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Abstract Problem Statement: The two-parameter exponentiated Rayleigh distribution
has been widely used especially in the modelling of life time event data. It provides a
statistical model which has a wide variety of application in many areas and the main
advantage is its ability in the context of life time event among other distributions. The
uniformly minimum variance unbiased and maximum likelihood estimation methods are
the ways to estimate the parameters of the distribution. In this study, we explore and
compare the performance of the uniformly minimum variance unbiased and maximum
likelihood estimators of the reliability functions R(t) = P (X > t) and P = P (X >
Y ) for the two-parameter exponentiated Rayleigh distribution. Approach: A new
technique of obtaining the estimators of these parametric functions is introduced in
which major role is played by the estimators of powers of the parameter(s) and the
functional forms of the parametric functions to be estimated are not needed. We
explore the performance of these estimators numerically under varying conditions.
Through the simulation study a comparison are made on the performance of these
estimators with respect to the bias, mean square error (MSE), 95% confidence length
and corresponding coverage percentage. Conclusion: Based on the results of simulation
study, the uniformly minimum variance unbiased estimators of R(t) and ‘P ’ for the two-
parameter exponentiated Rayleigh distribution are found to be superior than maximum
likelihood estimators of R(t) and ‘P ’.
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1. Introduction

Reliability theory is mainly concerned with the determination of the probability
that a system, consisting possibly of several components, will operate adequately
for a given period of time in its intended application. The reliability function R(t)
is defined as the probability of failure-free operation until time t. Thus, if the
random variable (rv) X denotes the lifetime of an item, then R(t) = P (X > t).
Another measure of reliability under stress-strength set-up is the probability
P = P (X > Y ), which represents the reliability of an item of random strength
X subject to random stress Y . Many researchers have considered the problems of
estimation of R(t) and ‘P ’ for various lifetime distributions and for a brief review,
one may refer to [3, 4, 5, 13, 16, 24, 2, 28, 10, 18, 29, 8, 9],etc.

In [7], Burr introduced twelve different forms of cumulative distribution
functions for modelling lifetime data. Among those distributions, Burr Type X
and Burr Type XII are the most popular ones. Several authors considered different
aspects of the Burr Type X and Burr Type XII distributions, see, for example,
[21, 23, 30, 11, 12, 1, 19, 25]. For an excellent review for the two distributions the
readers are refereed to [15].

[26] (see also [27]) introduced two-parameter Burr Type X distribution and
named as the two-parameter exponentiated Rayleigh distribution. The two-
parameter exponentiated Rayleigh distribution has the following probability
density function (pdf)

f(x;α, λ) = 2αλ2xe−(λx)2(1− e−(λx)2)α−1; x, α, λ > 0 (1)

and the distribution function

F (x;α, λ) = {1− e−(λx)2}α; x, α, λ > 0. (2)

Here, α and λ are the shape and scale parameters, respectively. In [20], the authors
observed that for α ≤ 1/2, the pdf of two-parameter exponentiated Rayleigh
distribution is a decreasing function and it is a right skewed unimodal function for
α > 1/2. They found different forms of the density function. It is also observed
that the hazard function of a two-parameter exponentiated Rayleigh distribution
can be either bathtub type or an increasing function, depending on the shape
parameter α. For α ≤ 1/2, the hazard function of two-parameter exponentiated
Rayleigh distribution is bathtub type and, for α > 1/2, it has an increasing hazard
function. Surles and Padgett [26] showed that the two-parameter exponentiated
Rayleigh distribution can be used quite effectively in modelling strength data and
also modelling general lifetime data. Kundu and Raqab [17] proposed different
methods of estimation for generalized Rayleigh distribution.

The rest of the study is arranged as follows. In Section 2, we derive the
UMVUES of the reliability function R(t) and ‘P ’ assuming α to be unknown
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but λ known. In Section 3, we obtain the MLES of the reliability function R(t)
and ‘P ’, when all the parameters are unknown. In Section 4, simulation study
is carried out to investigate the performance of estimators. Finally, In Section 5,
discussion is made and followed by conclusion.

2. UMVUES of the powers of α, R(t) and ‘P ’ when λ is known

Let X1, X2, . . . , Xn be a random sample of size n from (1).

