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Abstract This paper deals with mainly establishing numerous sets of generalized second-order parametric sufficient
optimality conditions for a semiinfinite discrete minmax fractional programming problem, while the results on semiinfinite
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1. Introduction and Preliminaries

Here in this paper, we plan to establish several sets of generalized parametric sufficient optimality conditions
under various generalized (F , β, ϕ, ρ, θ,m)-univexity assumptions for the following semiinfinite discrete minmax
fractional programming problem of the form:

(P ) Minimize max
1≤i≤p

fi(x)

gi(x)

subject to
Gj(x, t) ≤ 0 for all t ∈ Tj , j ∈ q,

Hk(x, s) = 0 for all s ∈ Sk, k ∈ r,

x ∈ X,

where X is an open convex subset of Rn, the n-dimensional Euclidean space, for each j ∈ q ≡ {1, 2, . . . , q} and
k ∈ r, Tj and Sk are compact subsets of complete metric spaces, for each i ∈ p, fi and gi are real-valued functions
defined on Rn, for each j ∈ q, x → Gj(x, t) is a real-valued function defined on Rn for all t ∈ Tj , for each
k ∈ r, x → Hk(x, s) is a real-valued function defined on Rn for all s ∈ Sk, for each j ∈ q and k ∈ r, t → Gj(x, t)
and s → Hk(x, s) are continuous real-valued functions defined, respectively, on Tj and Sk for all x ∈ Rn, and for
each i ∈ p, gi(x) > 0 for all x satisfying the constraints of (P).
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16 GENERALIZED SECOND ORDER PARAMETRIC OPTIMALITY CONDITIONS

This communication deals with investigating primarily results on various second-order necessary and sufficient
optimality conditions for several types of optimization problems for the semiinfinite discrete minmax fractional
programming based on generalized (F , β, ϕ, ρ, θ,m)-univexity assumptions, while problems for the discrete
minmax fractional programming based on generalized (F , β, ϕ, ρ, θ,m)-univexity assumptions were initiated
in [4]. Here, we shall apply two types of partitioning schemes due to Mond and Weir [3] to the context
of the new classes of generalized second-order uninvex functions to formulate and discuss numerous sets of
generalized second-order sufficient optimality conditions for (P ). To the best of our knowledge, all the second-
order sufficient optimality results established in this paper are new in the area of semiinfinite discrete minmax
fractional programming. In fact, it seems that results of this type have not yet appeared in any shape or form
for any type of mathematical programming problems. The generalized optimality conditions established here are
suitable to utilize in constructing some generalized second-order parametric duality models for (P ) and proving
numerous weak, strong, and strict converse duality theorems.

Section 1 of this paper is devoted first to some introductory materials on the semiinfinite discrete fractional
programming and related developments, and then recalling some basic definitions and auxiliary results which
will be needed in the sequel. In Section 2, we state and prove various second-order parametric sufficient
optimality results for (P ) using a variety of generalized (F , β, ϕ, ρ, θ,m)-sounivexity assumptions along with
some partitioning schemes. Finally, in Section 3 we summarize our main results and also point out some further
research opportunities arising from certain modifications of the principal problem investigated in the present paper
leading to the concluding remarks.

We also observe that all the optimality results obtained for (P ) are also applicable, when appropriately
specialized, to the following three classes of problems with discrete max, fractional, and conventional objective
functions, which are particular cases of (P ):

(P1) Minimize
x∈F

max
1≤i≤p

fi(x);

(P2) Minimize
x∈F

f1(x)

g1(x)
;

(P3) Minimize
x∈F

f1(x),

where F (assumed to be nonempty) is the feasible set of (P ), that is,

F = {x ∈ X : Gj(x) ≤ 0, j ∈ q, Hk(x) = 0, k ∈ r}.

We next introduce some new classes of generalized second-order univex functions, referred to as (strictly)
(F , β, ϕ, ρ, θ,m)-sounivex, (strictly) (F , β, ϕ, ρ, θ,m)-pseudosounivex, and (prestrictly) (F , β, ϕ, ρ, θ,m)-
quasisounivex functions. They are further extensions of the classes of second-order (strictly) (ϕ, η, ρ, θ,m)-
sonvex, (strictly) (ϕ, η, ρ, θ,m)-pseudosonvex, and (prestrictly) (ϕ, η, ρ, θ,m)-quasisonvex functions which were
introduced recently in [4]. For brief accounts of the evolution of the generalized F-convex and other related
functions, the reader is referred to [4, 5]. We abbreviate ”second-order univex” as sounivex. Let f : X → R be
a twice differentiable function.

Definition 1.1. The function f is said to be (strictly) (F , β, ϕ, ρ, θ,m)-sounivex at x∗ if there exist functions
β : X ×X → R+ ≡ (0,∞), ϕ : R → R, ρ : X ×X → R, θ : X ×X → Rn, a sublinear function F(x, x∗; ·) :
Rn → R, and a positive integer m (m ≥ 1 such that for each x ∈ X (x ̸= x∗) and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(>) ≥ F

(
x, x∗;β(x, x∗)∇f(x∗)

)
+

1

2
⟨z,∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥m,

where ∥ · ∥ is a norm on Rn and ⟨a, b⟩ is the inner product of the vectors a and b.
The function f is said to be (strictly) (F , β, ϕ, ρ, θ,m)-sounivex on X if it is (strictly) (F , β, ϕ, ρ, θ,m)-sounivex

at each x∗ ∈ X .
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Definition 1.2. The function f is said to be (strictly) (F , β, ϕ, ρ, θ,m)-pseudosounivex at x∗ if there exist functions
β : X ×X → R+, ϕ : R → R, ρ : X ×X → R, θ : X ×X → Rn, a sublinear function F(x, x∗; ·) : Rn → R,
and a positive integer m (m ≥ 1 such that for each x ∈ X (x ̸= x∗) and z ∈ Rn,

F
(
x, x∗;β(x, x∗)∇f(x∗)

)
+

1

2
⟨z,∇2f(x∗)z⟩ ≥ −ρ(x, x∗)∥θ(x, x∗)∥m

⇒ ϕ
(
f(x)− f(x∗)

)
(>) ≥ 0.

The function f is said to be (strictly) (F , β, ϕ, ρ, θ,m)-pseudosounivex on X if it is (strictly) (F , β, ϕ, ρ, θ,m)-
pseudosounivex at each x∗ ∈ X .

Definition 1.3. The function f is said to be (prestrictly) (F , β, ϕ, ρ, θ,m)-quasisounivex at x∗ if there exist
functions β : X ×X → R+, ϕ : R → R, ρ : X ×X → R, θ : X ×X → Rn, a sublinear function F(x, x∗; ·) :
Rn → R, and a positive integer m (m ≥ 1 such that for each x ∈ X and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(<) ≤ 0

⇒ F
(
x, x∗;β(x, x∗)∇f(x∗)

)
+

1

2
⟨z,∇2f(x∗)z⟩ ≤ −ρ(x, x∗)∥θ(x, x∗)∥m.

