the operator T is asymptotically regular.

Lemma 4
For any initial guess u0, suppose uk is generated by (5); then T is asymptotically regular, i.e.,

lim
k→∞

∥T k+1(u0)− T k(u0)∥2 = lim
k→∞

∥T k(u1)− T k−1(u1)∥2

...
= lim

k→∞
∥T (uk)− T (uk−1)∥2

= lim
k→∞

∥uk+1 − uk∥2

= 0. (12)

To proof the set of the minimum of J (x, u) is nonempty, we shall show the coerciveness of J .

Definition 3
A function ϕ : RN → R is proper over a set X ⊂ RN if ϕ(x) < ∞ at least one x ∈ X and ϕ(x) > −∞ for
all x ∈ X . A function ϕ : RN → R is coercive over a set X ⊂ RN if for every sequence {xk} ∈ X such that
∥xk∥ → ∞, we have limk→∞ ϕ(x) → ∞.

Lemma 5
The function J (x, u) defined in (3) is coercive.

Proof:

J (x, u) =
1

2λ1
∥Ax− b∥22 +

1

2λ2
∥u− x∥22 + ∥u∥1

≥ 1

2λ1
∥Ax− b∥22 +

1

2λ2
∥u− x∥22 + ∥u∥2

=
1

2

∥∥∥∥∥
(

1√
λ1
A O

1√
λ2
I − 1√

λ2
I

)(
x
u

)
−
(

b
0

)∥∥∥∥∥
2

2

+

∥∥∥∥( 0 I
)( x

u

)∥∥∥∥
2

. (13)

Using the matrix factorization, we note that 1√
λ1
A O

1√
λ2
I − 1√

λ2
I

0 I

 =

 I O O
O I O
O −

√
2λ2I I

 A√
λ1

O
1√
λ2
I − 1√

λ2
I

I O

 .

It is obvious that the above matrix is full rank as Null(A) ∩ Null(I)=∅. In fact, Null(A) ∩ Null(I)={0}, and 0 is not

taken into consideration in practice. therefore, when
∥∥∥∥( x

u

)∥∥∥∥
2

→ ∞, we have J (x, u) → ∞. The result follows

. 2

Lemma 6
The the set of fixed points of T is nonempty.

Proof:Since the objective function J is coercive, the set of minimizers of J is nonempty. Assume that (x∗, u∗)
is a minimizer of J (x, u), i.e.,

∂J
∂x

(x∗, u∗) = 0,
∂J
∂x

(x∗, u∗) = 0.
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And {
x∗ = SA(u

∗) = argminJ (·, u∗),
u∗ = Sℓ1(x

∗) = argminJ (x∗, ·).

Hence we get u∗ = Sℓ1(SA(u
∗)) = T (u∗), and u∗ is a fixed point of T . The result follows. 2

We remark that the objective function J in (3) is strictly convex as A is a matrix of full column rank, Therefore,
a fixed point of T is also a global minimizer of J . According to the Opial theorem [19], the sequence {uk}
converges to a fixed point of J , i.e., a minimizer of J .

Theorem 1
For any initial guess u0 ∈ Rn, suppose {uk} is generated by (5), and uk converges to a stationary point of J .

3. Numerical experiments

In this section, we test the performance of the variable splitting method for the ℓ1-norm regularized minimization
problem with application to computed tomography (CT) image reconstruction and compressed sensing.

All the programs were coded in MATLAB R2007a and run on a personal computer with an Intel Core 2 Duo
CPU at 2.5 GHz and 2GB of memory.

3.1. Compressed sensing problem

In this subsection, the SVM algorithm was applied to solve the compressed sensing with comparison to FISTA
method. In the numerical test, the original sparse signal xs and the matrix A are randomly generated, and
the observation b is generated according to b=A*xs+ sigma*randn(m,1), where sigma is the standard
deviation of additive Gaussian noise. Let k denote the number of nonzero components in xs. The stopping criterion
was adopted as follows:

∥xk+1 − xk∥
∥xk+1∥

< 5× 10−3,

where {xk} is the sequence generated by the test algorithms. And we measure the quality of recovered signal by
its mean square error (MSE), i.e.,

MSE =
∥x− x∗∥

n
,

where x is the signal restored by certain algorithm, x∗ is the original signal, n is the length of the signal.
The value of the objective function (log10(fun)) and MSE are given in Table 1 and Table 2, respectively. Figure

1 and Figure 3 show the restored signal by FISTA algorithm and SVM algorithm, respectively. Figure 2 and Figure
4 show the objective function value and MSE vs the iteration numbers, respectively. The results indicate that the
VSM algorithm outperforms FISTA algorithm.

