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Abstract In this paper, the parametrically generalized sufficient efficiency conditions
for multiobjective fractional programming based on the hybrid (Φ, ρ, η, ζ, θ)−invexities
are developed, and then efficient solutions to the multiobjective fractional programming
problems are established. Furthermore, the obtained results on sufficient efficiency
conditions are generalized to the case of the ϵ−efficient solutions. The results
thus obtained generalize and unify a wider range of investigations on the theory
and applications to the multiobjective fractional programming based on the hybrid
(Φ, ρ, η, ζ, θ)−invexity frameworks.
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1. Introduction

Mishra and Rueda [11] introduced higher order generalized invexity and duality
models in mathematical programming, while Mangasarian [8] focused on the
second order duality for a conventional nonlinear programming problem, where
the approach is based on constructing a second order dual problem by taking
linear and quadratic approximations of the objective and constraint functions for
an arbitrary but fixed point leading to the Wolfe dual model for the approximated
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problem, while letting the fixed point to vary. Verma [24] investigated the
second order (ρ, η, θ)−invexities to the context of parametric sufficient optimality
conditions in semiinfinite discrete minimax fractional programming. Zalmai
and Zhang [38] have established a set of necessary efficiency conditions and
a fairly large number of global nonparametric sufficient efficiency results
under various frameworks for generalized (η, ρ)−invexity for the semiinfinite
discrete minimax fractional programming. Just recently, Verma [22] investigated
a general framework for a class of (ρ, η, θ)−invex functions to examine
some parametric sufficient efficiency conditions for multiobjective fractional
programming problems for weakly ϵ−efficient solutions. Inspired by these
research developments, we first introduce the hybrid (Φ, ρ, η, ζ, θ)−invexities
as well as the second order hybrid (Φ, ρ, η, ζ, θ)−invexities, second, introduce
some parametrically sufficient efficiency conditions for multiobjective fractional
programming, and finally, explore the efficient solutions to multiobjective
fractional programming problems. The results established in this communication,
not only generalize (and unify) the results on general sufficient efficiency
conditions for multiobjective fractional programming problems based on the
hybrid invexity of functions, but also generalize second order invexity results
to more general settings. We consider, based on the generalized hybrid
(Φ, ρ, η, ζ, θ)−invexities of functions, the following multiobjective fractional
programming problem: (P)

Minimize
(f1(x)
g1(x)

,
f2(x)

g2(x)
, · · ·, fp(x)

gp(x)

)
subject to x ∈ Q = {x ∈ X : Hj(x) ≤ 0, j ∈ {1, 2, · · ·,m}}, where X is an open
convex subset of ℜn (n-dimensional Euclidean space), fi and gi for i ∈ {1, · · ·, p},
and Hj for j ∈ {1, · · ·,m}, are real-valued functions defined on X such that
fi(x) ≥ 0, gi(x) > 0 for i ∈ {1, · · ·, p} and for all x ∈ Q. Here Q denotes the
feasible set of (P).

Next, we observe that problem (P) is equivalent to the nonfractional
programming problem: (Pλ)

Minimize
(
f1(x)− λ1g1(x), · · ·, fp(x)− λpgp(x)

)
subject to x ∈ Q with

λ =
(
λ1, λ2, · · ·, λp

)
=

(f1(x∗)

g1(x∗)
,
f2(x

∗)

g2(x∗)
, · · ·, fp(x

∗)

gp(x∗)

)
,

where x∗ is an efficient solution to (P).
We observe that general mathematical programming problems offer a

great opportunity for applications to other fields, for instance, applications
to game theory, statistical analysis, engineering design (including design of
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control systems, design of earthquakes-resistant structures, digital filters, and
electronic circuits), random graphs, boundary value problems, wavelet analysis,
environmental protection planning, decision and management sciences, optimal
control problems, continuum mechanics, robotics, and others. For more details on
generalized efficiency and efficiency results and applications, we recommend the
reader [1]-[41].

This submission is organized as follows: the introductory section deals with
a brief historical development for the multiobjective fractional mathematical
programming, while emphasizing the roles of the generalized invex functions.
In Section 2, the hybrid (Φ, ρ, η, ζ, θ)−invex functions of higher orders are
introduced, and Section 3 deals with sufficient efficiency conditions leading to
the solvability of the problem (P) using the hybrid (Φ, ρ, η, ζ, θ)−invexities.

2. Hybrid Invexities

In this section, we introduce and develop some concepts and notations for the
problem on hand based on the (α, η)-V- invexities introduced by Mond and
Zhang [15], and recently generalized by Zalmai [35, 36, 37]. Let X be an open
convex subset of ℜn (n-dimensional Euclidean space). Let ⟨·, ·⟩ denote the
inner product, and let z ∈ ℜn. Suppose that f : X → ℜ is a real-valued twice
continuously differentiable function defined on X , and that ▽f(y) and ∇2f(y)
denote, respectively, the gradient and Hessian of f at y.

Definition 2.1. A twice differentiable function f : X → ℜ is said to be hybrid
(Φ, ρ, η, ζ, θ)−invex at x∗ of second order if there exists a function Φ : ℜ → ℜ
such that for each x ∈ X , ρ : X ×X → ℜ, η, ζ, θ : X ×X → ℜn, and z ∈ ℜn,

Φ
(
f(x)− f(x∗)

)
≥ ⟨▽f(x∗), η(x, x∗)⟩+ ⟨∇2f(x∗)z, ζ(x, x∗)⟩

− 1
2

⟨
∇2f(x∗)z, z

⟩
+ ρ(x, x∗)∥θ(x, x∗)∥2.

Definition 2.2. A twice differentiable function f : X → ℜ is said to be hybrid
(Φ, ρ, η, ζ, θ)−pseudo-invex at x∗ of second order if there exists a function Φ :
ℜ → ℜ such that for each x ∈ X , ρ : X ×X → ℜ, η, ζ, θ : X ×X → ℜn, and
z ∈ ℜn,

⟨▽f(x∗), η(x, x∗)⟩+ ⟨∇2f(x∗)z, ζ(x, x∗)⟩ − 1

2

⟨
∇2f(x∗)z, z

⟩
+ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ Φ
(
f(x)− f(x∗)

)
≥ 0.