Lemma 1
Let S = −

n∑
i=1

ln{1− e−(λxi)
2}. Then, S is complete and sufficient for the

distribution given at (1). Moreover, the pdf of S is

h(s;α) =
αn

Γ(n)
sn−1 exp(−αs); s > 0.

Proof
From (1), the joint pdf of X1, X2, . . . , Xn is

h(x1, x2, . . . , xn;α, λ)

=

n∏
i=1

f(xi;α, λ)

= (2αλ2)n

{
n∏

i=1

xi

}
exp

{
−λ2

n∑
i=1

x2
i

}
exp

{
(α− 1)

n∑
i=1

ln
{
1− e−(λxi)

2
}}

= (2αλ2)n

{
n∏

i=1

xi

}
exp

{
−λ2

n∑
i=1

x2
i

}{
n∏

i=1

1

{1− e−(λxi)2}

}
exp(−αs).

(3)

It follows from (3) and Fisher-Neymann factorization theorem [see [22], p. 341]
that S is sufficient for the distribution given in (1). In (1), if we make the
transformation Y = {1− e−(λX)2}, then the pdf of Y is

g(y;α) = αyα−1; 0 < y < 1.

Letting lnY = Z, the pdf of Z is

g(z;α) = eαz; −∞ < z < 0.

Further, letting, −2αZ = V , the pdf of V is

g(v;α) =
1

2
e−v/2; 0 < v < ∞,
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which is χ2
(2). Thus, from the additive property of gamma distribution [see [14],

p. 170]

2αS = −2α

n∑
i=1

ln{1− e−(λXi)
2

∼ χ2
(2n). (4)

Hence, the distribution of S follows from (4). Since the distribution of S belongs
to exponential family, it is also complete [see [22], p. 170].

The following lemma provides the UMVUES of the powers of α.

Theorem 1
For q ∈ (−∞,∞), the UMVUE of αq is

α̂q =


Γ(n)

Γ(n− q)
S−q; q < n,

0; otherwise.

Proof
From (4),

E(2αS)−q = E[χ2
(2n)]

−q

=
1

2nΓ(n)

∞∫
0

e−y/2yn−q−1dy

=
Γ(n− q)

2qΓ(n)
; q < n,

or,

E

[
S−q

{
Γ(n)

Γ(n− q)

}]
= αq.

Hence, the theorem follows from Lehmann-Scheffé theorem [see [22],
p. 357].

In the following lemma, we provide the UMVUE of the sampled pdf (1) at
specified point ‘x’.

Lemma 2
The UMVUE of f(x;α, λ) at a specified point ‘x’ is

f̂(x;α, λ)

=


2(n− 1)λ2S−1xe−(λx)2(1− e−(λx)2)−1(1 + S−1 ln{1− e−(λx)2})n−2;

−S < ln{1− e−(λx)2},
0; otherwise.
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Proof
Since S is complete and sufficient for the distribution f(x;α, λ), any function
H(S) of S satisfying E[H(S)] = f(x;α, λ) will be the UMVUE of f(x;α, λ).
From (1) and Lemma 1, we have

E[H(S)] = f(x;α, λ),

or,
∞∫
0

H(s)
αn

Γ(n)
sn−1e−αsds = 2αλ2xe−(λx)2{1− e−(λx)2}α−1,

or,

αn

Γ(n)

∞∫
0

H(s)sn−1e−αsds = 2αλ2xe−(λx)2(1− e−(λx)2)−1 exp(α ln{1− e−(λx)2}),

or,

αn

Γ(n)

∞∫
0

H(s)sn−1 exp[−α(s+ ln{1− e−(λx)2})]ds

= 2αλ2xe−(λx)2{1− e−(λx)2}−1. (5)

Let us choose

H(s) =


2(n− 1)λ2s−1xe−(λx)2(1− e−(λx)2)−1(1 + s−1 ln{1− e−(λx)2})n−2;

−s < ln{1− e−(λx)2},
0; otherwise.

Then,

LHS of (2.3) =
2(n− 1)αnλ2xe−(λx)2{1− e−(λx)2}−1

Γ(n)

·
∞∫

− ln{1−e−(λx)2}

(s+ ln{1− e−(λx)2})n−2

· exp[−α(s+ ln{1− e−(λx)2})]ds

=
2(n− 1)αnλ2xe−(λx)2{1− e−(λx)2}−1

Γ(n)

∞∫
0

yn−2 exp(−αy)dy

= RHS.

