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1. Introduction

The central problem of linear algebra is the solution of linear system of equations
Ax = b. Direct methods used to solve a linear system of equations are based on
a factorization of the coefficient matrix into factors that are easy to be used in
solving equations. The Gaussian elimination process (i.e., the LU factorization)
is optimal among the methods involving only linear combinations of rows and
columns [4].

Implicit matrix elimination schemes for solving linear systems were introduced by
Evans [8] and Evans and Hatzopoulos [7]. These schemes propose the elimination
of two matrix elements simultaneously (as opposed to a single element in Gaussian
elimination) and is eminently suitable for parallel implimentation [9]. ABS class
of algorithms was constructed for the solution of linear systems utilizing some
basic ideas such as vector projection and rank one update techniques [1, 3]. The
ABS class was later extended to solve optimization problems [3] and systems of
linear Diaphantine equations (see [5, 6, 17, 18]). Reviews of ABS methods and
their extensions can be found in [21, 22].

Consider the linear system

Ax = b, x ∈ Rn, A ∈ Rn×n, b ∈ Rn. (1)

For simplicity, assume that A is a nonsingular matrix. A scaled version of the
linear ABS class was introduced in [3]. Let V ∈ Rn×n be a nonsingular matrix.
Obviously, the system (1) is equivalent to the following scaled system:

V TAx = V T b. (2)

Algorithm 1. Basic ABS algorithm.

(1) Let H1 ∈ Rn×n be an arbitrary nonsingular matrix. Let i=1 and r = 0.

(2) Compute si = Hiai.

(3) If si = 0 (the ith row of A is dependent on its first i-1 rows) then let
Hi+1 = Hi and go to (6).

(4) (si ̸= 0 and hence the ith row of A is independent of its first i-1 rows)
Compute the search vectors pi by

pi = HT
i fi, (3)

where fi ∈ Rn is arbitrary, save for the condition sTi fi ̸= 0.
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(5) (Updating the null space generator) Update Hi by

Hi+1 = Hi −
Hiaiq

T
i Hi

qTi Hiai
, (4)

where qi ∈ Rn is an arbitrary vector satisfying sTi qi ̸= 0, and let r = r + 1.

(6) If i = m then Stop (HT
m+1 generates the null space of A and r is its

rank) else let i = i+ 1 and go to (2).

The matrices Hi are generalizations of projections matrices. The updating
formula (4) for the Hi is a rank reduction formula first appeared in a book by
Wedderburn [23] . They have been named Abaffians since the First International
Conference on ABS Methods (Luyoyang, China, 1991).

Considering (2), it is easily verified that the scaled ABS class is obtained
by replacing ai with AT vi [3] in Algorithm 1. The algorithms produce a matrix
factorization V TAP = L, where L is a lower triangular matrix (see [3]). Choices
of the parameters H1, vi, fi and qi determine particular methods within the class
so that various matrix factorizations such as LU, QR and Cholesky factorizations
are derived [3]. Recently, Golpar-Raboky and Mahdavi-Amiri showed how to
compute the Smith normal form of an integer matrix using the scaled integer
ABS algorithm [14, 15]. Later Mahdavi-Amiri and Golpar-Raboky [19] extended
the rank reducing process and developed a new class of algorithms containing
the scaled extended ABS class of algorithms and the Wedderburn rank reducing
process.

It has been proved in [11, 13] that all full rank factorizations can be produced
only by a subset of the ABS methods.

The integer ABS (IABS) class of algorithms has been developed by Esmaeili et
al. [5, 6] to compute the general integer solution of linear Diophantine equations.
There, conditions for the existence of an integer solution and determination of all
integer solutions of a linear Diophantine system have been established.

The block ABS algorithm, due to Abaffy and Galantai [2] for the scaled
ABS class, further developed in several papers by Galantai, is a block form
of the ABS algorithm [3]. Let n1, · · · , ns be positive integer numbers so that
n1 + · · ·+ ns = n. Let V be partitioned in the form V = [V1, · · · , Vs], where
Vi,∈ Rn×ni . The block scaled ABS algorithm is as follows.

• Let H1 ∈ Rn×n be arbitrary and nonsingular.
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• For i = 1 to s do

• Compute Si = HiA
TVi. Compute the matrix Pi = HT

i Fi, where Fi ∈
Rn×ni

is an arbitrary matrix so that ST
i Fi is nonsingular, and update Hi by

Hi+1 = Hi −HiA
TVi(Q

T
i HiA

TVi)
−1

QT
i Hi, (5)

where Qi ∈ Rn×ni is an arbitrary matrix so that ST
i Qi is nonsingular.

• Define Vi+1 ∈ Rn×ni+1 , an arbitrary full column rank matrix with
column

being linearly independent of columns of V1, · · · , Vi .