The function f is said to be (prestrictly) (F , β, ϕ, ρ, θ,m)-quasisounivex on X if it is (prestrictly)
(F , β, ϕ, ρ, θ,m)-quasisounivex at each x∗ ∈ X .

From the above definitions it is clear that if f is (F , β, ϕ, ρ, θ,m)-sounivex at x∗, then it is both (F , β, ϕ, ρ, θ,m)-
pseudosounivex and (F , β, ϕ, ρ, θ,m)-quasisounivex at x∗, if f is (F , β, ϕ, ρ, θ,m)-quasisounivex at x∗, then it is
prestrictly (F , β, ϕ, ρ, θ,m)-quasisounivex at x∗, and if f is strictly (F , β, ϕ, ρ, θ,m)-pseudosounivex at x∗, then it
is (F , β, ϕ, ρ, θ,m)-quasisounivex at x∗.

In the proofs of the duality theorems, sometimes it may be more convenient to use certain alternative but
equivalent forms of the above definitions. These are obtained by considering the contrapositive statements. For
example, (F , β, ϕ, ρ, θ,m)-quasisounivexity can be defined in the following equivalent way:

The function f is said to be (F , β, ϕ, ρ, θ,m)-quasisounivex at x∗ if there exist functions β : X ×X → R+, ϕ :
R → R, ρ : X ×X → R, θ : X ×X → Rn, a sublinear function F(x, x∗; ·) : Rn → R, and a positive integer m
(m ≥ 1 such that for each x ∈ X and z ∈ Rn,

F
(
x, x∗;β(x, x∗)∇f(x∗)

)
+

1

2
⟨z,∇2f(x∗)z⟩ > −ρ(x, x∗)∥θ(x, x∗)∥m

⇒ ϕ
(
f(x)− f(x∗)

)
> 0.

Note that the new classes of generalized convex functions specified in Definitions 1.1 - 1.3 contain a variety
of special cases that can easily be identified by appropriate choices of F , β, ϕ, ρ, θ, and m. For example,
if we let F

(
x, x∗;∇f(x∗)

)
= ⟨∇f(x∗), η(x, x∗)⟩ and β(x, x∗) ≡ 1, then we obtain the definitions of (strictly)

(ϕ, η, ρ, θ,m)-sonvex, (strictly) (ϕ, η, ρ, θ,m)-pseudosonvex, and (prestrictly) (ϕ, η, ρ, θ,m)-quasisonvex functions
introduced recently in [4].

We conclude this section by recalling a set of second-order parametric necessary optimality conditions for (P ).
The form and features of this result will provide clear guidelines for formulating various sets of second-order
parametric sufficient optimality conditions for (P ).

Theorem 1.1. [4] Let x∗ ∈ F and λ∗ = max1≤i≤p fi(x
∗)/gi(x

∗), for each i ∈ p, let fi and gi be twice continuously
differentiable at x∗, for each j ∈ q, let the function z → Gj(z, t) be twice continuously differentiable at x∗ for all
t ∈ Tj , and for each k ∈ r, let the function z → Hk(z, s) be twice continuously differentiable at x∗ for all s ∈ Sk.
If x∗ is an optimal solution of (P), if the second order generalized Abadie constraint qualification holds at x∗, and
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18 GENERALIZED SECOND ORDER PARAMETRIC OPTIMALITY CONDITIONS

if for any critical direction y, the set cone

{
(
∇Gj(x

∗, t), ⟨y,∇2Gj(x
∗, t)y⟩

)
: t ∈ T̂j(x

∗), j ∈ q}

+ span{
(
∇Hk(x

∗, s), ⟨y,∇2Hk(x
∗, s)y⟩

)
: s ∈ Sk, k ∈ r},

where T̂j(x
∗) ≡ {t ∈ Tj : Gj(x

∗, t) = 0},

is closed, then there exist u∗ ∈ U ≡ {u ∈ Rp : u ≥ 0,
∑p

i=1 ui = 1} and integers ν∗0 and ν∗, with 0 ≤ ν∗0 ≤
ν∗ ≤ n+ 1, such that there exist ν∗0 indices jm, with 1 ≤ jm ≤ q, together with ν∗0 points tm ∈ T̂jm(x∗), m ∈
ν∗0 , ν

∗ − ν∗0 indices km, with 1 ≤ km ≤ r, together with ν∗ − ν∗0 points sm ∈ Skm for m ∈ ν∗\ν∗0 , and ν∗ real
numbers v∗m, with v∗m > 0 for m ∈ ν∗0 , with the property that

p∑
i=1

u∗
i [∇fi(x

∗)− λ∗(∇gi(x
∗)] +

ν∗
0∑

m=1

v∗m[∇Gjm(x∗, tm)

+

ν∗∑
m=ν∗

0+1

v∗m∇Hkm(x∗, sm) = 0, (1.1)

⟨y,
[ p∑

i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

ν∗
0∑

m=1

v∗m∇2Gjm(x∗, tm)

+

ν∗∑
m=ν∗

0+1

v∗m∇2Hkm(x∗, sm)
]
y⟩ ≥ 0, (1.2)

u∗
i [fi(x

∗)− λ∗gi(x
∗)] = 0, i ∈ p, (1.3)

where ν \ ν0 is the complement of the set ν0 relative to the set ν.

2. Generalized Second-Order Sufficient Optimality Conditions

In this section, we discuss several families of sufficient optimality results under various generalized
(F , β, ϕ, ρ, θ,m)-sounivexity hypotheses imposed on certain combinations of the problem functions. This is
accomplished by employing a certain partitioning scheme which was originally proposed in [4] for the purpose
of constructing generalized dual problems for nonlinear programming problems. For this we need some additional
notations.

Let ν0 and ν be integers, with 1 ≤ ν0 ≤ ν ≤ n+ 1, and let {J0, J1, . . . , JM} and {K0,K1, . . . ,KM} be partitions
of the sets ν0 and ν\ν0, respectively; thus, Ji ⊂ ν0 for each i ∈ M ∪ {0}, Ji ∩ Jj = ∅ for each i, j ∈ M ∪ {0} with
i ̸= j, and ∪M

i=0Ji = ν0. Obviously, similar properties hold for {K0,K1, . . . ,KM}. Moreover, if m1 and m2 are
the numbers of the partitioning sets of ν0 and ν\ν0, respectively, then M = max{m1,m2} and Ji = ∅ or Ki = ∅
for i > min{m1,m2}.