Definition 2.3. A twice differentiable function f : X → ℜ is said to be strictly
hybrid (Φ, ρ, η, ζ, θ)− pseudo-invex at x∗ of second order if there exists a function
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Φ : ℜ → ℜ such that for each x ∈ X , ρ : X ×X → ℜ, η, ζ, θ : X ×X → ℜn, and
z ∈ ℜn,

⟨▽f(x∗), η(x, x∗)⟩+ ⟨∇2f(x∗)z, ζ(x, x∗)⟩ − 1

2

⟨
∇2f(x∗)z, z

⟩
+ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ Φ
(
f(x)− f(x∗)

)
> 0.

Definition 2.4. A twice differentiable function f : X → ℜ is said to be prestrictly
hybrid (Φ, ρ, η, ζ, θ)−pseudo-invex at x∗ of second order if there exists a function
Φ : ℜ → ℜ such that for each x ∈ X , ρ : X ×X → ℜ, η, ζ, θ : X ×X → ℜn, and
z ∈ ℜn,

⟨▽f(x∗), η(x, x∗)⟩+ ⟨∇2f(x∗)z, ζ(x, x∗)⟩ − 1

2

⟨
∇2f(x∗)z, z

⟩
+ρ(x, x∗)∥θ(x, x∗)∥2 > 0

⇒ Φ
(
f(x)− f(x∗)

)
≥ 0.

Definition 2.5. A twice differentiable function f : X → ℜ is said to be hybrid
(Φ, ρ, η, ζ, θ)−quasi-invex at x∗ of second order if there exists a function Φ : ℜ →
ℜ such that for each x ∈ X , ρ : X ×X → ℜ, η, ζ, θ : X ×X → ℜn, and z ∈ ℜn,

Φ
(
f(x)− f(x∗)

)
≤ 0

⇒ ⟨▽f(x∗), η(x, x∗)⟩+ ⟨∇2f(x∗)z, ζ(x, x∗)⟩ − 1

2

⟨
∇2f(x∗)z, z

⟩
+ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0.

Definition 2.6. A twice differentiable function f : X → ℜ is said to be strictly
hybrid (Φ, ρ, η, ζ, θ)− quasi-invex at x∗ of second order if there exists a function
Φ : ℜ → ℜ such that for each x ∈ X , ρ : X ×X → ℜ, η, ζ, θ : X ×X → ℜn, and
z ∈ ℜn,

Φ
(
f(x)− f(x∗)

)
≤ 0

⇒ ⟨▽f(x∗), η(x, x∗)⟩+ ⟨∇2f(x∗)z, ζ(x, x∗)⟩ − 1

2

⟨
∇2f(x∗)z, z

⟩
+ρ(x, x∗)∥θ(x, x∗)∥2 < 0.

Definition 2.7. A twice differentiable function f : X → ℜ is said to be prestrictly
hybrid (Φ, ρ, η, ζ, θ)− quasi-invex at x∗ of second order if there exists a function
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Φ : ℜ → ℜ such that for each x ∈ X , ρ : X ×X → ℜ, η, ζ, θ : X ×X → ℜn, and
z ∈ ℜn,

Φ
(
f(x)− f(x∗)

)
< 0

⇒ ⟨▽f(x∗), η(x, x∗)⟩+ ⟨∇2f(x∗)z, ζ(x, x∗)⟩ − 1

2

⟨
∇2f(x∗)z, z

⟩
+ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0,

equivalently,

⟨▽f(x∗), η(x, x∗)⟩+ ⟨∇2f(x∗)z, ζ(x, x∗)⟩ − 1

2

⟨
∇2f(x∗)z, z

⟩
+ρ(x, x∗)∥θ(x, x∗)∥2 > 0

⇒ Φ
(
f(x)− f(x∗)

)
≥ 0.

Some Examples and Remarks

We observe that Definition 2.1 reduces to Mond and Zhang [15], and Zalmai [37]
for ζ(x, x∗) = η(x, x∗), while similar examples hold for Definitions 2.2 - 2.7.

Example 2.1. The function f is said to be second-order (Φ, ρ, η, θ)-V-invex at x∗

if there exist functions Φ : ℜ → ℜ, ρ : X ×X → ℜ and η, θ : X ×X → ℜn such
that for each x ∈ X, z ∈ ℜn,

Φ
(
f(x)− f(x∗)

)
=

⟨
[∇f(x∗) +∇2f(x∗)z], η(x, x∗)

⟩
−
⟨

1
2∇

2f(x∗)z, z
⟩

+ρ(x, x∗)∥θ(x, x∗)∥2.

When function f is first-order differentiable, Definition 2.1 unifies most of the
well-explored notions of the invexities in the literature.

Example 2.2. A differentiable function f : X → ℜ is said to be (Φ, ρ, η, θ)−invex
at x∗ of first order if there exists a function Φ : ℜ → ℜ such that for each x ∈ X ,
ρ : X ×X → ℜ, and η, θ : X ×X → ℜn,

Φ
(
f(x)− f(x∗)

)
≥

⟨
▽ f(x∗), η(x, x∗)

⟩
+ ρ(x, x∗)∥θ(x, x∗)∥2.

Definition 2.8. A point x∗ ∈ Q is an efficient solution to (P) if there exists no
x ∈ Q such that

fi(x)

gi(x)
≤ fi(x

∗)

gi(x∗)
∀ i = 1, · · ·, p,
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fj(x)

gj(x)
<

fj(x
∗)

gj(x∗)
for some j ∈ {1, · · ·, p}.

Next to this context, we have the following auxiliary problem:

(Pλ̄)
Minimizex∈Q (f1(x)− λ̄1g1(x), · · ·, fp(x)− λ̄pgp(x)),

subject to x ∈ Q,

where λ̄i for i ∈ {1, · · ·, p} are parameters, and λ̄i =
fi(x

∗)
gi(x∗) .