Hence the lemma holds.

Stat., Optim. Inf. Comput. Vol. 2, December 2014.



310 A. PATHAK AND A. CHATURVEDI

Remark 1
We can write (1) as

f(x;α, λ) = 2αλ2xe−(λx)2(1− e−(λx)2)−1 exp(α ln{1− e−(λx)2})

= 2αλ2xe−(λx)2(1− e−(λx)2)−1
∞∑
i=0

(ln{1− e−(λx)2})i

i!
αi+1. (6)

Using (2.4), Theorem 1 and Lemma 1 of Chaturvedi and Tomer (2002), UMVUE
of f(x;α, λ) at a specified point ‘x’ is

f̂(x;α, λ)

= 2λ2xe−(λx)2(1− e−(λx)2)−1
∞∑
i=0

(ln{1− e−(λx)2})i

i!
α̂i+1

= 2λ2xe−(λx)2(1− e−(λx)2)−1
∞∑
i=0

(ln{1− e−(λx)2})i

i!

{
Γ(n)

Γ(n− i− 1)

}
S−(i+1)

= 2(n− 1)λ2S−1xe−(λx)2(1− e−(λx)2)−1
n−2∑
i=0

(
n− 2

i

)
(S−1 ln{1− e−(λx)2})i

=


2(n− 1)λ2S−1xe−(λx)2(1− e−(λx)2)−1(1 + S−1 ln{1− e−(λx)2})n−2;

−S < ln{1− e−(λx)2},
0; otherwise,

which coincide with Lemma 2. Thus, the UMVUES of the powers of α can be
used to derive the UMVUE of f(x;α, λ) at a specified point ‘x’.

In the following theorem, we obtain UMVUE of R(t).

Theorem 2
The UMVUE of R(t) is given by

R̂(t) =

{
1− (1 + S−1 ln{1− e−(λt)2})n−1; −S < ln{1− e−(λt)2},
0; otherwise.

Proof
Since F (x, s) = f(x;α, λ)h(s;α) is a continuous function of (X,S) on the
rectangle [t,∞)× [0,∞), the conditions of Fubini’s theorem [see Bilodeau et al
([6], p.207)] are satisfied for the change of order of integration. Let us consider
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the expected value of the integral
∞∫
t

f(x;α, λ)dx with respect to S, i.e.,

∞∫
0

{
∞∫
t

f̂(x;α, λ)dx}h(s;α)ds =
∞∫
t

[ES{f̂(x;α, λ)}]dx

=

∞∫
t

f(x;α, λ)dx

= R(t). (7)

We conclude from (7) that the UMVUE of R(t) can be obtained simply integrating
f̂(x;α, λ) from t to ∞. Thus, from Lemma 2,

R̂(t) = 2(n− 1)S−1

∞∫
t

λ2xe−(λx)2{1− e−(λx)2}(1 + S−1 ln{1− e−(λx)2})n−2dx;

− S < ln{1− e−(λx)2}

= (n− 1)

0∫
S−1 ln{1−e−(λt)2}

(1 + y)n−2dy

and the theorem follows.

Let X and Y be two independent rv’s following the distributions f1(x;α1, λ1)
and f2(y;α2, λ2), respectively, where

f1(x;α1, λ1) = 2α1λ
2
1xe

−(λ1x)
2

(1− e−(λ1x)
2

)α1−1; x > 0, α1, λ1 > 0

and

f2(y;α2, λ2) = 2α2λ
2
2ye

−(λ2y)
2

(1− e−(λ2y)
2

)α2−1; y > 0, α2, λ2 > 0.

Here, we assume that α1 and α2 are unknown but λ1 and λ2 are known.
Let X1, X2, . . . , Xn be a random sample of size n from f1(x;α1, λ1) and
Y1, Y2, . . . , Ym be a random sample of size m from f2(y;α2, λ2). Let us denote

by S = −
n∑

i=1

ln{1− e−(λ1xi)
2} and T = −

m∑
j=1

ln{1− e−(λ2yj)
2}.