In addition, we use the real-valued functions z → Φi(z, λ, v, t̄, s̄), i ∈ p, z → Φ(z, λ, u, v, t̄, s̄), and z →
Λτ (z, v, t̄, s̄) defined, for fixed λ, u, v, t̄ ≡ (t1, t2, . . . , tν0), and s̄ ≡ (sν0+1, sν0+2, . . . , sν), on Rn as follows:

Φi(z, λ, v, t̄, s̄) = fi(z)− λgi(z) +
∑
m∈J0

vmGjm(z, tm) +
∑

m∈K0

vmHkm(z, sm), i ∈ p,

Φ(z, λ, u, v, t̄, s̄) =

p∑
i=1

ui[fi(z)− λgi(z)] +
∑
m∈J0

vmGjm(z, tm) +
∑

m∈K0

vmHkm(z, sm),
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Λτ (z, v, t̄, s̄) =
∑
m∈Jτ

vmGjm(z, tm) +
∑

m∈Kτ

vmHkm(z, sm), τ ∈ M.

In the proofs of our sufficiency theorems, we shall make frequent use of the following auxiliary result which
provides an alternative expression for the objective function of (P ).

Lemma 1. [7] For each x ∈ X ,

φ(x) ≡ max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 uifi(x)∑p
i=1 uigi(x)

.

Making use of the sets and functions defined above, we can now formulate our first collection of generalized
sufficiency results for (P) as follows.

Theorem 2.1. Let x∗ ∈ F, let λ∗ = φ(x∗), let the functions fi, gi, i ∈ p, z → Gj(z, t), and z → Hk(z, s) be
twice continuously differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there exist
u∗ ∈ U and integers ν0 and ν, with 0 ≤ ν0 ≤ ν ≤ n+ 1, such that there exist ν0 indices jm, with 1 ≤ jm ≤ q,
together with ν0 points tm ∈ T̂jm(x∗), m ∈ ν0, ν − ν0 indices km, with 1 ≤ km ≤ r, together with ν − ν0 points
sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m with v∗m > 0 for m ∈ ν0, such that (1.1), (1.2) and (1.3) hold.
Assume, further that any one of the following four sets of hypotheses is satisfied:

(a) (i) z → Φ(z, λ∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕ̄, ρ̄, θ,m)-quasisounivex at x∗, and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;
(ii) for each τ ∈ M, z → Λτ (z, v

∗, t̄, s̄) is strictly (F , β, ϕ̃τ , ρ̃τ , θ,m)-pseudosounivex at x∗, ϕ̃τ is
increasing, and ϕ̃τ (0) = 0;

(iii) ρ̄+
∑M

τ=1 ρ̃τ ≥ 0;
(b) (i) z → Φ(z, λ∗, u∗, v∗, t̄, s̄) is (F , β, ϕ̄, ρ̄, θ,m)-pseudosounivex at x∗, and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each τ ∈ M, z → Λτ (z, v
∗, t̄, s̄) is (F , β, ϕ̃τ , ρ̃τ , θ,m)-quasisounivex at x∗, ϕ̃τ is increasing, and

ϕ̃τ (0) = 0;

(iii) ρ̄+
∑M

τ=1 ρ̃τ ≥ 0;
(c) (i) z → Φ(z, λ∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕ̄, ρ̄, θ,m)- quasisounivex at x∗, and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each τ ∈ M, z → Λτ (z, v
∗, t̄, s̄) is (F , β, ϕ̃τ , ρ̃τ , θ,m)- quasisounivex at x∗, ϕ̃τ is increasing, and

ϕ̃τ (0) = 0;

(iii) ρ̄+
∑M

τ=1 ρ̃τ > 0;
(d) (i) z → Φ(z, λ∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕ̄, ρ̄, θ,m)- quasisounivex at x∗, and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each τ ∈ M1, z → Λτ (z, v
∗, t̄, s̄) is (F , β, ϕ̃τ , ρ̃τ , θ,m)-quasisounivex at x∗, for each τ ∈ M2 ̸=

∅, z → Λτ (z, v
∗, t̄, s̄) is strictly (F , β, ϕ̃τ , ρ̃τ , θ,m)-pseudosounivex at x∗, and for each τ ∈ M, ϕ̃τ is

increasing and ϕ̃τ (0) = 0, where {M1,M2} is a partition of M ;

(iii) ρ̄+
∑M

τ=1 ρ̃τ ≥ 0.

Then x∗ is an optimal solution of (P).

Proof
Let x be an arbitrary feasible solution of (P).
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20 GENERALIZED SECOND ORDER PARAMETRIC OPTIMALITY CONDITIONS

(a) : In view of the positivity of β(x, x∗) and sublinearity of F(x, x∗; ·), it follows from (1.1) and (1.2) that

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗
i [∇fi(x

∗)− λ∗∇gi(x
∗)] +

∑
m∈J0

v∗m∇Gjm(x∗, tm)+

∑
m∈K0

v∗m∇Hkm(x∗, sm)
})

+
1

2

⟨
z∗,

[ p∑
i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

∑
m∈J0

v∗m∇2Gjm(x∗, tm) +
∑

m∈K0

v∗m∇2Hkm(x∗, sm)
]
z∗
⟩

+ F
(
x, x∗;β(x, x∗)

M∑
τ=1

[ ∑
m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
])

+
1

2

⟨
z∗,

M∑
τ=1

[ ∑
m∈Jτ

v∗j∇2Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇2Hkm(x∗, sm)
]
z∗
⟩
≥ 0. (2.1)

Since x, x∗ ∈ F, for each τ ∈ M ,

Λτ (x, v
∗, t̄, s̄) =

∑
m∈Jτ

v∗mGjm(x, tm) +
∑

m∈Kτ

v∗mHkm(x, sm)

≤ 0

=
∑
m∈Jτ

v∗mGjm(x∗, tm) +
∑

m∈Kτ

v∗mHkm(x∗, sm)

= Λτ (x
∗, v∗, t̄, s̄),

and so using the properties of the function ϕ̃τ , we get

ϕ̃τ

(
Λτ (x, v

∗, t̄, s̄)− Λτ (x
∗, v∗, t̄, s̄)

)
≤ 0,

which because of (ii) implies that

F
(
x, x∗;β(x, x∗)

[ ∑
m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
])

+
1

2

⟨
z∗,

[ ∑
m∈Jτ

v∗m∇2Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇2Hkm
(x∗, sm)

]
z∗
⟩

< −ρ̃τ (x, x
∗)∥θ(x, x∗)∥m.