Next, we introduce the efficiency solvability conditions for (Pλ̄) problem.

Definition 2.9. A point x∗ ∈ Q is an efficient solution to (Pλ̄) if there does not
exist an x ∈ Q such that

fi(x)− λ̄igi(x) ≤ fi(x
∗)− λ̄igi(x

∗)∀ i = 1, · · ·, p,

fj(x)− λ̄jgj(x) < fj(x
∗)− λ̄jgj(x

∗) for some j ∈ {1, · · ·, p},

where λ̄i =
fi(x

∗)
gi(x∗) for i = 1, · · ·, p.

Next, we recall the following result (Verma [24]) that provides a set of necessary
efficiency conditions for problem (P ) to developing some sufficient efficiency
conditions for the next section based on second order (Φ, ρ, η, ζ, θ)−invexities.

Theorem 2.1. [24] Let x∗ ∈ F and λ∗ = max1≤i≤p fi(x
∗)/gi(x

∗) for each i ∈ p,
and let fi and gi be twice continuously differentiable at x∗ for each i ∈ p. For each
j ∈ q, let the function z → Gj(z, t) be twice continuously differentiable at x∗ for
all t ∈ Tj , and for each k ∈ r, let the function z → Hk(z, s) be twice continuously
differentiable at x∗ for all s ∈ Sk. If x∗ is an efficient solution of (P), if the second
order generalized Abadie constraint qualification holds at x∗, and if for any critical
direction y, the set cone

{
(
∇Gj(x

∗, t), ⟨y,∇2Gj(x
∗, t)y⟩

)
: t ∈ T̂j(x

∗), j ∈ q}

+ span{
(
∇Hk(x

∗, s), ⟨y,∇2Hk(x
∗, s)y⟩

)
: s ∈ Sk, k ∈ r},

where T̂j(x
∗) ≡ {t ∈ Tj : Gj(x

∗, t) = 0},

is closed, then there exist u∗ ∈ U ≡ {u ∈ Rp : u ≥ 0,
∑p

i=1 ui = 1} and integers
ν∗0 and ν∗ with 0 ≤ ν∗0 ≤ ν∗ ≤ n+ 1 such that there exist ν∗0 indices jm with
1 ≤ jm ≤ q together with ν∗0 points tm ∈ T̂jm(x∗), m ∈ ν∗0 , ν

∗ − ν∗0 indices km
with 1 ≤ km ≤ r together with ν∗ − ν∗0 points sm ∈ Skm for m ∈ ν∗\ν∗0 , and ν∗
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real numbers v∗m with v∗m > 0 for m ∈ ν∗0 with the property that

p∑
i=1

u∗
i [∇fi(x

∗)− λ∗(∇gi(x
∗)] +

ν∗
0∑

m=1

v∗m[∇Gjm(x∗, tm)

+

ν∗∑
m=ν∗

0+1

v∗m∇Hk(x
∗, sm) = 0, (2.1)

⟨
y,
[ p∑

i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

ν∗
0∑

m=1

v∗m∇2Gjm(x∗, tm)

+

ν∗∑
m=ν∗

0+1

v∗m∇2Hk(x
∗, sm)

]
y
⟩
≥ 0, (2.2)

u∗
i [fi(x

∗)− λ∗gi(x
∗)] = 0, i ∈ p, (2.3)

where ν \ ν0 is the complement of the set ν0 relative to the set ν.

3. Efficiency Conditions for Problem (P)

This section deals with some parametrically sufficient efficiency conditions for
problem (P) under the hybrid frameworks for (Φ, ρ, η, ζ, θ)−invexities. We begin
with real-valued functions Ei(., x

∗, u∗) and Bj(., v) defined by

Ei(x, x
∗, u∗) = ui[fi(x)−

(fi(x∗)

gi(x∗)

)
gi(x)], i ∈ {1, · · ·, p}

and

Bj(., v) = vjHj(x), j = 1, · · ·,m.

Theorem 3.1. Let x∗ ∈ Q, let fi, gi for i ∈ {1, · · ·, p} with fi(x
∗)

gi(x∗) ≥ 0, gi(x∗) > 0

and Hj for j ∈ {1, · · ·,m} be twice continuously differentiable at x∗ ∈ Q, and let
there exist u∗ ∈ U = {u ∈ ℜp : u > 0,Σp

i=1ui = 1} and v∗ ∈ ℜm
+ such that

Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)] + Σm
j=1v

∗
j ▽Hj(x

∗) = 0, (3.1)
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⟨[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z, ζ(x, x∗)

⟩
−1

2

⟨[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)]

+

m∑
j=1

v∗j∇2Hj(x
∗)
]
z, z

⟩
≥ 0, (3.2)

and

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.3)

Suppose, in addition, that any one of the following assumptions holds (for
ρ(x, x∗) ≥ 0):

(i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are hybrid (Φ, ρ, η, ζ, θ)−pseudo-invex

at x∗ with Φ̄(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are

hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invex at x∗ for Φ̃ increasing and Φ̃(0) = 0.

(ii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (Φ, ρ, η, ζ, θ)−pseudo-

invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are

strictly hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invex at x∗ for Φ̃ increasing and
Φ̃(0) = 0.

(iii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (Φ, ρ, η, ζ, θ)−quasi-

invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are

strictly hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invex at x∗ for Φ̃ increasing and
Φ̃(0) = 0.

(iv) For each i ∈ {1, · · ·, p}, fi is hybrid (Φ, ρ1, η, ζ, θ)−invex and −gi is hybrid
(Φ, ρ2, η, ζ, θ)−invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Hj(. , v

∗) ∀ j ∈
{1, · · ·,m} is hybrid (Φ̄, ρ3, η, ζ, θ)−quasi-invex at x∗ for Φ̄ increasing
and Φ̄(0) = 0, and Σm

j=1v
∗
j ρ3(x, x

∗) + ρ∗ ≥ 0 for ρ∗ = Σp
i=1u

∗
i (ρ1(x, x

∗) +

ϕ(x∗)ρ2(x, x
∗)) and for ϕ(x∗) = fi(x

∗)
gi(x∗) .

