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Abstract In this paper, the general equation form of a thermal explosion in a vessel with boundary values is firstly
presented, later the central difference method and Newton iteration method are used to solve the relevant partial differential
equations in one-dimensional and two-dimensional forms, finally the order of convergence of the numerical scheme is
verified by numerical experiments and the experiment results are provided.
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1. Introduction

In a vessel containing a mixture of reacting species the temperature can increase tremendously, causing great
damage to the plant where it is situated. To be more precise, if an exothermic reaction takes place, heat is released,
which causes an increase of temperature. Often, the reaction rate increases with increasing temperature, leading to
more production of heat, etc. In this way we get a self-accelerating chemical reaction, which continues until the
reactant is depleted. Some mixtures can be characterized by the existence of a critical temperature, below which
there is virtually no reaction, whereas above this temperature the reaction proceeds extremely fast. Thus at the
critical temperature the reaction rate changes very suddenly, practically discontinuously. This process is called a
thermal explosion( [1, 2, 3, 4, 5, 6, 7]). In this paper we study a simple model for this type of process.

An example of a boundary value problem(BVP) describing the onset of a thermal explosion in a vessel Ω is the
following [2]: {

a∇2T +Qk(T ) = 0, x ∈ Ω;
T (x) = T0, x ∈ ∂Ω

(1)

where T (x) is the temperature in the vessel([T ] = K). Equation (1) is a reaction-diffusion equation and
determines the balance between conduction(thermal diffusion) and heat production by chemical reactions. Other
variables/parameters in the BVP (1) are the ambient temperature T0([T0] = K), the thermal diffusivity a([a] =
m2/s), the heat release parameter Q([Q] = K) and the reaction rate k = k(T )([k] = s−1), given by the expression

k(T ) = Ae−Ta/T , (2)
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where A is the pre-exponential factor ([A] = s−1) and Ta the activation temperature ([Ta] = K). It is customary to
rewrite equation (1) in terms of the dimensionless variables u and x∗, defined by

u(x∗) :=
Ta

T0

T (x)− T0

To
, x∗ :=

x

ℓ
, (3)

where ℓ is a characteristic dimension of the vessel. To first order approximation, We can easily obtain

∇2u+ qeu = 0, q =
QAℓ2Tae

−θ

aT0
2 , θ =

Ta

T0
. (4)

A solution of equation (4) exists if q is small enough, i.e.,q < q∗ for some critical value q∗, meaning that chemical
heat production can be entirely balanced by conduction. However, for increasing q the solution of equation (4)
suddenly does not exist anymore. This phenomenon is referred to as a thermal explosion. Since (4) is a nonliear
problem, [7] suggests we should use one of the following approaches: Newton iteration, Gauss-Jacobi iteration and
transient methods. In this paper, we would first use central difference scheme to discretize the nonlinear equation
(4), later use Newton iteration method ([8, 9, 10]) to solve the nonlinear system of equations.

The paper is organized as the following: in section 2, the one-dimensional case of equation (4) is proposed
and the solution is given analytically, later we use central difference method and Newton iteration method as the
numerical algorithm to solve this equation, specially we use numerical experiments to obtain the threshold value
of parameter q and the convergence order of the algorithm by Richardson extrapolation method; in section 3, the
two-dimensional case of equation (4) is proposed and again we use the same algorithm as in section 2 to solve the
equation numerically with different values of parameter q, the numerical experiment results are listed as a table and
several figures; finally the conclusion is given in section 4.

2. Solve One-dimensional thermal Explosion Model

Consider the following one-dimensional BVP of (4){
u′′ + qeu = 0, x ∈ (0, 1),
u′(0) = 0, u(1) = 0.

(5)

In this section, we will give the analytic solution of equation (5), later use central difference method and
Newton iteration method to compute the numerical solution of this equation, finally use Richardson extrapolation
to compute the convergence order of the numerical scheme.