Summing over τ and using the sublinearity of F(x, x∗; ·), we obtain

F
(
x, x∗;β(x, x∗)

M∑
τ=1

[ ∑
m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
])

+
1

2

⟨
z∗,

M∑
τ=1

[ ∑
m∈Jτ

v∗m∇2Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇2Hkm(x∗, sm)
]
z∗
⟩

< −
M∑
τ=1

ρ̃τ (x, x
∗)∥θ(x, x∗)∥m. (2.2)
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Combining (2.1), (2.2) and using (iii) we get

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗
i [∇fi(x

∗)− λ∗∇gi(x
∗)] +

∑
m∈J0

v∗m∇Gjm(x∗, tm)

+
∑

m∈K0

v∗m∇Hkm(x∗, sm)
})

+
1

2

⟨
z∗,

[ p∑
i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

∑
m∈J0

v∗m∇2Gjm(x∗, tm)

+
∑

m∈K0

v∗m∇2Hkm(x∗, sm)
]
z∗
⟩
>

M∑
τ=1

ρ̃τ (x, x
∗)∥θ(x, x∗)∥m > −ρ̄(x, x∗)∥(θ(x, x∗)∥m, (2.3)

which by virtue of (i) implies that ϕ̄
(
Φ(x, λ∗, u∗, v∗, t̄, s̄)− Φ(x∗, λ∗, u∗, v∗, t̄, s̄)

)
≥ 0, which in light of further

properties of ϕ̄ reduces to
Φ(x, λ∗, u∗, v∗, t̄, s̄) ≥ Φ(x∗, λ∗, u∗, v∗, t̄, s̄) = 0,

where the equality follows from (1.3) and the feasibility of x∗. Since x, x∗ ∈ F and v∗m > 0, m ∈ ν0, we have

0 ≤
p∑

i=1

u∗
i [fi(x)− λ∗gi(x)].

Now using this inequality and Lemma 2.1, we obtain φ(x∗) ≤ φ(x). Since x is arbitrary, we conclude that x∗ is an
optimal solution to (P).

(b): Based on the proof of part (a), we see that (ii) leads to the following inequality:

F
(
x, x∗;β(x, x∗)

M∑
τ=1

[ ∑
m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
])

+
1

2

⟨
z∗,

M∑
τ=1

[ ∑
m∈Jτ

v∗j∇2Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇2Hkm(x∗, sm)
]
z∗
⟩

≤ −
M∑
τ=1

ρ̃τ (x, x
∗)∥θ(x, x∗)∥m. (2.4)

Now combining this inequality with (2.1) and using (iii), we obtain

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗
i [∇fi(x

∗)− λ∗∇gi(x
∗)] +

∑
m∈J0

v∗m∇Gjm(x∗, tm)

+
∑

m∈K0

v∗m∇Hkm(x∗, sm)
})

+
1

2

⟨
z∗,

[ p∑
i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

∑
m∈J0

v∗m∇2Gjm(x∗, tm)

+
∑

m∈K0

v∗m∇2Hkm(x∗, sm)
]
z∗
⟩
≥

M∑
τ=1

ρ̃τ (x, x
∗)∥θ(x, x∗)∥m ≥ −ρ̄(x, x∗)∥θ(x, x∗)∥M ,

which applying (i) implies that ϕ̄
(
Φ(x, λ∗, u∗, v∗, t̄, s̄)− Φ(x∗, λ∗, u∗, v∗, t̄, s̄)

)
≥ 0. Thus, we conclude that x∗ is

an optimal solution to (P ), while the proofs for (c) and (d) are similar to (a) and (b).

Making use of the sets and functions defined above, we can now formulate our first collection of generalized
second-order parametric sufficient optimality results for (P ) as follows.
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Theorem 2.2. Let x∗ ∈ F, let λ∗ = φ(x∗), let the functions fi, gi, i ∈ p, z → Gj(z, t), and z → Hk(z, s) be
twice continuously differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there exist
u∗ ∈ U and integers ν0 and ν, with 0 ≤ ν0 ≤ ν ≤ n+ 1, such that there exist ν0 indices jm, with 1 ≤ jm ≤ q,
together with ν0 points tm ∈ T̂jm(x∗), m ∈ ν0, ν − ν0 indices km, with 1 ≤ km ≤ r, together with ν − ν0 points
sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m with v∗m > 0 for m ∈ ν0, such that (1.1), (1.2) and (1.3) hold.
Assume, further that any one of the following seven sets of hypotheses is satisfied:

(a) (i) for each i ∈ I+ ≡ {i ∈ p : u∗
i > 0}, ξ → Φi(ξ, v

∗, λ∗, t̄, s̄) is (F , β, ϕ̄i, ρ̄i, θ,m)-pseudosounivex at
x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, t̄, s̄) is (F , β, ϕ̃t, ρ̃t, θ,m)-quasisounivex at x∗, ϕ̃t is increasing, and

ϕ̃t(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(b) (i) for each i ∈ I+, ξ → Φi(ξ, v
∗, λ∗, t̄, s̄) is prestrictly (F , β, ϕ̄i, ρ̄i, θ,m)-quasisounivex at x∗, ϕ̄i is

strictly increasing, and ϕ̄i(0) = 0;
(ii) for each t ∈ M, ξ → Λt(ξ, v

∗, t̄, s̄) is strictly (F , β, ϕ̃t, ρ̃t, θ)-pseudosounivex at x∗, ϕ̃t is increasing,
and ϕ̃t(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(c) (i) for each i ∈ I+, ξ → Φi(ξ, v
∗, λ∗, t̄, s̄) is prestrictly (F , β, ϕ̄i, ρ̄i, θ,m)-quasisounivex at x∗, ϕ̄i is

strictly increasing, and ϕ̄i(0) = 0;
(ii) for each t ∈ M, ξ → Λt(ξ, v

∗, t̄, s̄) is (F , β, ϕ̃t, ρ̃t, θ,m)-quasisounivex at x∗, ϕ̃t is increasing, and
ϕ̃t(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) > 0 for all x ∈ F;

(d) (i) for each i ∈ I1+, ξ → Φi(ξ, v
∗, λ∗, t̄, s̄) is (F , β, ϕ̄i, ρ̄i, θ,m)-pseudosounivex at x∗, for each i ∈

I2+, ξ → Φi(ξ, v
∗, v∗, λ∗, t̄, s̄) is prestrictly (F , β, ϕ̄i, ρ̄i, θ,m)-quasisounivex at x∗, and for each i ∈

I+, ϕ̄i is strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a partition of I+;
(ii) for each t ∈ M, ξ → Λt(ξ, v

∗, t̄, s̄) is strictly (F , β, ϕ̃t, ρ̃t, θ,m)-pseudosounivex at x∗, ϕ̃t is increasing,
and ϕ̃t(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(e) (i) for each i ∈ I1+ ̸= ∅, ξ → Φi(ξ, v
∗, λ∗, t̄, s̄) is (F , β, ϕ̄i, ρ̄i, θ,m)-pseudosounivex at x∗, for each

i ∈ I2+, ξ → Φi(ξ, v
∗, λ∗, t̄, s̄) is prestrictly (F , β, ϕ̄i, ρ̄i, θ,m)-quasisounivex at x∗, and for each

i ∈ I+, ϕ̄i is strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a partition of I+;
(ii) for each t ∈ M, ξ → Λt(ξ, v