Then x∗ is an efficient solution to (P).
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Proof
If (i) holds, and if x ∈ Q, then it follows from (3.1) and (3.2) that⟨

Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], η(x, x∗)
⟩

+
⟨ p∑

i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z], ζ(x, x∗)
⟩

−1

2

⟨ p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z], z
⟩

+
⟨
Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)
⟩
+
⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, ζ(x, x∗)
⟩

−1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩
≥ 0. (3.4)

Since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σm
j=1v

∗
jHj(x) ≤ 0 = Σm

j=1v
∗
jHj(x

∗),

and in light of assumptions on Φ̃, we find

Φ̃
(
Σm

j=1v
∗
jHj(x)− Σm

j=1v
∗
jHj(x

∗)
)
≤ 0,

which applying the hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invexity of Bj(., v
∗) at x∗, results

in ⟨
Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)
⟩
+
⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, ζ(x, x∗)
⟩

−1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩
+ ρ̄(x, x∗)∥θ(x, x∗)∥2 ≤ 0. (3.5)

It follows from (3.4) and (3.5) that⟨
Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], η(x, x∗)
⟩

+
⟨ p∑

i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z], ζ(x, x∗)
⟩

−1

2

⟨ p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z], z
⟩

≥ ρ̄(x, x∗)∥θ(x, x∗)∥2 ≥ −ρ(x, x∗)∥θ(x, x∗)∥2. (3.6)

Since ρ(x, x∗) ≥ 0, applying the hybrid (Φ, ρ, η, ζ, θ)−pseudo-invexity at x∗ to
(3.6) and assumptions on Φ, we have

Φ
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(g∗)
)gi(x)]− Σp

i=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)]
)
≥ 0,
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which implies

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)]) = 0.

Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)] ≥ 0. (3.7)

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an

x ∈ Q such that
fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an efficient solution to (P).

Next, if (ii) holds, and if x ∈ Q, then it follows from (3.1) and (3.2) that⟨
Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], η(x, x∗)
⟩

+
⟨ p∑

i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z], ζ(x, x∗)
⟩

−1

2

⟨ p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z], z
⟩

+
⟨
Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)
⟩
+
⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, ζ(x, x∗)
⟩

−1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩
≥ 0. (3.8)

Since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σm
j=1v

∗
jHj(x) ≤ 0 = Σm

j=1v
∗
jHj(x

∗),

which results (using assumptions on Φ̃) in

Φ̃
(
Σm

j=1v
∗
jHj(x)− Σm

j=1v
∗
jHj(x

∗)
)
≤ 0.
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Now, in light of the strictly hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invexity of Bj(., v
∗) at x∗,

we find ⟨
Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)
⟩
+
⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, ζ(x, x∗)
⟩

− 1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩
+ ρ̄(x, x∗)∥θ(x, x∗)∥2 < 0. (3.9)

It follows from (3.8) and (3.9) that⟨
Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], η(x, x∗)
⟩

+
⟨ p∑

i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z], ζ(x, x∗)
⟩

−1

2

⟨ p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z], z
⟩

> ρ̄(x, x∗)∥θ(x, x∗)∥2 > −ρ(x, x∗)∥θ(x, x∗)∥2. (3.10)

As a result, since ρ(x, x∗) ≥ 0, applying the prestrictly hybrid
(Φ, ρ, η, ζ, θ)−pseudo-invexity at x∗ to (3.10) and assumptions on Φ, we
have

Φ
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(g∗)
)gi(x)]− Σp

i=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)]
)
≥ 0,

which implies

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)]) = 0.

Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)] ≥ 0. (3.11)

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an

x ∈ Q such that
fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
) < 0 for some j ∈ {1, · · ·, p}.
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Hence, x∗ is an efficient solution to (P). The proof applying (iii) is similar to that
of (ii), and we just need to include the proof using (iv) as follows: since x ∈ Q,
it follows that Hj(x) ≤ Hj(x

∗), which implies Φ̄
(
Hj(x)−Hj(x

∗)
)
≤ 0. Then

applying the hybrid (Φ̄, ρ3, η, ζ, θ)−quasi-invexity of Hj at x∗ and v∗ ∈ Rm
+ , we

have ⟨
Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)
⟩
+
⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, ζ(x, x∗)
⟩

−1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩
+Σm

j=1v
∗
j ρ3(x, x

∗)∥θ(x, x∗)∥2 ≤ 0.(3.12)

Since u∗ ≥ 0 and fi(x
∗)

gi(x∗) ≥ 0, it follows from the hybrid (Φ, ρ1, η, ζ, θ)−invexity
and (Φ, ρ2, η, ζ, θ)− invexity assumptions on fi and gi, respectively, that

Φ
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

)
= Φ

(
Σp

i=1u
∗
i {[fi(x)− fi(x

∗)]− (
fi(x

∗)

gi(x∗)
)[gi(x)− gi(x

∗)]}
)

≥ Σp
i=1u

∗
i {⟨▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗), η(x, x∗)⟩}

+⟨Σp
i=1u

∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z, ζ(x, x∗)⟩]

−1

2
⟨Σp

i=1u
∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z, z⟩]

+Σp
i=1u

∗
i [ρ1(x, x

∗) + ϕ(x∗)ρ2(x, x
∗)]∥θ(x, x∗)∥2

≥ −
[
⟨Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)⟩+
⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, ζ(x, x∗)
⟩

−1

2
⟨Σm

j=1v
∗
j∇2Hj(x

∗)z, z⟩
]
+Σp

i=1u
∗
i [ρ1(x, x

∗) + ϕ(x∗)ρ2(x, x
∗)]∥θ(x, x∗)∥2

≥ (Σm
j=1v

∗
j ρ3(x, x

∗) + Σp
i=1u

∗
i [ρ1(x, x

∗) + ϕ(x∗)ρ2(x, x
∗)])∥θ(x, x∗)∥2

= (Σm
j=1v

∗
j ρ3(x, x

∗) + ρ∗)∥θ(x, x∗)∥2

≥ 0,

where ϕ(x∗) = fi(x
∗)

gi(x∗) and ρ∗ = Σp
i=1u

∗
i (ρ1(x, x

∗) + ϕ(x∗)ρ2(x, x
∗)). This

implies that

Φ
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

)
≥ 0.