2.1. Analytic solution

The solution of equation (5) can be found by subsequently multiplying equation with u′, integrate, isolate u′ and
integrate again. This solution is given by

u(x) = ln(
2µ2

q
)− 2ln(cosh(µx)), (6)

where the parameter µ satisfies the relation
coshµ =

√
2/qµ. (7)

2.2. Central difference and Newton iteration Scheme

In order to compute the numerical solution of equation (5), we introduce the grid

xj = (j − 1)∆x, j = 1, 2, · · · ,M, (8)
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where ∆x = 1/(M − 1) is the grid size. We first use standard central differences for all derivatives in equation (5).
Let uj denote the numerical approximation of u(xj) and let u := (u1, u2, · · · , uM−1) be the vector of unknowns.
Specially, we introduce the virtual point x0 and apply the central difference to discretise the Robin boundary
condition at the left boundary as

u2 − u0

2∆x
= u′(0) = 0 (9)

Thus we have
u0 = u2. (10)

The resulting nonlinear system of algebraic equations can be written in the form

N(u) := Au + f(u) = 0, (11)

where

f(u) = q · diag(eu1 , eu2 , · · · , euM−1), A =
1

∆x2



−2 2 0 · · · 0

1 −2 1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 1 −2


. (12)

Now we would use Newton iteration scheme to solve equation (11). First give a suitable initial guess. Solve{
u′′ + q = 0, x ∈ (0, 1),
u′(0) = 0, u(1) = 0,

(13)

we obtain
u0 =

q

2
(1− x2). (14)

The Newton iteration scheme to solve equation (11) is the following:

given, u0,
solve J(ul)sl = −N(ul),
ul+1 = ul + sl,

(15)

with

u0 =
q

2
(1− x2), J(u) =

∂N(u)

∂u
= (

∂Ni(u)

∂uj
), sl = −N(ul)

J(ul)
. (16)

2.3. Numerical scheme to compute threshold value of Parameter q

The numerical experiment result shows that the threshold value of parameter q is 0.878. The numerical scheme to
compute threshold value of Parameter q is the following:
Input:grid size ∆x,maxit(maximum iteration),tol(tolerance).
Parameters:q = 0.87 : 0.001 : 0.88.
Output:threshold value of parameter q∗.
u0 := q

2 (1− x2);
for l =: 1 to length(q) do
solve J(ul)sl = −N(ul),
ul+1 = ul + sl;
F = A ∗ ul+1 + f(ul+1);
nF = norm(F, 2);
conv=(nF < tol|(l == maxit));
end
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if (nF > tol)
q∗ = q(l − 1);
break
else
continue
end
q∗

2.4. Numerical results

Due to the nonlinearity of the problem, convergence is difficult to prove. Instead, we verify the order of convergence
by numerical experiments. Using Richardson Extrapolation method, the order of convergence can be computed by

p =
ln(∥u1−ue∥∞

∥u2−ue∥∞
)

ln2
, (17)

where ue represents the analytic solution from equation (6), u1, u2 represents numerical solutions from different
grid sizes. Numerical experiments show that the order of convergence is 2, refer to the appendix A. We have
solved equation (5) for several values of q between 0.5 and the threshold value 0.878 on a grid with ∆x = 0.01.
Convergence is very fast; normally 3 to 5 iterations are needed for tol = 10−4. The experiment results are shown
in the figure 1.
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Figure 1. Convergence Speed for different values of parameter q
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3. Solve Two-dimensional thermal Explosion Model

We consider the following two-dimensional BVP:
∂2u
∂x2 + ∂2u

∂y2 + qeu = 0, x ∈ (0, ℓ), y ∈ (0, 1),

u(0, y) = 0, u(ℓ, y) = g(y), y ∈ (0, 1),
∂u
∂y (x, 0) =

∂u
∂y (x, 1) = 0, x ∈ (0, ℓ),

(18)

representing a rectangular vessel of aspect ratio ℓ with the horizontal walls isolated. For the boundary function g(y)
we take

g(y) =

{
0, if y ∈ [0, 1

2 )
1, if y ∈ [ 12 , 1].

(19)

3.1. Numerical scheme

For the numerical scheme of equation (18) we use the following grid

(xj , yk) = ((j − 1)∆x, (k − 1)∆y), j = 1, 2, · · · ,M, k = 1, 2, · · · , N, (20)

with ∆x = ℓ/(M − 1) and ∆y = 1/(N − 1) the grid sizes in x− and y− direction, respectively. We denote the
numerical approximation of u(xj , yk) by uj,k. Similar to one-dimensional case, we use standard central differences
for all derivatives in equation (18). The resulting nonlinear system of algebraic equations can be written in the form

N(U) = AU + bb+ qeU = 0, (21)

where

AN×N =



B 2
∆y2 I O · · · O

1
∆y2 I B 1

∆y2 I
. . .

...