∗, v∗, t̄, s̄) is (F , β, ϕ̃t, ρ̃t, θ,m)-quasisounivex at x∗, ϕ̃t is increasing, and
ϕ̃t(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(f) (i) for each i ∈ I+, ξ → Φi(ξ, v
∗, λ∗, t̄, s̄) is prestrictly (F , β, ϕ̄i, ρ̄i, θ,m)-quasisounivex at x∗, ϕ̄i is

strictly increasing, and ϕ̄i(0) = 0;
(ii) for each t ∈ M1 ̸= ∅, ξ → Λt(ξ, v

∗, t̄, s̄) is strictly (F , β, ϕ̄t, ρ̃t, θ,m)-pseudosounivex at x∗, for each
t ∈ M2, ξ → Λt(ξ, v

∗, t̄, s̄) is (F , β, ϕ̃t, ρ̃t, θ,m)-quasisounivex at x∗, and for each t ∈ M, ϕ̃t is
increasing and ϕ̃t(0) = 0, where {M1,M2} is a partition of M ;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(g) (i) for each i ∈ I1+, ξ → Φi(ξ, v
∗, λ∗, t̄, s̄) is (F , β, ϕ̄i, ρ̄i, θ,m)-pseudosounivex at x∗, for each i ∈

I2+, ξ → Φi(ξ, v
∗, λ∗, t̄, s̄) is prestrictly (F , β, ϕ̄i, ρ̄i, θ,m)-quasisounivex at x∗, and for each i ∈

I+, ϕ̄i is strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a partition of I+;
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(ii) for each t ∈ M1, ξ → Λt(ξ, v
∗, t̄, s̄) is strictly (F , β, ϕ̃t, ρ̃t, θ,m)-pseudosounivex at x∗, for each t ∈

M2, ξ → Λt(ξ, v
∗, t̄, s̄) is (F , β, ϕ̃t, ρ̃t, θ,m)-quasisounivex at x∗, and for each t ∈ M , ϕ̃t is increasing

and ϕ̃t(0) = 0, where {M1,M2} is a partition of M ;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(iv) I1+ ̸= ∅, M1 ̸= ∅, or
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) > 0.

Then x∗ is an optimal solution of (P).

Proof
(a): Assume that x∗ is not an optimal solution to (P ). Then there exists a feasible solution x̄ of (P ) such that
φ(x̄) < φ(x∗) = λ∗. Hence, we have

fi(x̄)− λ∗gi(x̄) < 0 for each i ∈ p. (2.5)

Since v∗ ≥ 0, for each i ∈ I+, we have

Φi(x̄, v
∗, λ∗, t̄, s̄) = fi(x̄)− λ∗gi(x̄) +

∑
j∈J0

v∗jGj(x̄, t
m) +

∑
k∈K0

v∗kHk(x̄, s
m)

≤ fi(x̄)− λ∗gi(x̄) (by the feasibility of x̄)
< 0

= fi(x
∗)− λ∗gi(x

∗) +
∑
j∈J0

v∗jGj(x
∗, tm) +

∑
k∈K0

w∗
kHk(x

∗, sm)

(by the feasibility of x∗)
= Φi(x

∗, v∗, w∗, λ∗, t̄, s̄),

and so using the properties of the function ϕ̄i, we get

ϕ̄i

(
Φi(x̄, v

∗, λ∗)− Φi(x
∗, v∗, λ∗)

)
< 0,

which in view of (i) implies that

F
(
x, x∗;β(x, x∗)

[
∇fi(x

∗)− λ∗∇gi(x
∗) +

∑
m∈J0

v∗m∇Gjm(x∗, tm) +
∑

m∈K0

v∗m∇Hkm(x∗, sm)
])

+

1

2

⟨
z∗,

[
∇2fi(x

∗)− λ∗∇2gi(x
∗) +

∑
m∈J0

v∗m∇2Gj(x
∗, tm) +

∑
m∈K0

v∗m∇2Hkm(x∗, sm)
]
z∗
⟩

< −ρ̄i(x, x
∗)∥θ(x̄, x∗)∥m.

Since u∗ > 0, u∗
i = 0 for each i ∈ p\I+,

∑p
i=1 u

∗
i = 1, and F(x, x∗, ·) is sublinear, the above inequalities yield

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗
i [∇fi(x

∗)− λ∗∇gi(x
∗)] +

∑
m∈J0

v∗m∇Gjm(x∗, tm) +
∑

m∈K0

v∗m∇Hkm(x∗, sm)
})

+

1

2

⟨
z∗,

{ p∑
i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

∑
m∈J0

v∗m∇2Gjm(x∗, tm) +
∑

m∈K0

v∗m∇2Hkm(x∗, sm)
}
z∗
⟩

< −
∑
i∈I+

u∗
i ρ̄i(x, x

∗)∥θ(x̄, x∗)∥m. (2.6)
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Proceeding as in the proof of Theorem 2.1, we see that our assumptions in (ii) lead to

F
(
x, x∗;β(x, x∗)

M∑
τ=1

[ ∑
m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
])

+
1

2

⟨
z∗,

M∑
τ=1

[ ∑
m∈Jτ

v∗m∇2Gj(x
∗, tm)

+
∑

m∈Kτ

v∗m∇2Hkm(x∗, sm)
]
z∗
⟩
≤ −

M∑
τ=1

ρ̃t(x, x
∗)∥θ(x̄, x∗)∥2,

which when combined with (2.1) results in

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗
i [∇fi(x

∗)− λ∗∇gi(x
∗)] +

∑
m∈J0

v∗m∇Gjm(x∗, tm)

+
∑

m∈K0

v∗m∇Hkm
(x∗, sm)

})
+

1

2

⟨
z∗,

{ p∑
i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)]

+
∑
m∈J0

v∗m∇2Gjm(x∗, tm) +
∑

m∈K0

v∗m∇2Hkm(x∗, sm)
}
z∗
⟩
≥

M∑
τ=1

ρ̃τ (x, x
∗)∥θ(x̄, x∗)∥2.

Based on (iii), this inequality contradicts based on our assumption (2.6). Hence, x∗ is an optimal solution to (P ).
(b) - (g) : The proofs are similar to that of part (a).

In the following theorem, we construct a different partitioning method which appears to be general for
formulating a general duality model for a multiobjective fractional programming problem, and then we present
another collection of sufficient optimality results for (P ) which are different from those stated in Theorems
2.1 and 2.2. These results are formulated on a partition of p in addition to those of ν0 and ν\ν0, and by
placing appropriate generalized (F , β, ϕ, ρ, θ)-univexity requirements on certain combinations of the functions
z → ui[fi(z)− λgi(z)], z → Gj(z, t), and z → Hk(z, s).

