
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 2, December 2014, pp 274–279.
Published online in International Academic Press (www.IAPress.org)

Efficient Binary Linear Programming Formulations for
Boolean Functions

Frank Gurski 1, ∗

1Institute of Computer Science, Heinrich-Heine University of Düsseldorf, Germany

Received: 25 May 2014; Accepted: 3 September 2014
Editor: Houduo Qi

Abstract A very useful tool when designing linear programs for optimization
problems is the formulation of logical operations by linear programming constraints.
We give efficient linear programming formulation of important n-ary boolean functions
f(x1, . . . , xn) = xn+1 such as conjunction, disjunction, equivalence, and implication
using n+ 1 boolean variables x1, . . . , xn+1. For the case that the value f(x1, . . . , xn)
is not needed for further computations, we even give a more compact formulation. Our
formulations show that every binary boolean function f(x1, x2) = x3 can be realized
by the only three boolean variables x1,x2,x3 and at most four linear programming
constraints.

Keywords Binary linear programming; Boolean functions

AMS 2010 subject classifications 90C05,06E30

DOI: 10.19139/soic.v2i4.83

1. Introduction

Linear programming is a powerful tool, studied for over 50 years, that can
be used to define a lot of very important optimization problems [3, 6]. In a
linear programming problem (LP) we are given a linear function f : Rn 7→
R, f(x1, . . . , xn) = c1x1 + . . .+ cnxn =

∑n
i=1 cixi. Function f is denoted as

objective function of the LP. Additionally, a set of constraints is given. In
general a constraint either is an equality or an inequality which contains a

∗Correspondence to: Heinrich-Heine University of Düsseldorf, Institute of Computer Sci-
ence, Algorithmics for Hard Problems Group, D-40225 Düsseldorf, Germany. E-mail:
frank.gurski@hhu.de

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright c⃝ 2014 International Academic Press



EFFICIENT BINARY LINEAR PROGRAMMING FORMULATIONS 275

linear combination of the variables of f , i.e. the i-th constraint is of the form
ai,1x1 + . . .+ ai,nxn ≥ bi. Some of these constraints may be very simple, since
they require that some of the variables are not negative, e.g., xj ≥ 0. Constraints of
the first type are denoted as functional constraints and the latter ones are denoted
as nonnegativity constraints.

A proposal x′
1, . . . , x

′
n of values for the n variables of f is called a solution

and the number f(x′
1, . . . , x

′
n) its objective (function) value. A solution is denoted

as feasible if it satisfies all constraints. A feasible solution x is denoted as an
optimal solution if the objective function value for x is the smallest (minimization
problem) or the largest value (maximization problem) over the objective function
values for all feasible solutions. The linear programming problem is, given an
objective function and a finite set of constraints, to find an optimal solution.
Using matrices, a linear program can be expressed as a task of minimizing cTx
subject to the constraints Ax ≥ b and x ≥ 0. This allows us to define the size
of a linear program by size(A) + size(b) + size(c). The size of an integer (by
multiplying the rational coefficients adequate we can assume that we have given
integer coefficients) is the size of its binary representation. The size of a vector or
of a matrix is the sum of the sizes of its elements.

In integer linear programming problems (IP), the variables are all required to be
integers and in binary linear programming problems (BIP), each variable can only
take the two values, zero or one. While general linear programming can be solved
in polynomial time by interior point methods or the ellipsoid method [3], solving
integer programming and even binary integer programming is NP-hard [5].

The task to find equivalent linear programming formulations for optimization
problems is often challenging, see e.g. [7], [8], and [2]. In this connection it
is often useful to have formulation of logical operations by linear programming
constraints. Examples are linear programming formulations for graph parameters
in [7], an ILP approach for register allocation in [1], and the allocation of logical
constraints in LP-solvers as e.g. CPLEX.

In this paper we give efficient binary linear programming formulations (BIP
formulations) for several important boolean functions such as n-ary conjunction,
n-ary disjunction, equivalence, and implication. Our results also imply that every
binary boolean function f(x1, x2) = x3 can be realized by the three variables
x1,x2,x3 and at most four conditions, which was unknown until now.