In what follows, we obtain the UMVUE of ‘P ’.
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Theorem 3
The UMVUE of ‘P ’ is given by

P̂ =



1− (m− 1)

1∫
0

(1 + S−1 ln{1− (1− e−Tv)λ
2
1/λ

2
2}n−1(1− v)m−2dv;

[−λ−2
2 ln(1− e−T )]1/2 > [−λ−2

1 ln(1− e−S)]1/2,

1− (m− 1)

−S−1 ln{1−(1−e−S)λ
2
2/λ2

1}∫
0

(1 + S−1 ln{1− (1− e−Tv)λ
2
1/λ

2
2})n−1

· (1− v)m−2dv;

[−λ−2
2 ln(1− e−T )]1/2 < [−λ−2

1 ln(1− e−S)]1/2.

Proof
It follows from Lemma 2 that the UMVUES of f1(x;α1, λ1) and f2(y;α2, λ2) at
specified points ‘x’ and ‘y’, respectively, are

f̂1(x;α1, λ1) =


2(n− 1)λ2

1S
−1xe−(λ1x)

2

· (1− e−(λ1x)
2

)−1(1 + S−1 ln{1− e−(λ1x)
2})n−2;

−S < ln{1− e−(λ1x)
2},

0; otherwise.

(8)

and

f̂2(y;α2, λ2) =


2(m− 1)λ2

2T
−1xe−(λ2y)

2

· (1− e−(λ2x)
2

)−1(1 + T−1 ln{1− e−(λ2y)
2})m−2;

−T < ln{1− e−(λ2y)
2},

0; otherwise.

(9)

From the arguments similar to those adopted in the proof of Theorem 2, it can be
shown that the UMVUE of ‘P ’ is given by

P̂ =

∞∫
y=0

∞∫
x=y

f̂1(x;α1, λ1)f̂2(y;α2, λ2)dxdy

=

∞∫
y=0

R̂1(y;α1, λ1)f̂2(y;α2, λ2)dy.
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Applying Lemma 2 and Theorem 2, we get

P̂ = 1− (m− 1)λ2T
−1·

∞∫
y=max{[−λ−2

2 ln(1−e−T )]1/2,[−λ−2
1 ln(1−e−S)]1/2}

{1 + S−1 ln{1− e−(λ1y)
2

}}
n−1

· λ2
2xe

−(λ2y)
2

(1− e−(λ2x)
2

){1 + T−1 ln{1− e−(λ2y)
2

}}m−2dy. (10)

Let us first consider the case when [−λ−2
2 ln(1− e

−T
)]1/2 > [−λ−2

1 ln(1−
e−S)]1/2. In this case, from (10),

P̂ = 1− (m− 1)

1∫
0

(1 + S−1 ln{1− (1− e
−Tv

)λ
2
1/λ

2
2})n−1(1− v)

m−2
dv.

(11)

Now, we consider the case when [−λ−2
2 ln(1− e

−T
)]1/2 < [−λ−2

1 ln(1− e
−S

)]1/2.
In this case, from (10),

P̂ = 1− (m− 1)

−S−1 ln{1−(1−e−S)λ
2
2/λ2

1}∫
0

× (1 + S−1 ln{1− (1− e−Tv)λ
2
1/λ

2
2})n−1(1− v)

m−2
dv . (12)

The theorem now follows on combining (11) and (12).

Corollary 1
In the case when λ1 = λ2 = λ, say,

P̂ =


1−

n−1∑
i=0

(−1)i (n−1)!(m−1)!
(n−i−1)!(m+i−1)!

(
T
S

)i
; S < T,

1−
m−2∑
j=0

(−1)j (n−1)!(m−1)!
(n+j)!(m−j−2)!

(
S
T

)j+1
; S > T.
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Proof
From Theorem 3, for S < T ,

P̂ = 1− (m− 1)

0∫
1

(
1− T

S
v

)n−1

(1− v)m−2dv

= 1− (m− 1)

1∫
0

n−1∑
i=0

(−1)i
(
n− 1

i

)(
T

S
v

)i

(1− v)m−2dv

= 1− (m− 1)

n−1∑
i=0

(−1)i
(
n− 1

i

)(
T

S

)i
1∫

0

vi+1−1(1− v)m−2dv

= 1− (m− 1)

n−1∑
i=0

(−1)i
(
T

S

)i

B(m− 1, i+ 1)

= 1−
n−1∑
i=0

(−1)i
(n− 1)!(m− 1)!