Some Specializations
First, if we consider when ζ(x, x∗) = η(x, x∗) in Theorem 3.1, which means,
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hybrid (Φ, ρ, η, θ)− invexities, we have the following result which generalizes
(Zalmai [35], Theorem 3.2).
Theorem 3.2. Let x∗ ∈ Q, let fi, gi for i ∈ {1, · · ·, p} with fi(x

∗)
gi(x∗) ≥ 0, gi(x∗) > 0

and Hj for j ∈ {1, · · ·,m} be twice continuously differentiable at x∗ ∈ Q, and let
there exist u∗ ∈ U = {u ∈ ℜp : u > 0,Σp

i=1ui = 1} and v∗ ∈ ℜm
+ such that

Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)] + Σm
j=1v

∗
j ▽Hj(x

∗) = 0, (3.13)

⟨[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z, η(x, x∗)

⟩
−1

2

⟨[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)]

+

m∑
j=1

v∗j∇2Hj(x
∗)
]
z, z

⟩
≥ 0, (3.14)

and

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.15)

Suppose, in addition, that any one of the following assumptions holds (for
ρ(x, x∗) ≥ 0):

(i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are (Φ, ρ, η, θ)−pseudo-invex at x∗. Bj(. , v

∗)
∀ j ∈ {1, · · ·,m} are (Φ, ρ̄, η, θ)−quasi-invex at x∗.

(ii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (Φ, ρ, η, θ)−pseudo-

invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are

strictly hybrid (Φ̃, ρ, η, θ)−quasi-invex at x∗ for Φ̃ increasing and Φ̃(0) = 0.

(iii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (Φ, ρ, η, θ)−quasi-

invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are

strictly hybrid (Φ̃, ρ̄, η, θ)−quasi-invex at x∗ for Φ̃ increasing and Φ̃(0) = 0.

(iv) For each i ∈ {1, · · ·, p}, fi is hybrid (Φ, ρ1, η, θ)−invex and −gi is
hybrid (Φ, ρ2, η, θ)−invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, Hj(. , v

∗) ∀ j ∈
{1, · · ·,m} is hybrid (Φ̄, ρ3, η, θ)−quasi-invex at x∗ for Φ̄ increasing
and Φ̄(0) = 0, and Σm

j=1v
∗
j ρ3(x, x

∗) + ρ∗ ≥ 0 for ρ∗ = Σp
i=1u

∗
i (ρ1(x, x

∗) +

ϕ(x∗)ρ2(x, x
∗)) and for ϕ(x∗) = fi(x

∗)
gi(x∗) .

Then x∗ is an efficient solution to (P).
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Next we consider the case when the functions are first-order differentiable,
Theorem 3.1 reduces to the result which is similar to results of Zalmai and Zhang
[37].
Theorem 3.3. Let x∗ ∈ Q, let fi, gi for i ∈ {1, · · ·, p} with fi(x

∗)
gi(x∗) ≥ 0, gi(x∗) > 0

and Hj for j ∈ {1, · · ·,m} be differentiable at x∗ ∈ Q, and let there exist
u∗ ∈ U = {u ∈ ℜp : u > 0,Σp

i=1ui = 1} and v∗ ∈ ℜm
+ such that

⟨
Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)] + Σm
j=1v

∗
j ▽Hj(x

∗), η(x, x∗)
⟩
≥ 0

(3.16)
and

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.17)

Suppose, in addition, that any one of the following assumptions holds (for
ρ(x, x∗) ≥ 0):

(i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are first-order hybrid (Φ, ρ, η, θ)−pseudo-

invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are first-

order hybrid (Φ̄, ρ̄, η, θ)−quasi-invex at x∗ for Φ̄ increasing and Φ̄(0) = 0.
(ii) Ei(. ;x

∗, u∗) ∀ i ∈ {1, · · ·, p} are first-order hybrid prestrictly
(Φ, ρ, η, θ)−pseudo-invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v

∗)
∀ j ∈ {1, · · ·,m} are first-order strictly hybrid (Φ̄, ρ̄, η, θ)−quasi-invex at
x∗ for Φ̄ increasing and Φ̄(0) = 0.

(iii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are first-order prestrictly hybrid

(Φ, ρ, η, θ)−quasi-invex at x∗ Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗)

∀ j ∈ {1, · · ·,m} are first-order strictly hybrid (Φ̄, ρ̄, η, θ)−quasi-invex at
x∗ for Φ̄ increasing and Φ̄(0) = 0.

(iv) For each i ∈ {1, · · ·, p}, fi is first-order hybrid (Φ, ρ1, η, θ)−invex and −gi
is first-order hybrid (Φ, ρ2, η, θ)−invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0.
Hj(. , v

∗) ∀ j ∈ {1, · · ·,m} is hybrid (Φ̄, ρ̄3, η, θ)−quasi-invex at
x∗, and Σm

j=1v
∗
j ρ̄3(x, x

∗) + ρ∗ ≥ 0 for Φ̄ increasing and Φ̄(0) = 0,

ρ∗ = Σp
i=1u

∗
i (ρ1(x, x

∗) + ϕ(x∗)ρ2(x, x
∗)) and for ϕ(x∗) = fi(x

∗)
gi(x∗) .

Then x∗ is an efficient solution to (P).