O
. . . . . . . . . O

...
. . . 1

∆y2 I B 1
∆y2 I

O O O 2
∆y2 I B


, (22)

B(M−2)×(M−2) = diag(−2(
1

∆x2
+

1

∆y2
), · · · ,−2(

1

∆x2
+

1

∆y2
), 0), (23)

bb =


b1
b2
...
bN

 , U =


u1

u2

...
uN

 , bi =


0
0
...

1
∆y2 g(yi)

 , ui =


u2i

u3i

...
u(M−1)i

 , i = 1, 2, · · · , N. (24)

Now we would use Newton iteration scheme to solve equation (21). First give a suitable initial guess. Solve{
AU + bb+ q = 0,
eU = 1,

(25)

we obtain
U0 = −A−1(bb+ q · −→e ). (26)

The Newton iteration scheme to solve equation (21) is the following:

given U0,
solve J(U l)sl = −N(U l),

U l+1 = U l + sl,
(27)

with

U0 = −A−1(bb+ q · −→e ), J(U) = A+ q · diag(eU ), sl = −N(U l)

J(U l)
. (28)
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3.2. Numerical results

Similar to numerical scheme for one-dimensional case, we use central difference method and Newton iteration
method to solve equation (18). Let parameter q be 0.8, 0.5, 0.3 respectively, given ℓ = 1, grid sizes ∆x = ∆y = 0.1,
we could obtain the number of iterations, solutions and the residues as the following table (Table I) and figures
(Fig. 2, Fig. 3, Fig. 4):

q ℓ ∆x ∆y number of iterations residue
0.8 1 0.1 0.1 3 1.37145172e-013
0.5 1 0.1 0.1 2 1.25775777e-009
0.3 1 0.1 0.1 2 2.03563927e-011

Table I. Number of iterations and residues of numerical experiments with different values of parameter q
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Figure 2. Solution with q = 0.8
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Figure 3. Solution with q = 0.5
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Figure 4. Solution with q = 0.3

4. Conclusion

We have considered a nonlinear boundary value problem describing the onset of a thermal explosion in a
vessel in one-dimensional and two-dimensional forms. Numerical experiments show that Central different method
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combining Newton iteration method is suitable to solve the thermal explosion model (4) if we find a suitable initial
guess. In one-dimensional case (5), Richardson extrapolation shows that the convergence order of our algorithm
is 2, the numerical experiment result shows that the threshold value of parameter q is 0.878; in two-dimensional
case (18), numerical experiments show that the number of iterations of our algorithm are less or equal to 3 and the
residues are small.
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A. First Appendix

% V e r i f y t h e o r d e r o f a c c u r a c y o f t h e c e n t r a l d i f f e r e n c e scheme by comput ing
nu−m e r i c a l s o l u t i o n s o f one−d i m e n s i o n a l case f o r s e v e r a l v a l u e s o f t h e

g r i d s i z e d e l t a x . ( Use R i c h a r d s o n Ex− t r a p o l a t i o n t o compute t h e a c c u r a c y
o r d e r )

c l e a r a l l ; format l on g e ;
% P h y s i c a l p a r a m e t e r s
q = 0 . 5 ;
% Use Newton ’ s method t o compute parame te r mu
mu = 0 ;
f o r k = 1 :20

mu = mu − ( cosh (mu) −(2/ q ) ˆ ( 1 / 2 ) ∗mu) / ( s inh (mu) −(2/ q ) ˆ ( 1 / 2 ) ) ;
end
% Numer ica l p a r a m e t e r s and g r i d
Nxv = 1 1 : 1 0 : 5 1 ;
f o r j = 1 : l e n g t h ( Nxv )
Nx = Nxv ( j ) ;
d e l t a x = 1 / ( Nx−1) ; a l p h a = 1 / ( d e l t a x ˆ 2 ) ;
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x = l i n s p a c e ( 0 , 1 , Nx ) ’ ;
max i t = 5 0 ; t o l = 1e−4;
f o r i = 1 : Nx

uexac ( i , 1 ) = l o g (2∗mu ˆ 2 / q )−2∗ l o g ( cosh (mu∗ ( i −1)∗ d e l t a x ) )
end
% COMPUTE THE INITIAL GUESS
f o r i =1 :Nx

u ( i , 1 ) =1/2∗ q ∗ (1 − ( ( i −1)∗ d e l t a x ) ˆ 2 ) ;
end
Nmax=Nx−1;
% COMPUTE THE COEFFICIENT MATRIX (CONSTANT PART OF THE JACOBI MATRIX )
e= ones ( Nmax , 1 ) ;
A= s p d i a g s ( [ e ,−2∗e , e ] , [ −1 : 1 ] , Nmax , Nmax) ;
A( 1 , 2 ) =2;
% COMPUTE INITIAL RESIDU
f o r i =1 :Nmax

f ( i , 1 ) =q∗exp ( u ( i ) ) ;
end
F= a l p h a ∗A∗u ( 1 : Nmax , 1 ) + f ;
nF = norm ( F , 2 ) ;
conv = ( nF< t o l ) ;
% Newton i t e r a t i o n
whi le ( ˜ conv )
% UPDATE JACOBI MATRIX