One main result of the ABS algorithms has been the derivation of the ABS
class of algorithms for linear Diophantine equations given by Esmaeili, Mahdavi-
Amiri and Spedicato [6] and its extension using the scaled ABS algorithms [21].
Each integer ABS algorithm decides whether the Diophantine system has an
integer solution, and, if so, obtains a particular solution along with an integer
matrix with possibly dependent rows generating the integer null space of the
equations. Consider the linear Diophantine system:

Ax = b, A ∈ Zm×n, x ∈ Zn, b ∈ Zm, m ≤ n. (6)

The system (6) is equivalent to the scaled system,

V TAx = V T b, (7)

where V is an arbitrary m by m unimodular matrix, an integer matrix with its
determinant being equal to +1 or −1.

First, we recall some results from number theory and then present the steps
of an integer ABS (IABS) algorithm.

Note that if A is unimodular, then A−1 is also unimodular.

Definition 1
A matrix A is called totally unimodular if each square submatrix of A has
determinant equal to 0, +1, or −1. In particular, each entry of a totally unimodular
matrix is 0, +1, or −1.

Theorem 1
(Fundamental theorem of the single linear Diophantine equation) Let a1, · · · , an
and b be integer numbers. The Diophantine linear equation a1x1 + · · ·+ anxn = b
has an integer solution if and only if gcd(a1, · · · , an) | b (if n > 1, then there are
an infinite number of integer solutions).
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The scaled integer ABS algorithm (SIABS) has the following structure, with
gcd(u) being the greatest common divisor of a vector u.

• Let H1 ∈ Zn×n be arbitrary and unimodular.

• For i = 1 to n do

• Compute si = HiA
T vi.

• Compute δi = gcd(si) and pi = HT
i fi, where, fi ∈ Zn is an arbitrary

integer vector satisfying sTi fi = δi. Update Hi by

Hi+1 = Hi −
HiA

T viq
T
i Hi

qTi HiAT vi
, (8)

where qi ∈ Zn is an arbitrary integer vector satisfying sTi qi = δi.

• Define vi+1 ∈ Zn so that v1, · · · , vi+1 make the columns of a unimodular
matrix.

The WZ factorization corresponds to a version of the block LU algorithm,
with block sizes equal to two. The W-matrix and Z-matrix are constructed by
applying appropriate permutation matrices on rows and columns of a lower
triangular matrix.

Here, making use of permutations in the block ABS method we compute
the WZ and WZ factorizations of a nonsingulaer matrix as well as the WTW and
the ZTZ factorizations of a symmetric positive definite matrix. We also show
how to compute the QZ and the QW factorizations, where QTQ is an X-matrix,
using the ABS algorithms.

The remainder of our work is organized as follows. In Section 3, we explaine the
WZ factorization. In Section 2, we present a new formulation of the neseccary and
sufficient conditions for existence of the real and integer WZ factorizations. Then,
we present an algorithm for computing the WZ factorization as well as the WTW
factorization of a positive definite matrix using the block scaled ABS algorithm.
An algorithm for computing the QZ factorization where QTQ is an X-matrix
is also given. In Section 3, we compute the real and integer ZW factorizations
by appropriate setting of the parameters of the block scaled ABS algorithm. We
also compute the ZTZ factorization of a positive definite matrix and the QW
factorization, where QTQ is an X-matrix, using the block scaled ABS algorithms.
Necessary and sufficient conditions for existence of ZW factorization based on
the block ABS algorithm are also given. We conclude in Section 4.
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2. WZ factorization using the block scaled ABS algorithm

To solve a system of linear equations, the WZ factorization splitting procedure
proposed in [8, 9] is convenient for parallel computing. The WZ factorization
offers a parallel method for solving dense linear systems, where A is a square
n× n matrix, and b is an n-vector.

Definition 2
Let s be a real number, and denote by ⌊s⌋ (⌈s⌉), the greatest (least) integer less
(bigger) than or equal to s.

Definition 3
We say that a matrix A is factorized in the form WZ if

A = WZ, (9)

where the matrices W and Z have the following structures:

W =


1 ◦ ◦ ◦ •
• 1 ◦ • •
• • 1 • •
• • ◦ 1 •
• ◦ ◦ ◦ 1

 , Z =


• • • • •
◦ • • • ◦
◦ ◦ • ◦ ◦
◦ • • • ◦
• • • • •

 , (10)

with the empty bullets standing for zero and the other bullets standing for possible
nonzeros.

Definition 4
We define an X-matrix as follows:

X =


• ◦ ◦ ◦ •
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
• ◦ ◦ ◦ •

 . (11)

The following theorems express the conditions for the existence of a WZ
factorization of a nonsigular matrix (see [20]). Later, we give a new set of
conditions useful for our purposes.