Proof
Although the proof is similar to that of Theorem 3.1), we include for the sake of
the completeness. If we consider (i), then proceeding as in Theorem 3.1 (and using
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the first-order hybrid (Φ, ρ, η, θ)−invexity assumptions instead), we arrive at

⟨Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], η(x, x∗)⟩

≥ ρ(x, x∗)∥θ(x, x∗)∥2. (3.18)

Since ρ(x, x∗) ≥ 0, applying the hybrid (Φ, ρ, η, θ)−pseudo-invexity at x∗ to
(3.18) and assumptions on Φ, we have

Φ
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(g∗)
)gi(x)]− Σp

i=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)]
)
≥ 0,

which implies

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)])

= 0.

Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)] ≥ 0. (3.19)

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an

x ∈ Q such that
fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an efficient solution to (P).
The proofs for (ii)-(iv) are similar to that of Theorem 3.1.

Next, we note that Theorem 3.1 can be specialized to the context of second
order (ρ, η, θ)− invexities as follows:

Theorem 3.4. Let x∗ ∈ Q. Let fi, gi for i ∈ {1, · · ·, p} with fi(x
∗)

gi(x∗) ≥ 0, gi(x∗) > 0

and Hj for j ∈ {1, · · ·,m} be twice continuously differentiable at x∗ ∈ Q, and let
there exist u∗ ∈ U = {u ∈ ℜp : u > 0,Σp

i=1ui = 1} and v∗ ∈ ℜm
+ such that

Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)] + Σm
j=1v

∗
j ▽Hj(x

∗) = 0 (3.20)
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⟨
η(x, x∗),

[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
⟩
≥ 0,

(3.21)
and

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.22)

Suppose, in addition, that any one of the following assumptions holds (for
ρ(x, x∗) ≥ 0):

(i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are hybrid (ρ, η, θ)−pseudo-invex at x∗, and

Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are hybrid (ρ, η, θ)−quasi-invex at x∗.

(ii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (ρ, η, θ)−pseudo-invex

at x∗, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are hybrid (ρ, η, θ)−strictly-quasi-

invex at x∗.
(iii) Ei(. ;x

∗, u∗) ∀ i ∈ {1, · · ·, p} are strictly hybrid (ρ, η, θ)−pseudo-invex at
x∗, and Bj(. , v

∗) ∀ j ∈ {1, · · ·,m} are strictly hybrid (ρ, η, θ)−quasi-invex
at x∗.

(iv) For each i ∈ {1, · · ·, p}, fi is hybrid (ρ1, η, θ)−invex and −gi
is (ρ2, η, θ)−invex at x∗. Hj(. , v

∗) ∀ j ∈ {1, · · ·,m} is hybrid
(ρ3, η, θ)−quasi-invex at x∗, and Σm

j=1v
∗
j ρ3(x, x

∗) + ρ∗ ≥ 0 for
ρ∗ = Σp

i=1u
∗
i (ρ1(x, x

∗) + ϕ(x∗)ρ2(x, x
∗)) and for ϕ(x∗) = fi(x

∗)
gi(x∗) .

Then x∗ is an efficient solution to (P).

Proof
The proof is similar to that of Theorem 3.1 based on the hybrid (ρ, η, θ)− invexity
assumptions.

We observe that Theorem 3.1 can be further generalized to the case of the
ϵ−efficient conditions based on the hybrid (Φ, ρ, η, ζ, θ)−invexity frameworks. As
a matter of fact, we generalize the ϵ−efficient solvability conditions for problem
(P ) based on the work of Verma [22], and Kim, Kim and Lee [6], where they
have investigated the ϵ−efficiency as well as the weak ϵ−efficiency conditions for
multiobjective fractional programming problems under constraint qualifications.
To the best of our knowledge, the results established in this communication
(Theorem 3.1 and Theorem 3.5) generalize and unify most of the results on
the multiobjective fractional programming to the context of the generalized
invexities in the literature. We recall some auxiliary concepts (for the hybrid
(Φ, ρ, η, ζ, θ)−invexity) crucial to the problem on hand.
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Definition 3.1. A point x∗ ∈ Q is an ϵ−efficient solution to (P) if there does not
exist an x ∈ Q such that

fi(x)

gi(x)
≤ fi(x

∗)

gi(x∗)
− ϵi ∀ i = 1, · · ·, p,

fj(x)

gj(x)
<

f(jx
∗)

gj(x∗)
− ϵj for some j ∈ {1, · · ·, p},

where ϵi=(ϵ1, · · ·, ϵp) is with ϵi ≥ 0 for i = 1, · · ·, p.

For ϵ = 0, Definition 3.1 reduces to the case that x∗ ∈ Q is an efficient solution to
(P).

Next, we start with real-valued functions Ei(., x
∗, u∗) and Bj(., v) defined by

Ei(x, x
∗, u∗) = ui[fi(x)−

(fi(x∗)

gi(x∗)
− ϵi

)
gi(x)], i ∈ {1, · · ·, p}

and

Bj(., v) = vjHj(x), j = 1, · · ·,m.

Theorem 3.5. Let x∗ ∈ Q, let fi, gi for i ∈ {1, · · ·, p} with fi(x
∗) ≥ ϵigi(x

∗),
gi(x

∗) > 0 and Hj for j ∈ {1, · · ·,m} be twice continuously differentiable at
x∗ ∈ Q, and let there exist u∗ ∈ U = {u ∈ ℜp : u > 0,Σp

i=1ui = 1}, v∗ ∈ ℜm
+ and

z ∈ ℜn such that

Σp
i=1u

∗
i [∇fi(x

∗)−
(fi(x∗)

gi(x∗)
− ϵi

)
▽ gi(x

∗)] + Σm
j=1v

∗
j ▽Hj(x

∗) = 0, (3.23)

⟨[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z, ζ(x, x∗)

⟩
−1

2

⟨[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)]

+

m∑
j=1

v∗j∇2Hj(x
∗)
]
z, z

⟩
≥ 0, (3.24)

and

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.25)
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Suppose, in addition, that any one of the following assumptions holds (for
ρ(x, x∗) ≥ 0):

(i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are hybrid (Φ, ρ, η, ζ, θ)−pseudo-invex at

x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are hybrid

(Φ̃, ρ̄, η, ζ, θ)−quasi-invex at x∗ for Φ̃ increasing and Φ̃(0) = 0.
(ii) Ei(. ;x

∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (Φ, ρ, η, ζ, θ)−pseudo-
invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v

∗) ∀ j ∈ {1, · · ·,m}
are strictly hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invex at x∗ for Φ̃ increasing and
Φ̃(0) = 0.