Nu= a l p h a ∗A∗u ( 1 : Nmax , 1 ) + f ;
Ju= a l p h a ∗A+ diag ( f ) ;
su=−Ju \Nu ;

% UPDATE SOLUTION
u ( 1 : Nmax , 1 ) =u ( 1 : Nmax , 1 ) +su ;

% COMPUTE NEW RESIDUE
f o r i =1 :Nmax

f ( i , 1 ) =q∗exp ( u ( i ) ) ;
end
F= a l p h a ∗A∗u ( 1 : Nmax , 1 ) + f ;
nF = norm ( F , 2 ) ;

% CHECK CONVERGENCE
conv = ( nF< t o l ) ;

end
aa ( j ) = norm ( u−uexac , i n f ) ;
% Numer ica l p a r a m e t e r s and g r i d
c l e a r x uexac u e A f F ;
Nx = ( ( Nx−1) / 2 ) +1 ;
d e l t a x = 1 / ( Nx−1) ; a l p h a = 1 / ( d e l t a x ˆ 2 ) ;
x = l i n s p a c e ( 0 , 1 , Nx ) ’ ;
max i t = 5 0 ; t o l = 1e−4;
f o r i = 1 : Nx

uexac ( i , 1 ) = l o g (2∗mu ˆ 2 / q )−2∗ l o g ( cosh (mu∗ ( i −1)∗ d e l t a x ) )
end
% COMPUTE THE INITIAL GUESS
f o r i =1 :Nx
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u ( i , 1 ) =1/2∗ q ∗ (1 − ( ( i −1)∗ d e l t a x ) ˆ 2 ) ;
end
Nmax=Nx−1;
e= ones ( Nmax , 1 ) ;
A= s p d i a g s ( [ e ,−2∗e , e ] , [ −1 : 1 ] , Nmax , Nmax) ;
A( 1 , 2 ) =2;
% COMPUTE INITIAL RESIDU
f o r i =1 :Nmax

f ( i , 1 ) =q∗exp ( u ( i ) ) ;
end
F= a l p h a ∗A∗u ( 1 : Nmax , 1 ) + f ;
nF = norm ( F , 2 ) ;
conv = ( nF< t o l ) ;
% Newton i t e r a t i o n
whi le ( ˜ conv )
% UPDATE JACOBI MATRIX

Nu= a l p h a ∗A∗u ( 1 : Nmax , 1 ) + f ;
Ju= a l p h a ∗A+ diag ( f ) ;
su=−Ju \Nu ;

% UPDATE SOLUTION
u ( 1 : Nmax , 1 ) =u ( 1 : Nmax , 1 ) +su ;

% COMPUTE NEW RESIDUE
f o r i =1 :Nmax

f ( i , 1 ) =q∗exp ( u ( i ) ) ;
end
F= a l p h a ∗A∗u ( 1 : Nmax , 1 ) + f ;
nF = norm ( F , 2 ) ;

% CHECK CONVERGENCE
conv = ( nF< t o l ) ;

end
bb ( j ) = norm ( u−uexac , i n f ) ;
p ( j ) = l o g ( bb ( j ) / aa ( j ) ) / l o g ( 2 ) ; % p i s t h e o r d e r o f a c c u r a c y .
end
p ;
cc = [ Nxv ; aa ; bb ; p ]
% o u t p u t
% cc =
%
%1.100000000000000 e+001 2.100000000000000 e+001 3.100000000000000 e+001

4.100000000000000 e+001 5.100000000000000 e+001
%2.228472360061851 e−004 5.552813994164074 e−005 2.459576623742299 e−005

1.377331199431398 e−005 8.764741851519098 e−006
%8.969730322724301 e−004 2.228472360061851 e−004 9.886105882034313 e−005

5.552813994164074 e−005 3.548208989917479 e−005
%2.009009543606431 e+000 2.004764092130551 e+000 2.006992357729300 e+000

2.011343551631928 e+000 2.017307482107969 e+000
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