(n− i− 1)!(m+ i− 1)!

(
T

S

)i

and the first assertion follows. From Theorem 3, for S > T ,

P̂ = 1− (m− 1)

0∫
S/T

(
1− T

S
v

)n−1

(1− v)m−2dv

= 1− (m− 1)

0∫
1

(1− w)n−1

(
1− S

T
w

)m−2 (
S

T

)
vj+1−1(1− v)m−2dw

= 1− (m− 1)

0∫
1

(1− w)n−1
m−2∑
j=0

(−1)j
(
m− 2

j

)(
S

T

)j

(w)j
(
S

T

)
dw

= 1− (m− 1)

m−2∑
j=0

(−1)j
(
m− 2

j

)(
S

T

)j+1

B(n, j + 1)

= 1−
m−2∑
j=0

(−1)j
(n− 1)!(m− 1)!

(n+ j)!(m− j − 2)!

(
S

T

)j+1

and the second assertion follows.

Remark 2
It follows from Theorem 1 that V (α̂) = α2

n−2 → 0 as n → ∞. Thus, α̂ is a
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consistent estimator of α. Since f̂(x;α, λ), R̂(t) and P̂ are continuous functions
of consistent estimators, therefore, they are also consistent estimators.

3. MLES of R(t) and ‘P ’ when all the parameters are unknown

Following the lines of derivations in [17], it can be shown that the MLES of α and
λ are solutions of

α̃(λ) = − n
n∑

i=1

ln(1− e−(λxi)2)

(13)

and

λ̃ =


n∑

i=1

x2
i e

−(λxi)
2

(1−e−(λxi)
2
)

n∑
i=1

ln(1− e−(λxi)2)

+
1

n

n∑
i=1

x2
i +

1

n

n∑
i=1

x2
i e

−(λxi)
2

(1− e−(λxi)2)


−1

, (14)

respectively.
From one-to-one property, MLES of f(x;α, λ), R(t) and ‘P ’ are given,

respectively, by f̃(x;α, λ), R̃(t) and P̃ , where

f̃(x;α, λ) = 2α̃λ̃2xe−(λ̃x2)(1− e−(λ̃x)2)α̃−1,

R̃(t) =

∞∫
t

f̃(x;α, λ)dx

= 2α̃λ̃2

∞∫
t

xe−(λ̃x2)(1− e−(λ̃x)2)α̃−1dx = α̃

1∫
(1−e−(λ̃t)2 )

uα̃−1du

= 1− {1− e−(λ̃t)2}α̃
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and

P̃ =

∞∫
y=0

∞∫
x=y

f̃1(x;α1, λ1)f̃2(y;α2, λ2)dxdy

=

∞∫
0

(1− R̃2(x))f̃1(x;α1, λ1)dx

= 2α̃1λ̃
2
1

∞∫
0

[1− e−(λ̃2x)
2

]α̃2x2e−(λ̃1 x2)(1− e−(λ̃1x)
2

)α̃1−1dx

= α̃1

1∫
0

[1− (1− u)λ̃
2
2/λ̃

2
1 ]α̃2uα̃1−1du

It can also be easily verified that when λ1 = λ2 = λ, say,

P̃ =
α̃1

α̃1 + α̃2
.

Remarks 1(i) In the literature, the researchers have dealt with the estimation of
R(t) and ‘P ’, separately. If we look at the proof of Theorems 2 and 3,
we observe that the UMVUE of the sampled pdf is used to obtain the
UMVUES of R(t) and ‘P ’, respectively, which is also true for MLES. Thus
we have established interrelationship between the two estimation problems.
Moreover, in the present approach, one does not require the expressions of
R(t) and ‘P ’.

(ii) Since the UMVUES and MLES of powers of α are obtained under same
conditions, we compare their performances. For q = −1 the UMVUE and
MLE of α are, respectively α̂ = (n− 1)(−T )−1 and α̃ = (n)(−T )−1. For
these estimators,

V (α̂) =
α2

n− 2
and V (α̃) =

n2α2

(n− 1)2(n− 2)
.

Thus,

V (α̃)− V (α̂) =
(2n− 1)

(n− 1)(n− 2)
α2 > 0.