Let {I0, I1, . . . , Id}, {J0, J1, . . . , Je}, and {K0,K1, . . . ,Ke} be partitions of p, ν0, and ν\ν0, respectively, such
that D = {0, 1, 2, . . . , d} ⊂ E = {0, 1, . . . , e}, and let the function z → Πτ (z, λ, u, v, t̄, s̄) : Rn → R be defined,
for fixed λ, u, v, t̄ ≡ (t1, t2, . . . , tν0), and s̄ ≡ (sν0+1, sν0+2, . . . , sν), by

Πτ (z, λ, u, v, t̄, s̄) =
∑
i∈Iτ

ui[fi(z)− λgi(z)] +
∑
m∈Jτ

vmGjm(x, tm)

+
∑

m∈Kτ

vmHkm(z, sm), τ ∈ D.

Theorem 2.3. Let x∗ ∈ F, let λ∗ = φ(x∗), let the functions fi, gi, i ∈ p, z → Gj(z, t), and z → Hk(z, s) be
differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U, u∗ > 0, and
integers ν0 and ν, with 0 ≤ ν0 ≤ ν ≤ n+ 1, such that there exist ν0 indices jm, with 1 ≤ jm ≤ q, together with ν0
points tm ∈ T̂jm(x∗), m ∈ ν0, ν − ν0 indices km, with 1 ≤ km ≤ r, together with ν − ν0 points sm ∈ Skm

, m ∈
ν\ν0, and ν real numbers v∗m with v∗m > 0 for m ∈ ν0, such that (1) and (2) hold. Assume, furthermore, that any
one of the following seven sets of hypotheses is satisfied:

(a) (i) for each τ ∈ D, z → Πτ (z, λ
∗, u∗, v∗, t̄, s̄) is (F , β, ϕτ , ρτ , θ,m) - pseudosounivex at x∗, ϕτ is

increasing, and ϕτ (0) = 0;
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(ii) for each τ ∈ E \D, z → Λτ (z, v
∗, t̄, s̄) is (F , β, ϕτ , ρτ , m)− quasisounivex at x∗, ϕτ is increasing,

and ϕτ (0) = 0;
(iii)

∑
τ∈E ρτ ≥ 0;

(b) (i) for each τ ∈ D, z → Πτ (z, λ
∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, ϕτ

is increasing, and ϕτ (0) = 0;
(ii) for each τ ∈ E \D, z → Λτ (z, v

∗, t̄, s̄) is strictly (F , β, ϕτ , ρτ , θ,m)- pseudosounivex at x∗, ϕτ is
increasing, and ϕτ (0) = 0;

(iii)
∑

τ∈E ρτ ≥ 0;
(c) (i) for each τ ∈ D, z → Πτ (z, λ

∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, ϕτ

is increasing, and ϕτ (0) = 0;
(ii) for each τ ∈ E \D, z → Λτ (z, v

∗, t̄, s̄) is (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, ϕτ is increasing,
and ϕτ (0) = 0;

(iii)
∑

τ∈E ρτ > 0;
(d) (i) for each τ ∈ D1, z → Πτ (z, λ

∗, u∗, v∗, t̄, s̄) is (F , β, ϕτ , ρτ , θ,m)- pseudosounivex at x∗, for each
τ ∈ D2, z → Πτ (z, λ

∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, and for each
τ ∈ D, ϕτ is increasing and ϕτ (0) = 0, where {D1, D2} is a partition of D;

(ii) for each τ ∈ E \D, z → Λτ (z, v
∗, t̄, s̄) is strictly (F , β, ϕτ , ρτ , θ,m)- pseudosounivex at x∗, ϕτ is

increasing, and ϕτ (0) = 0;
(iii)

∑
τ∈E ρτ ≥ 0;

(e) (i) for each τ ∈ D1 ̸= ∅, z → Πτ (z, λ
∗, u∗, v∗, t̄, s̄) is (F , β, ϕτ , ρτ , θ,m)- pseudosounivex at x∗, for each

τ ∈ D2, z → Πτ (z, λ
∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, and for each

τ ∈ D, ϕτ is increasing and ϕτ (0) = 0, where {D1, D2} is a partition of D;
(ii) for each τ ∈ E \D, z → Λτ (z, v

∗, t̄, s̄) is (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, ϕτ is increasing,
and ϕτ (0) = 0;

(iii)
∑

τ∈E ρτ ≥ 0;
(f) (i) for each τ ∈ D, z → Πτ (z, λ

∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, ϕτ

is increasing, and ϕτ (0) = 0;
(ii) for each τ ∈ (E \D)1 ̸= ∅, z → Λτ (z, v

∗, t̄, s̄) is strictly (F , β, ϕτ , ρτ , θ,m)- pseudosounivex at x∗,
for each τ ∈ (E \D)2, z → Λτ (z, v

∗, t̄, s̄) is (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, and for each
τ ∈ D, ϕτ is increasing and ϕτ (0) = 0, where {(E \D)1, (E \D)2} is a partition of E \D;

(iii)
∑

τ∈E ρτ ≥ 0;
(g) (i) for each τ ∈ D1, z → Πτ (z, λ

∗, u∗, v∗, t̄, s̄) is (F , β, ϕτ , ρτ , θ,m)- pseudosounivex at x∗, for each
τ ∈ D2, z → Πτ (z, λ

∗, u∗, v∗, t̄, s̄) is prestrictly (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, and for each
τ ∈ D, ϕτ is increasing and ϕτ (0) = 0, where {D1, D2} is a partition of D;

(ii) for each τ ∈ (E \D)1, z → Λτ (z, v
∗, t̄, s̄) is strictly (F , β, ϕτ , ρτ , θ,m)- pseudosounivex at x∗, for

each τ ∈ (E \D)2, z → Λτ (z, v
∗, t̄, s̄) is (F , β, ϕτ , ρτ , θ,m)- quasisounivex at x∗, and for each τ ∈

D, ϕτ is increasing and ϕτ (0) = 0, where {(E \D)1, (E \D)2} is a partition of E \D;
(iii)

∑
τ∈E ρτ ≥ 0;

(iv) D1 ̸= ∅, (E \D)1 ̸= ∅, or
∑

τ∈E ρτ > 0.

Then x∗ is an optimal solution of (P).