(iii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are strictly hybrid (Φ, ρ, η, ζ, θ)−pseudo-

invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Bj(. , v
∗) ∀ j ∈ {1, · · ·,m} are

strictly hybrid (Φ̄, ρ̄, η, ζ, θ)−quasi-invex at x∗ for Φ̄ increasing and Φ̄(0) =
0.

(iv) For each i ∈ {1, · · ·, p}, fi is hybrid (Φ, ρ1, η, ζ, θ)−invex and −gi is
(Φ, ρ2, η, ζ, θ)−invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Hj(. , v

∗) ∀ j ∈
{1, · · ·,m} is hybrid (Φ̄, ρ3, η, ζ, θ)−quasi-invex at x∗ for Φ̄ increasing
and Φ̄(0) = 0 and Σm

j=1v
∗
j ρ3(x, x

∗) + ρ∗ ≥ 0 for ρ∗ = Σp
i=1u

∗
i (ρ1(x, x

∗) +

ϕ(x∗)ρ2(x, x
∗)), where ϕ(x∗) = fi(x

∗)
gi(x∗) − ϵi.

Then x∗ is an ϵ−efficient solution to (P).

Proof
If (i) holds, and if x ∈ Q, then it follows from (3.23) and 3.24) that⟨

Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)▽ gi(x

∗)], η(x, x∗)
⟩

+
⟨ p∑

i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z], ζ(x, x∗)
⟩

−1

2

⟨ p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z], z
⟩

+
⟨
Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)
⟩
+
⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, ζ(x, x∗)
⟩

−1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩
≥ 0. (3.26)

Since v∗ ≥ 0, x ∈ Q and (3.25) holds, we have

Σm
j=1v

∗
jHj(x) ≤ 0 = Σm

j=1v
∗
jHj(x

∗),

which implies
Σm

j=1v
∗
jHj(x)− Σm

j=1v
∗
jHj(x

∗) ≤ 0,
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so using the assumptions on Φ̃ it results in

Φ̃
(
Σm

j=1v
∗
jHj(x)− Σm

j=1v
∗
jHj(x

∗)
)
≤ 0,

which, in light of the hybrid (Φ̃, ρ̄, η, ζ, θ)− quasi-invexity of Bj(., v
∗) at x∗,

implies

⟨▽Hj(x
∗), η(x, x∗)⟩+ ⟨ζ(x, x∗),∇2Hj(x

∗)z⟩ − 1
2 ⟨∇

2Hj(x
∗)z, z⟩

+ρ̄(x, x∗)∥θ(x, x∗)∥2 ≤ 0. (3.27)

It follows from (3.26) and (3.27) that⟨
Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)▽ gi(x

∗)], η(x, x∗)
⟩

+
⟨ p∑

i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z], ζ(x, x∗)
⟩

−1

2

⟨ p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z], z
⟩

≥ ρ̄(x, x∗)∥θ(x, x∗)∥2 ≥ −ρ(x, x∗)∥θ(x, x∗)∥2. (3.28)

As a result, since ρ(x, x∗) ≥ 0, applying the hybrid (Φ, ρ, η, ζ, θ)− pseudo-
invexity at x∗ to (3.28) and assumptions on Φ, we have

Φ
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− ϵi)gi(x)]

−Σp
i=1u

∗
i [fi(x

∗)−
(fi(x∗)

gi(x∗)
− ϵi)gi(x

∗)]
)
≥ 0,

which implies

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− ϵi)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)gi(x

∗)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)gi(x

∗)]

−Σp
i=1u

∗
i ϵigi(x

∗) = 0.

Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− ϵi)gi(x)] ≥ 0. (3.29)

Stat., Optim. Inf. Comput. Vol. 2, December 2014.



MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS 299

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an

x ∈ Q such that

p∑
i=1

[fi(x)
gi(x)

− (
fi(x

∗)

gi(x∗)
− ϵi)

]
≤ 0 ∀ i = 1, · · ·, p,

p∑
j=1

[fj(x)
gj(x)

− (
fj(x

∗)

gj(x∗)
− ϵj)

]
< 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an ϵ−efficient solution to (P).
If (ii) holds, and if x ∈ Q, then it follows from (3.23) and (3.24) that⟨

Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)▽ gi(x

∗)], η(x, x∗)
⟩

+
⟨ p∑

i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z], ζ(x, x∗)
⟩

−1

2

⟨ p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z], z
⟩

+
⟨
Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)
⟩
+
⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, ζ(x, x∗)
⟩

−1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩
≥ 0. (3.30)

Since v∗ ≥ 0, x ∈ Q and (3.25) holds, we have

Σm
j=1v

∗
jHj(x) ≤ 0 = Σm

j=1v
∗
jHj(x

∗),

or

Σm
j=1v

∗
jHj(x)− Σm

j=1v
∗
jHj(x

∗) ≤ 0,

which implies based on assumptions on Φ̃ that

Φ̃
(
Σm

j=1v
∗
jHj(x)− Σm

j=1v
∗
jHj(x

∗)
)
≤ 0.