2. Realizing logic operations in linear programming

We extend the definition of the binary boolean functions and and nor given in
[7] and of the functions and, or, and not given in [2] and [4] to all possible 16
binary boolean functions (cf. Table I) and their generalizations to n-ary boolean
functions. Let xi be boolean variables.

Stat., Optim. Inf. Comput. Vol. 2, December 2014.



276 F. GURSKI

Table I. All 16 binary boolean functions f(x1, x2).

x1 x2 0 x
1
∧
x
2

x
1
∧
¬
x
2

x
1 ¬
x
1
∧
x
2

x
2

x
1
⊕

x
2

x
1
∨
x
2

¬
(x

1
∨
x
2
)

x
1
⇔

x
2

1
−

x
2

x
2
⇒

x
1

1
−

x
1

x
1
⇒

x
2

¬
(x

1
∧
x
2
)

1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2.1. Negation

A negation x2 = ¬x1 can be realized by the following constraints.

x2 = 1− x1

x1, x2 ∈ {0, 1}

Note that for boolean variables xi, we can always substitute xi by 1− xi within
our conditions to realize the negation of xi without using the given additional
constraint.

2.2. Conjunction

An n-ary conjunction (and) xn+1 =
∧n

i=1 xi = x1 ∧ x2 ∧ . . . ∧ xn can be
realized by n+ 1 constraints as follows.

xn+1 ≤ x1

xn+1 ≤ x2

...
...

...
xn+1 ≤ xn

x1 + x2 + . . .+ xn ≤ xn+1 + n− 1

x1, x2, . . . , xn+1 ∈ {0, 1}

The special case that we do not need the result of the n-ary conjunction for
further computations in some variable and we only want to ensure that (x1 ∧ x2 ∧
. . . ∧ xn) is satisfied, can be realized by the single constraint

∑n
i=1 xi ≥ n.

Although our first two given formulations imply that every binary boolean
function can be defined by linear programming constraints, we suggest the
following conditions in order to get more efficient formulations and to prove
Theorem 1.

Stat., Optim. Inf. Comput. Vol. 2, December 2014.



EFFICIENT BINARY LINEAR PROGRAMMING FORMULATIONS 277

2.3. Disjunction

An n-ary disjunction (or) xn+1 =
∨n

i=1 xi = x1 ∨ x2 ∨ . . . ∨ xn can be realized
by n+ 1 constraints as follows.

x1 ≤ xn+1

x2 ≤ xn+1

...
...

...
xn ≤ xn+1

x1 + x2 + . . .+ xn ≥ xn+1

x1, x2, . . . , xn+1 ∈ {0, 1}

The special case that we do not need the result of the n-ary disjunction for
further computations in some variable and we only want to ensure that (x1 ∨ x2 ∨
. . . ∨ xn) is satisfied, can be realized by the single constraint

∑n
i=1 xi ≥ 1.

2.4. Nand

An n-ary nand xn+1 = ¬(x1 ∧ x2 ∧ . . . ∧ xn) can be realized by n+ 1
constraints by substituting xn+1 by 1− xn+1 in our solution for a n-ary
conjunction.

The special case that we do not need the result of the n-ary nand for further
computations in some variable and we only want to ensure that ¬(x1 ∧ x2 ∧ . . . ∧
xn) is satisfied, can be realized by the single constraint

∑n
i=1 xi ≤ n− 1.

2.5. Nor

An n-ary nor xn+1 = ¬(x1 ∨ x2 ∨ . . . ∨ xn) can be realized by n+ 1 constraints
by substituting xn+1 by 1− xn+1 in our solution for a n-ary disjunction.

The special case that we do not need the result of the n-ary nor for further
computations in some variable and we only want to ensure that ¬(x1 ∨ x2 ∨ . . . ∨
xn) is satisfied, can be realized by the single constraint

∑n
i=1 xi ≤ 0.

2.6. Exclusive Disjunction

An exclusive disjunction x3 = x1 ⊕ x2 can also be defined by x3 = (x1 ∧
¬x2) ∨ (¬x1 ∧ x2) and also by x3 = ¬(x1 ⇔ x2) or x3 = (x1 + x2) mod 2 and

Stat., Optim. Inf. Comput. Vol. 2, December 2014.