Proof
(a): Assume that x∗ is not an optimal solution to (P ). Then based on the proof of Theorem 2.2, we arrive at the
inequalities fi(x̄)− λ∗gi(x̄) < 0, i ∈ p, for some x̄ ∈ F. Since u∗ > 0, we see that for each τ ∈ D,∑

i∈Iτ

u∗
i [fi(x̄)− λ∗gi(x̄)] < 0. (2.7)
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Now using this inequality, we see that

Πτ (x̄, λ
∗, u∗, v∗, t̄, s̄)

=
∑
i∈Iτ

u∗
i [fi(x̄)− λ∗gi(x̄)] +

∑
m∈Jτ

v∗mGjm(x̄, tm) +
∑

m∈Kτ

v∗mHkm(x̄, sm)

≤
∑
i∈Iτ

u∗
i [fi(x̄)− λ∗gi(x̄)] (by the feasibility of x̄ and positivity of v∗m, m ∈ ν0)

< 0

=
∑
i∈Iτ

u∗
i [fi(x

∗)− λ∗gi(x
∗)] +

∑
m∈Jτ

v∗mGjm(x∗, tm) +
∑

m∈Kτ

v∗mHkm(x∗, sm)

(since (1.3) holds, x∗ ∈ F, and tm ∈ T̂jm(x∗), m ∈ ν0)
= Πτ (x

∗, λ∗, u∗, v∗, t̄, s̄),

and so using the properties of the functions ϕτ , τ ∈ D, we get

ϕτ

(
Πτ (x̄, λ

∗, u∗, v∗, t̄, s̄)−Πτ (x
∗, λ∗, u∗, v∗, t̄, s̄)

)
< 0,

which in view of (i) implies that

F
(
x, x∗;β(x, x∗)

{∑
i∈Iτ

u∗
i [∇fi(x

∗)− λ∗∇gi(x
∗)] +

∑
m∈Jτ

v∗m∇Gjm(x∗, tm)

+
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
})

+
1

2

⟨
z∗,

{∑
i∈It

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

∑
j∈Jt

v∗j∇2Gj(x
∗, tm)

+
∑
k∈Kt

v∗k∇2Hk(x
∗, sm)

}
z∗
⟩
< −ρt(x̄, x

∗)∥θ(x̄, x∗)∥m.

Summing over τ ∈ D and using the sublinearity of F(x, x∗; ·), we get

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗
i [∇fi(x

∗)− λ∇gi(x
∗)] +

∑
τ∈D

[ ∑
m∈Jτ

v∗m∇Gjm(x∗, tm)

+
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
]})

+
1

2

⟨
z∗,

{∑
i∈Iτ

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

∑
τ∈D

[ ∑
m∈Jτ

v∗m∇2Gjm(x∗, tm)

+
∑

m∈Kτ

v∗m∇2Hkm(x∗, sm)
]}

z∗
⟩
< −

∑
τ∈D

ρτ (x̄, x
∗)∥θ(x̄, x∗)∥m. (2.8)

As shown in the proof of Theorem 2.2, for each τ ∈ E\D, Λτ (x̄, v
∗, t̄, s̄) ≤ Λτ (x

∗, v∗, t̄, s̄), and so using the
properties of ϕτ , τ ∈ E\D, we get the inequality ϕτ

(
Λτ (x̄, v

∗, t̄, s̄)− Λτ (x
∗, v∗, t̄, s̄)

)
≤ 0, which in view of (ii)

implies that

F
(
x, x∗;β(x, x∗)

[ ∑
m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
])

+
1

2

⟨
z∗,

[ ∑
j∈Jτ

v∗j∇2Gj(x
∗, tm) +

∑
k∈Kτ

v∗k∇2Hk(x
∗, sm)

]
z∗
⟩

≤ −ρτ (x̄, x
∗)∥θ(x̄, x∗)∥m.

Stat., Optim. Inf. Comput. Vol. 4, March 2016



R.U. VERMA AND G.J. ZALMAI 27

Summing over τ ∈ E\D and using the sublinearity of F(x, x∗; ·), we obtain

F
(
x, x∗;β(x, x∗)

∑
τ∈E\D

[ ∑
m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
])

+
1

2

⟨
z∗,

∑
τ∈E\D

[ ∑
j∈Jτ

v∗j∇2Gj(x
∗, tm) +

∑
k∈Kτ

v∗k∇2Hk(x
∗, sm)

]
z∗
⟩

≤ −
∑

τ∈E\D

ρτ (x̄, x
∗)∥θ(x̄, x∗)∥m. (2.9)

Now combining (2.8) and (2.9) and using (iii), we have

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗
i [∇fi(x

∗)− λ∗∇gi(x
∗)] +

ν0∑
m=1

v∗m∇Gjm(x∗, tm)+

ν∑
m=ν0+1

v∗m∇Hkm(x∗, sm)
})

+ ⟨z∗,
[ p∑

i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

ν∗
0∑

m=1

v∗m∇2Gjm(x∗, tm) +

ν∗∑
m=ν∗

0+1

v∗m∇2Hkm(x∗, sm)
]
z∗⟩

< −
∑
τ∈E

ρτ (x, x
∗)∥θ(x, x∗)∥m ≤ 0,

which contradicts (1.1) and (1.2) (since β(x, x∗) > 0 and F(x, x∗; 0) = 0). Therefore, x∗ is an optimal solution of
(P).

(b) - (g) : The proofs are similar to that of part (a).

The modified versions of Theorems 2.2 and 2.3 can be stated in a similar manner. Theorems 2.1 - 2.3, and their
modified versions encompass a large family of sufficient optimality conditions for (P ) whose members can easily
be identified by appropriate choices of the partitioning sets Jµ, Kµ, µ ∈ m ∪ {0}, and It, t ∈ ℓ ∪ {0}. To this
context, we state explicitly some important special cases of part (a) of Theorem 2.2, for example, the following
corollary.

Corollary 1. Let x∗ ∈ F, let λ∗ = φ(x∗), let the functions fi, gi, i ∈ p, z → Gj(z, t), and z → Hk(z, s) be
twice continuously differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there exist
u∗ ∈ U and integers ν0 and ν, with 0 ≤ ν0 ≤ ν ≤ n+ 1, such that there exist ν0 indices jm, with 1 ≤ jm ≤ q,
together with ν0 points tm ∈ T̂jm(x∗), m ∈ ν0, ν − ν0 indices km, with 1 ≤ km ≤ r, together with ν − ν0 points
sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m with v∗m > 0 for m ∈ ν0, such that (1.1), (1.2) and (1.3) hold. Assume
further that any one of the following ten sets of hypotheses is satisfied:

(a) (i) for each i ∈ I+ ≡ {i ∈ p : u∗
i > 0}, the function ξ → fi(ξ)− λ∗gi(ξ) is (F , β, ϕ̄i, ρ̄i, θ,m)-

pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
(ii) the function ξ →

∑q
j=1 v

∗
jGj(ξ, t) +

∑r
k=1 v

∗
kHk(ξ, s) is (F , β, ϕ̃, ρ̃, θ,m)-quasisounivex at x∗, ϕ̃ is

increasing, and ϕ̃(0) = 0;
(iii)