Next, in light of the strict (Φ̃, ρ̄, η, ζ, θ)−quasi-invexity of Bj(., v
∗) at x∗ with Φ̃

increasing and Φ̃(0) = 0, we find

⟨▽Hj(x
∗), η(x, x∗)⟩+ ⟨ζ(x, x∗),∇2Hj(x

∗)z⟩ − 1
2 ⟨∇

2Hj(x
∗)z, z⟩

+ρ̄(x, x∗)∥θ(x, x∗)∥2 < 0. (3.31)
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It follows from (3.30) and (3.31) that⟨
Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)▽ gi(x

∗)], η(x, x∗)
⟩

+
⟨ p∑

i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z], ζ(x, x∗)
⟩

−1

2

⟨ p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z], z
⟩

> ρ̄(x, x∗)∥θ(x, x∗)∥2 > −ρ(x, x∗)∥θ(x, x∗)∥2. (3.32)

As a result, since ρ(x, x∗) ≥ 0, applying the prestrictly hybrid
(Φ, ρ, η, ζ, θ)−pseudo-invexity at x∗ to (3.32) and assumptions on Φ, we
have

Φ
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− ϵi)gi(x)]

−Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)− ϵi)gi(x

∗)]
)
≥ 0,

which implies

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− ϵi)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)gi(x

∗)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)gi(x

∗)]− Σp
i=1u

∗
i ϵigi(x

∗)

= 0.

Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− ϵi)gi(x)] ≥ 0. (3.33)

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude that there does not exist an

x ∈ Q such that

fi(x)

gi(x)
− (

fi(x
∗)

gi(x∗)
− ϵi) ≤ 0 ∀ i = 1, · · ·, p,

fj(x)

gj(x)
− (

fj(x
∗)

gj(x∗)
− ϵj) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an ϵ−efficient solution to (P).
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The proof applying (iii) is similar to that of (ii), and we just prove using
(iv) as follows: since x ∈ Q, it follows that Hj(x) ≤ Hj(x

∗). Then applying the
(Φ̄, ρ3, η, ζ, θ)−quasi-invexity of Hj at x∗ and v∗ ∈ Rm

+ , we have

⟨Σm
j=1v

∗
j ▽Hj(x

∗), η(x, x∗)⟩+
⟨
ζ(x, x∗),Σm

j=1v
∗
j∇2Hj(x

∗)z
⟩

−1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩
≤ −Σm

j=1v
∗
j ρ3∥θ(x, x∗)∥2.

Since u∗ ≥ 0 and fi(x
∗) ≥ ϵigi(x

∗), it follows from (Φ, ρ1, η, ζ, θ)−invexity and
(Φ, ρ2, η, ζ, θ)−invexity assumptions that

Φ
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− ϵi)gi(x)]

)
= Φ

(
Σp

i=1u
∗
i {[fi(x)− fi(x

∗)]− (
fi(x

∗)

gi(x∗)
− ϵi)[gi(x)− gi(x

∗)] + ϵigi(x
∗)}

)
≥ Σp

i=1u
∗
i {⟨▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
− ϵi)▽ gi(x

∗), η(x, x∗)⟩}

+⟨ζ(x, x∗),Σp
i=1u

∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z⟩]

−1

2
⟨Σp

i=1u
∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
− ϵi)∇2gi(x

∗)z, z⟩

+[ρ1(x, x
∗) + ϕ(x∗)ρ2(x, x

∗)]∥θ(x, x∗)∥2 +Σp
i=1u

∗
i ϵigi(x

∗)

≥ −
[
⟨Σm

j=1v
∗
j ▽Hj(x

∗), η(x, x∗)⟩+
⟨
ζ(x, x∗),Σm

j=1v
∗
j∇2Hj(x

∗)z
⟩

−1

2

⟨
Σm

j=1v
∗
j∇2Hj(x

∗)z, z
⟩]

+Σp
i=1u

∗
i [ρ1(x, x

∗) + ϕ(x∗)ρ2(x, x
∗)]∥θ(x, x∗)∥2 +Σp

i=1u
∗
i ϵigi(x

∗)

≥ (Σm
j=1v

∗
j ρ3(x, x

∗) + Σp
i=1u

∗
i [ρ1(x, x

∗) + ϕ(x∗)ρ2(x, x
∗)])∥θ(x, x∗)∥2

+Σp
i=1u

∗
i ϵigi(x

∗)

= (Σm
j=1v

∗
j ρ3(x, x

∗) + ρ∗)∥θ(x, x∗)∥2 +Σp
i=1u

∗
i ϵigi(x

∗)

≥ (Σm
j=1v

∗
j ρ3(x, x

∗) + ρ∗)∥θ(x, x∗)∥2 ≥ 0.

Therefore, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
− ϵi)gi(x)] ≥ 0. (3.34)

Thus, we conclude that there does not exist an x ∈ Q such that
p∑

i=1

[fi(x)
gi(x)

− (
fi(x

∗)

gi(x∗)
− ϵi)

]
≤ 0 ∀ i = 1, · · ·, p,
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p∑
j=1

[fj(x)
gj(x)

− (
fj(x

∗)

gj(x∗)
− ϵj)

]
< 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an ϵ−efficient solution to (P).

4. Concluding Remarks

We established several results on multiobjective fractional programming
problems based on the generalized hybrid (Φ, ρ, η, ζ, θ)−invexities and on
efficient solutions to the multiobjective fractional programming problems. We
observe that the obtained results in this communication can be generalized
to the case of multiobjective fractional programming with generalized hybrid
invex functions of higher orders (including the exponential type generalized
invexities), for instance, based on the work of Mishra and Rueda [11], Mishra,
Laha and Verma [13], and Zalmai and Zhang [38] to the case of the efficiency
as well as to the ϵ−efficiency conditions relating to the minimax fractional
programming problems involving generalized invex functions. Furthermore, the
hybrid (Φ, ρ, η, ζ, θ)− invexities can effectively be applied generalizing/unifying
the first-order sufficient efficiency condition results [35], first-order parametric
duality model results [36] as well as second-order duality model results (Zalmai
[37]) on Hanson-Antczak-type generalized V-invex functions in semiinfinite
multiobjective fractional programming. Based on new duality models and suitable
constraint structures, the weak, strong, and strict converse duality theorems can
be established using appropriate hybrid (Φ, ρ, η, ζ, θ)− invexities.
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