278 F. GURSKI

be realized by four constraints.

x1 + x2 + x3 ≤ 2

−x1 − x2 + x3 ≤ 0

x1 − x2 + x3 ≥ 0

−x1 + x2 + x3 ≥ 0

x1, x2, x3 ∈ {0, 1}

The special case that we do not need the result of the binary exclusive
disjunction for further computations in some variable and we only want to ensure
that (x1 ⊕ x2) is satisfied, can be realized by the constraint x1 + x2 = 1.

2.7. Implication

An implication x3 = (x1 ⇒ x2) can also be defined by x3 = (¬x1 ∨ x2) and thus
be defined by the shown conditions for a binary disjunction and substituting x1 by
1− x1 to realize ¬x1.

1− x1 ≤ x3

x2 ≤ x3

1− x1 + x2 ≥ x3

x1, x2, x3 ∈ {0, 1}

The special case that we do not need the result of the implication for further
computations in some variable and we only want to ensure that (x1 ⇒ x2) is
satisfied, can be realized by the single constraint x1 ≤ x2.

2.8. Equivalence

An equivalence x3 = (x1 ⇔ x2) can also be defined by x3 = (x1 ∧ x2) ∨ (¬x1 ∧
¬x2) or x3 = ¬(x1 ⊕ x2) and thus be realized by substituting x3 by 1− x3 in our
solution for a binary exclusive disjunction.

x1 + x2 − x3 ≤ 1

x1 + x2 + x3 ≥ 1

−x1 + x2 + x3 ≤ 1

x1 − x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}

The special case that we do not need the result of the equivalence for further
computations in some variable and we only want to ensure that (x1 ⇔ x2) is
satisfied, can be realized by the constraint x1 = x2.

Stat., Optim. Inf. Comput. Vol. 2, December 2014.



EFFICIENT BINARY LINEAR PROGRAMMING FORMULATIONS 279

2.9. Binary Boolean Functions

Our given formulations for logical operations imply for n = 2 that all possible 16
binary boolean functions f : {0, 1}2 → {0, 1} which are summarized in Table 1
can be expressed very efficiently. The formulation of binary exclusive disjunction,
or equivalently, the equivalence by only four conditions seems to be the hardest
task within this result.

Theorem 1
Every binary boolean function f : {0, 1} × {0, 1} → {0, 1}, f(x1, x2) = x3 can
be realized by three variables x1,x2,x3 and at most four conditions.

3. Conclusions and Outlook

We have given efficient linear programming formulation of several important n-
ary boolean functions. Our results extend the definition of the binary boolean
functions and and nor given in [7] and of the functions and, or, and not given in
[2] and [4] and allow us to show that every binary boolean function f(x1, x2) = x3

can be realized by the only three boolean variables x1, x2, x3 and at most four
linear programming constraints. We suppose that for n = 2 our solutions are
best possible with respect to their size. For n > 2 the problem gets much more
extensive.

REFERENCES

1. A.W. Appel and L. George. Optimal Spilling for CISC Machines with Few Registers. In
Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation, PLDI ’01, pages 243–253. ACM, 2001.

2. D.-S. Chen, R.G. Batson, and Y. Dang. Applied Integer Programming: Modeling and Solution.
Wiley, New York, 2010.

3. V. Chvátal. Linear Programming. W. H. Freeman and Company, New York, 1983.
4. FICOTM. MIP formulations and linearizations - Quick reference. Technical report, Fair Isaac

Corporation, Warwickshire CV32 5YN, UK, 2009.
5. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, San Francisco, 1979.
6. M. Jünger, T.M. Liebling, D. Naddef, G.L. Nemhauser, W.R. Pulleyblank, G. Reinelt,

G. Rinaldi, and L.A. Wolsey, editors. 50 Years of Integer Programming 1958-2008. Springer-
Verlag, 2010.

7. J. Luttamaguzi, M. Pelsmajer, Z. Shen, and B. Yang. Integer programming methods for several
optimization problems in graph theory. In Proceedings of the International Conference on
Computers and Their Applications, CATA 2005, pages 50–55. ISCA, 2005.

8. R. Vanderbei. Linear Programming. Springer-Verlag, Berlin, 2008.

Stat., Optim. Inf. Comput. Vol. 2, December 2014.