Thus, the UMVUE of α is more efficient than its MLE. Similarly, we can
compare the performances of these estimators for other powers of α.
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4. Numerical Findings

In order to compare the efficiency of the estimators α̂ and α̃, when λ is known, we
have calculated variances of α̂ and α̃, for samples of sizes n = 5, 10, 20, 30 and
50 corresponding to α = 0.80(0.60)4.20 and these results are reported in Table 1.
From Table 1, it is clear that α̂ is more efficient than α̃.

Table I

n 5 10 20 30 50
α v(α̂) v(α̃) v(α̂) v(α̃) v(α̂) v(α̃) v(α̂) v(α̃) v(α̂) v(α̃)

0.80 0.2133 0.3333 0.0800 0.0988 0.0356 0.0394 0.0229 0.0245 0.0133 0.0139
1.40 0.6533 1.0208 0.2450 0.3025 0.1089 0.1207 0.0700 0.0749 0.0408 0.0425
2.00 1.3333 2.0833 0.5000 0.6173 0.2222 0.2462 0.1429 0.1529 0.0833 0.0868
2.60 2.2533 3.5208 0.8450 1.0432 0.3756 0.4161 0.2414 0.2584 0.1408 0.1466
3.20 3.4133 5.3333 1.2800 1.5802 0.5689 0.6303 0.3657 0.3914 0.2133 0.2221
3.80 4.8133 7.5208 1.8050 2.2284 0.8022 0.8889 0.5157 0.5519 0.3008 0.3132
4.20 5.8800 9.1875 2.2050 2.7222 0.9800 1.0859 0.6300 0.6742 0.3675 0.3827

Figure 1. Curves of f(x;α, λ), f̂(x;α, λ) and f̃(x;α, λ).

In order to verify the consistency of the estimators obtained, we have drawn
sample of sizes n = 30 from (1), with α = 4 and λ = 3. In Fig. 1, we have
plotted f(x;α, λ), f̂(x;α, λ) and f̃(x;α, λ), respectively, corresponding to this
sample. We conclude from Fig. 1 that curves of f̂(x;α, λ) and f̃(x;α, λ) overlap
to the curve of f(x;α, λ) for n = 30. This justifies the consistency property of the
estimators.

In order to demonstrate the application of the theory developed in Section 3, we
generated a sample of size n = 30 from (1) for α = 4 and λ = 3. Solving (13) and
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Table II. Simulation results for R(t).

t n 5 10 20 50

R(t) R̂(t) R̃(t) R̂(t) R̃(t) R̂(t) R̃(t) R̂(t) R̃(t)

0.9860 0.9710 0.9539 0.9862 0.9780 0.9840 0.9804 0.9872 0.9858

-0.0151 -0.0321 2e-04 -0.0080 -0.0020 -0.0056 0.0011 -2e-04

0.21 0.004515932 0.001552421 8.92585e-05 0.0001760942 0.0001253313 0.0001671481 3.53743e-05 3.64641e-05

0.0792 0.0830 0.0368 0.0417 0.0420 0.0450 0.0228 0.0236

44.9490 92.3063 89.4167 92.2201 90.6114 92.2691 92.9964 93.3348

0.8469 0.8195 0.8278 0.8659 0.8650 0.8511 0.8515 0.8485 0.8483

-0.0274 -0.0191 0.0190 0.0181 0.0041 0.0046 0.0016 0.0013

0.35 0.01147278 0.005809513 0.003760792 0.003122649 0.002368198 0.002151073 0.001233167 0.001281566

0.3232 0.2760 0.2257 0.2057 0.1870 0.1782 0.1379 0.1406

88.0252 93.6421 94.5918 94.7441 94.4698 94.4954 95.0602 95.0570

0.63 0.5396 0.5833 0.5620 0.5829 0.6232 0.6324 0.6351 0.6387

-0.0904 -0.0467 -0.0680 -0.0471 -0.0067 0.0024 0.0051 0.0087

0.45 0.0172604 0.009738878 0.01090285 0.007991645 0.004080048 0.003829112 0.002163839 0.002168776

0.3895 0.3516 0.3002 0.2883 0.2489 0.2423 0.1786 0.1767

93.4056 93.9734 93.8667 94.0039 94.6170 94.6657 94.6296 94.6341

0.5062 0.4364 0.4850 0.5071 0.5297 0.5007 0.5121 0.4987 0.5032

-0.0698 -0.0212 8e-04 0.0234 -0.0055 0.0058 -0.0075 -0.0030

0.50 0.01229542 0.007300615 0.005458611 0.005697628 0.002781147 0.002724515 0.001556892 0.00149941