Table 1. Comparison results in CS (sigma=0.01).
n=2048 FISTA VSM

i (m/n) j (k/m) iter log10(fun) MSE iter log10(fun) MSE
0.3 0.1 232.000 2.515 2.312e-004 90.000 2.516 2.356e-005
0.3 0.2 195.000 2.963 1.315e-002 158.000 2.903 2.063e-006
0.2 0.1 260.000 2.225 1.104e-003 108.000 2.192 9.684e-006
0.2 0.2 203.000 2.703 1.016e-002 165.000 2.653 2.236e-004
0.1 0.1 278.000 1.785 4.486e-004 121.000 1.768 5.094e-006
0.1 0.2 207.000 2.197 9.346e-003 149.000 2.183 5.007e-003
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Figure 1. The original signal (top), the measurement (second), and the reconstructed signals by FISTA (third) and VSM
(bottom).
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Figure 2. Function value vs. iteration (left) and MSE vs. iteration (right) for FISTA and VSM.

Table 2. Comparison results in CS (sigma=0.05).
n=2048 FISTA VSM

i (m/n) j (k/m) iter log10(fun) MSE iter log10(fun) MSE
0.3 0.1 232.000 2.673 8.374e-005 94.000 2.692 4.676e-005
0.3 0.2 201.000 2.985 1.054e-002 147.000 2.933 4.523e-006
0.2 0.1 262.000 2.302 2.216e-004 105.000 2.307 1.405e-005
0.2 0.2 209.000 2.771 9.721e-003 177.000 2.731 1.105e-004
0.1 0.1 266.000 1.961 3.048e-004 124.000 1.958 6.486e-006
0.1 0.2 206.000 2.131 7.515e-003 145.000 2.119 4.442e-003
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Figure 3. The original signal (top), the measurement (second), and the reconstructed signals by FISTA (third) and VSM
(bottom).
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Figure 4. Function value vs. iteration (left) and MSE vs. iteration (right) for FISTA and VSM.

3.2. Sparse-view X-ray CT image reconstruction

To validate and evaluate the performance of the SVM method, in this subsection, a modified digital Shepp-Logan
phantom (Figure 5) was used in the experiments. In this subsection, the total variation regularization was used
in (3) for sparse-view X-ray CT image reconstruction, the (4b) is solved by Chambolle’s algorithm [5]. For the
CT projection simulation, we chose a geometry that was representative of a monoenergetic fan-beam CT scanner
setup. This geometry was modeled with 672 bins on a 1-D detector for 2-D image reconstruction, and projection
data with 25 projection numbers of views was simulated at equal angular increment on 360 around the phantom.
The imaging parameters of the CT scanner were as follows: (1) the distance from the detector arrays to the x-ray
source was 1040 mm; (2) the distance from the rotation center to the x-ray source was 570 mm; (3) and the space

Stat., Optim. Inf. Comput. Vol. 4, March 2016



A SPLITTING-BASED ITERATIVE METHOD FOR SPARSE RECONSTRUCTION 65

30

40

50

60

70

80

90

Figure 5. A modified digital Shepp-Logan phantom.
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Figure 6. Images reconstructed by FBP and SVM algorithms from 25-view projections.

of each detector bin was 1.407 mm. Each phantom is composed by 512 × 512 square pixels with each pixel size
of 1.25 mm × 1.25 mm.

The results from the 25-view projection data in the noise-free and noisy cases are shown in Fig. 6. Serious noise-
induced streak artifacts can be observed in the images reconstructed by the FBP method with ramp filter. The SVM
algorithm can yield accurate reconstructions from spare-view projection data.
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4. Conclusion

In this paper, we presented a splitting-based iterative method for sparse solution recovery in compressed sensing
and X-ray CT image reconstruction. The numerical experiment results show that the proposed method is effective
and promising.
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