∑
i∈I+

u∗
i ρ̄i(x, x

∗) + ρ̃(x, x∗) ≥ 0 for all x ∈ F;

(b) (i) for each i ∈ I+, the function ξ → fi(ξ)− λ∗gi(ξ) +
∑q

j=1 v
∗
jGj(ξ, t) +

∑r
k=1 v

∗
kHk(ξ, s) is

(F , β, ϕ̄i, ρ̄i, θ,m)-pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
(ii)

∑
i∈I+

u∗
i ρ̄i(x, x

∗) ≥ 0 for all x ∈ F;
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(c) (i) for each i ∈ I+, the function ξ → fi(ξ)− λ∗gi(ξ) +
∑

j∈J0
v∗jGj(ξ, t) +

∑r
k=1 v

∗
kHk(ξ, s) is

(F , β, ϕ̄i, ρ̄i, θ,m)-pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
(ii) for each t ∈ M, ξ →

∑
j∈Jt

v∗jGj(ξ, t) is (F , β, ϕ̄t, ρ̃t, θ,m)-quasisounivex at x∗, ϕ̃t is increasing, and
ϕ̃t(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(d) (i) for each i ∈ I+, the function ξ → fi(ξ)− λ∗gi(ξ) +
∑q

j=1 v
∗
jGj(ξ, t) +

∑
k∈K0

v∗kHk(ξ, s) is
(F , β, ϕ̄i, ρ̄i, ρ, θ,m)-pseudosounivex x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;

(ii) for each t ∈ M, ξ →
∑

k∈Kt
v∗kHk(ξ, s) is (F , β, ϕ̃t, ρ̃t, θ,m)-quasisounivex at x∗, ϕ̃t is increasing,

and ϕ̃t(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(e) (i) for each i ∈ I+, the function ξ → fi(ξ)− λ∗gi(ξ) +
∑q

j=1 v
∗
jGj(ξ, t) is (F , β, ϕ̄i, ρ̄i, θ,m)-

pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
(ii) the function ξ →

∑r
k=1 v

∗
kHk(ξ, s) is (F , β, ϕ̃, ρ̃, θ,m)-quasisounivex at x∗, ϕ̃ is increasing, and

ϕ̃(0) = 0;
(iii)

∑
i∈I+

u∗
i ρ̄i(x, x

∗) + ρ̃(x, x∗) ≥ 0 for all x ∈ F;

(f) (i) for each i ∈ I+, the function ξ → fi(ξ)− λ∗gi(ξ) +
∑r

k=1 v
∗
kHk(ξ, s) is (F , β, ϕ̄i, ρ̄i, θ,m)-

pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
(ii) the function ξ →

∑q
j=1 v

∗
jGj(ξ) is (F , β, ϕ̃, ρ̃, θ,m)-quasisounivex at x∗, ϕ̃ is increasing, and ϕ̃(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) + ρ̃(x, x∗) ≥ 0 for all x ∈ F;
(g) (i) for each i ∈ I+, the function ξ → fi(ξ)− λ∗gi(z) +

∑r
k=1 v

∗
kHk(ξ, s) is (F , β, ϕ̄i, ρ̄i, θ,m)-

pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
(ii) for each j ∈ q, the function ξ → v∗jGj(ξ, t) is (F , β, ϕ̃j , ρ̃j , θ,m)-quasisounivex at x∗, ϕ̃j is increasing,

and ϕ̃j(0) = 0;
(iii)

∑
i∈I+

u∗
i ρ̄i(x, x

∗) +
∑q

j=1 ρ̃j(x, x
∗) ≥ 0 for all x ∈ F;

(h) (i) for each i ∈ I+, the function ξ → fi(ξ)− λ∗gi(ξ) +
∑q

j=1 v
∗
jGj(ξ, t) is (F , β, ϕ̄i, ρ̄i, θ,m)-

pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
(ii) for each k ∈ r, ξ → w∗

kHk(ξ, s) is (F , β, ϕ̃k, ρ̃k, θ,m)-quasisounivex at x∗ and ϕ̃k(0) = 0;
(iii)

∑
i∈I+

u∗
i ρ̄i(x, x

∗) +
∑r

k=1 ρ̃k(x, x
∗) ≥ 0 for all x ∈ F;

(i) (i) for each i ∈ I+, the function ξ → fi(ξ)− λ∗gi(ξ) +
∑

j∈J0
v∗jGj(ξ, t) +

∑r
k=1 v

∗
kHk(ξ, s) is

(F , β, ϕ̄i, ρ̄i, θ,m)-pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
(ii) the function ξ →

∑
j∈J1

v∗jGj(ξ, t) is (F , β, ϕ̃, ρ̃, θ,m)-quasisounivex at x∗, ϕ̃ is increasing, and
ϕ̃(0) = 0;

(iii)
∑

i∈I+
u∗
i ρ̄i(x, x

∗) + ρ̃(x, x∗) ≥ 0 for all x ∈ F;

(j) (i) for each i ∈ I+, ξ → fi(ξ)− λ∗gi(ξ) +
∑q

j=1 v
∗
jGj(ξ, t) +

∑
k∈K0

v∗kHk(ξ, s) is (F , β, ϕ̄i, ρ̄i, θ,m)-
pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;

(ii) the function ξ →
∑

k∈K1
v∗kHk(ξ, s) is (F , β, ϕ̃, ρ̃, θ,m)-quasisounivex at x∗, ϕ̃ is increasing, and

ϕ̃(0) = 0;
(iii)

∑
i∈I+

u∗
i ρ̄i(x, x

∗) + ρ̃(x, x∗) ≥ 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).

Proof
In general proofs follow based on appropriate manipulations, while comparing parts (f) and (g) of the above
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corollary, we observe that they represent two extreme cases with respect to the (F , β, ϕ, ρ, θ,m)-quasisounivexity
assumptions in the sense that in (f) all the functions ξ → v∗jGj(ξ), are lumped together, whereas in (g) separate
(F , β, ϕ, ρ, θ,m)-quasisounivexity conditions are imposed on the individual functions.

3. Concluding Remarks

We have established several sets of generalized second-order parametric sufficient optimality criteria for a
semiinfinite discrete minmax fractional programming problem using a variety of generalized (F , β, ϕ, ρ, θ,m)-
sounivexity assumptions. These optimality results can be applied to constructing various duality models as well as
for developing new algorithms for the numerical solution of minmax fractional programming problems. The results
investigated in this communication seem to be applicable to further generalizations and challenging applications
to higher order exponential type (F , β, ϕ, ρ, θ,m)-sounivexities based on the recently introduced notion of the
Hanson-Antczak type invexities by Zalmai [8].
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