0.3092 0.2996 0.2847 0.2764 0.2138 0.2112 0.1567 0.1561

91.0011 91.7419 92.8672 93.0910 93.4982 93.5788 95.3514 95.3630

0.388 0.3073 0.3536 0.4323 0.4559 0.3366 0.3476 0.3907 0.3952

-0.0807 -0.0344 0.0444 0.0679 -0.0514 -0.0404 0.0027 0.0073

0.55 0.01107912 0.006118383 0.00668347 0.009234135 0.004913982 0.003954968 0.001140717 0.001191856

0.2710 0.2814 0.2631 0.2611 0.1873 0.1895 0.1319 0.1322

91.6221 92.2515 92.9936 93.2361 94.6500 94.6966 94.7881 94.7959

0.284 0.1920 0.2279 0.2510 0.2605 0.2515 0.2610 0.2753 0.2713

-0.0920 -0.0561 -0.0331 -0.0236 -0.0326 -0.0230 -0.0088 -0.0127

0.60 0.01069158 0.005908907 0.002508747 0.00203283 0.002159625 0.00167466 0.0008977123 0.0009683548

0.1980 0.2206 0.1516 0.1549 0.1329 0.1358 0.1173 0.1163

92.9102 93.3796 94.5525 94.5972 94.6282 94.6683 95.7776 95.7717

0.1991 0.2473 0.2890 0.1691 0.1842 0.2065 0.2149 0.1943 0.1974

0.0482 0.0899 -0.0299 -0.0149 0.0074 0.0158 -0.0048 -0.0016

0.65 0.006273621 0.01268783 0.002110118 0.001602851 0.001165438 0.001423038 0.0007551275 0.0007516422

0.2530 0.2729 0.1395 0.1486 0.1305 0.1341 0.1086 0.1098

92.7658 93.2679 94.0162 94.1039 94.1657 94.1959 95.1725 95.1831

Here, the first row indicates the estimate, the second row indicates the bias, the third row indicates variance, the fourth row indicates 95%

bootstrap confidence length and the fifth row indicates the coverage percentage.
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Table III. Simulation results for ‘P ’.

(α1, α2) (2,1) (2,3) (2,4) (2,5)

P 0.6666667 0.4 (0.3333333) (0.2857143)

(n,m) P̂ P̃ P̂ P̃ P̂ P̃ P̂ P̃

0.6528 0.6370 0.4427 0.4493 0.3154 0.3329 0.2657 0.2858

-0.0139 -0.0297 0.0427 0.0493 -0.0179 -5e-04 -0.0200 1e-04

(5, 5) 0.007232074 0.006763495 0.009493904 0.008494557 0.01030564 0.008504289 0.008154158 0.007051987

0.3046 0.2804 0.3215 0.2864 0.3986 0.3683 0.3375 0.3214

93.0223 93.2512 92.6982 92.8389 92.9623 93.6543 93.0178 93.5448

0.6914 0.6672 0.4054 0.4013 0.3254 0.3271 0.2796 0.2835

0.0247 5e-04 0.0054 0.0013 -0.0080 -0.0062 -0.0061 -0.0022

(10, 5) 0.006541987 0.005484255 0.006334268 0.005335373 0.005240716 0.004533083 0.008068555 0.00717309

0.2972 0.2861 0.2921 0.2688 0.2768 0.2582 0.3345 0.3174

93.8905 94.1889 92.9533 93.0341 93.7132 93.9067 93.2983 93.5995

0.6590 0.6515 0.3835 0.3892 0.3264 0.3344 0.2732 0.2825

-0.0077 -0.0152 -0.0165 -0.0108 -0.0069 0.0011 -0.0125 -0.0032

(10, 10) 0.004755181 0.004579777 0.005455311 0.004852003 0.004134199 0.00381056 0.005270595 0.004904695

0.2652 0.2551 0.2736 0.2620 0.2470 0.2386 0.2724 0.2672

93.9416 94.0369 94.2555 94.3005 94.4152 94.4906 94.2250 94.3466

0.6676 0.6638 0.3909 0.3935 0.3315 0.3352 0.2863 0.2906

9e-04 -0.0029 -0.0091 -0.0065 -0.0018 0.0019 6e-04 0.0049

(20,20) 0.003312423 0.003204202 0.003548195 0.003359474 0.004023466 0.003890517 0.003917004 0.003850783

0.2276 0.2236 0.2243 0.2196 0.2447 0.2407 0.2392 0.2367

94.4945 94.5432 94.3049 94.3128 94.5514 94.5784 94.3957 94.4237

0.6755 0.6724 0.4079 0.4097 0.3247 0.3277 0.2777 0.2813

0.0088 0.0057 0.0079 0.0097 -0.0086 -0.0056 -0.0080 -0.0045

(25, 25) 0.002752934 0.002639899 0.003348106 0.003261242 0.00354906 0.003422819 0.002955221 0.002866375

0.1996 0.1971 0.2222 0.2182 0.2283 0.2254 0.2090 0.2072

94.6152 94.6283 94.4863 94.5019 94.5404 94.546 94.5103 94.5236

0.6651 0.6636 0.4039 0.4049 0.3358 0.3372 0.2880 0.2898

-0.0016 -0.0030 0.0039 0.0049 0.0024 0.0039 0.0023 0.0040

(50, 50) 0.001970162 0.001949933 0.002048208 0.002021451 0.002406106 0.002383653 0.002031045 0.002023235

0.1748 0.1736 0.1797 0.1781 0.1925 0.1913 0.1770 0.1761

95.0227 95.0298 95.3579 95.3584 95.0372 95.0412 95.0097 95.0157

Here, the first row indicates the estimate, the second row indicates the bias, the third row indicates variance, the fourth row indicates 95%

bootstrap confidence length and the fifth row indicates the coverage percentage.

(14) simultaneously, we get α̃ = 3.906139 and λ̃ = 2.950872. It can be seen that
−2 lnL = −36.5843, R(0.20) = 0.9916 and R̃(0.20) = 0.9916.
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In order to obtain the MLE of ‘P ’, we have generated one more sample of size
m = 30 from (1) for α = 2.5 and λ = 3. Solving as above, we get λ̃ = 2.486173,
λ̃ = 2.963452 and −2 lnL = −32.0487. Using this population as Y and above
population as X , we get P = 0.6153846 and P̃ = 0.6146800.

For the case when α is unknown but λ is known, we have conducted simulation
experiments using bootstrap re-sampling technique for sample sizes n = 5, 10, 20
and 50. The samples are generated from (1), with α = 3 and λ = 2.5. For different
values of t, we have computed R̂(t), R̃(t), their corresponding bias, variance, 95%
confidence length and corresponding coverage percentage. All the computations
are based on 500 bootstrap replications and results are reported in Table 2.

In order to estimate ‘P ’, for the case when α1 and α2 are unknown
but other parameters are known, we have conducted simulation experi-
ments using bootstrap re-sampling technique for sample sizes (n,m) =
(5, 5), (10, 5), (10, 10), (20, 20), (25, 25) and (50, 50). The samples are generated
from (1), with, α1 = 2.0, λ1 = 2.5 and λ2 = 2.5 and α2 = 1, 3(1)5. The compu-
tations are based on 500 bootstrap replications. We have computed P̂ , P̃ , bias,
variance, 95% confidence length and corresponding coverage percentage. The
results are presented in Table 3.

5. Discussion and Conclusion

In Table 1, we compared UMVUE and MLE of α, keeping λ to be constant for
two-parameter exponentiated Rayleigh distribution. The table shows that UMVUE
of α is more efficient than MLE of α. From table we observe that as we increase the
sample size variance of estimators of α decrease (for both of estimators UMVUE
as well as for MLE). Table 1 also shows that as we increase values of the parameter
α, variance increases corresponding to both of the estimators.

With the help of Fig. 1, we justified the consistency property of the estimators.
Through Table 2, we compared the efficiency of R̂(t) and R̃(t). Table 2 shows

that UMVUE of R(t) is more efficient than MLE of R(t). It is also clear that as
we increase sample size Biasness, MSE and Confidence Length decreases but on
the other hand corresponding Coverage Percentage increases. These statements
are also true for the estimators P̂ and P̃ .
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