The well-known LU factorization is one of the most commonly used algorithms
to solve linear systems and the WZ factorization is an interesting variation
of the block LU factorization with block sizes equal to two. Assume that
P = [pδ1 , · · · , pδn ] is a permutation matrix so that pδi = i, if i is odd, and
pδi = n− i+ 1, if i is even, i = 1, · · · , n/2, with n being even. Let L and U
be the block lower and upper triangular matrices with block sizes equal to two,
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respectively. Then , P−TLPT is a W-matrix and P−TUPT is a Z-matrix.

We know that the matrix A has an LU decomposition if and only if the
leading principal block submatrices of A are nonsingular; see [12]. Therefore, we
have the following result.

Theorem 2
(Factorization Theorem). Let A ∈ Rn×n be nonsingular. The matrix A has a WZ
factorization if and only if for every k, 1 ≤ k ≤ s, with s = ⌊n/2⌋, if n is even,
and s = ⌈n/2⌉, if n is odd, the submatrix

∆k =



a1,1 · · · a1,k a1,n−k+1 · · · a1,n
... · · ·

...
... · · ·

...
ak,1 · · · ak,k ak,n−k+1 · · · ak,n

an−k+1,1 · · · an−k+1,k an−k+1,n−k+1 · · · an−k+1,n

... · · ·
...

... · · ·
...

an,1 · · · an,k an,n−k+1 · · · an,n


2k,2k

(12)

of A is invertible. Moreover, the factorization is unique.

Proof
See Theorem 2 in [20].

The following results have also been established in [20].

• If A ∈ Rn×n is nonsingular, then a WZ factorization can always be obtained by
pivoting. That is, there exists a row permutation matrix Π and the factors W and Z
such that

ΠA = WZ. (13)

• Every symmetric positive definite matrix has a WZ factorization.

When A is a symmetric positive definite matrix, it is possible to factor A in
the Cholesky factorization form A = LLT , for some lower triangular matrix L.
A variant of the classical Cholesky factorization, called Cholesky QIF, is given
by Evans [10]. Existence and stability of this factorization are proved by Khazal
[16].

Here, we propose a new formulation of Theorem 2 using the block scaled
ABS algorithm.

Theorem 3
Let A ∈ Zn×n be nonsingular. If the ∆k, k = 1, · · · , n/2, are unimodular, then
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the block ABS algorithm with parameter choices H1 = I, Qi = Vi = [ei, en−i+1]
is well defined and the implicit factorization V TAP with pi = HT

i ei, pn−i+1 =
HT

i en−i+1, i = 1, · · · , n/2, and V = [V1, · · · , Vn/2] leads to a WZ factorization.

Proof
Let H1 = I, Vi = [v2i−1, v2i] = [ei, en−i+1], Qi = [q2i−1, q2i] = [ei, en−i+1] and
Hi+1 be defined by (5). Then, according to Theorem 5.5 in [3], we have

Hi+1 =

 0 0 0
Ki In−2i Li

0 0 0

 , (14)

with Ki, Li ∈ Zn−2i,i. Let Pi = [p2i−1, p2i] = HT
i [ei, en−i+1], P =

[P1, · · · , Pn/2] and V = [V1, · · · , Vn/2]. Then, the block ABS algorithm produces
V TAP = L, where P is an upper triangular matrix and L is a lower triangular
matrix. Now, we have

V TAP = L ⇒ APV T = V −TLV T ⇒ AZ = W (15)

where Z = PV T is an Z-matrix, with 1 as diagonal and 0 as off diagonal entries,
and W = V −TLV T is an W -matrix.

Next, we present an algorithm for computing the WZ factorization.

Algorithm 2. The WZ factorization.

(1) Let H1 = In and i=1.

(2) Let Ai = [ai, an−i+1]
T and [pi, pn−i+1] = HT

i [ei, en−i+1].

(4) Let Qi = [ei, en−i+1]. Update Hi by

Hi+1 = Hi −HiAi(Q
T
i HiAi)

−1
QT

i Hi. (16)

(5) Let i = i+ 1. If i ≤ n/2 then go to (2).

(6) Compute AP = W , where P = [p1, · · · , pn]. Stop.

We now have the following results.

Theorem 4
Let A be a symmetric positive definite matrix. Then, there exists a ZTDZ
factorization for A, obtained by the ABS algorithm.
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Proof
Consider the assumptions of Theorem 3 and let Vi = Pi, for i = 1, · · · s. Then,
V TAP is an X-matrix, V and P are Z-matrices and we have

V TAP = X ⇒ A = V −TXP−1 = ZTDZ, (17)

where D is an X-matrix, ZT = V −T and Z = P−1.

Theorem 5
Let A be symmetric positive definite. Then, there exists a ZTZ factorization for A,
obtained by the ABS algorithm.

Proof
Consider the assumptions of Theorem 3 and let Vi = Pi, for i = 1, · · · s. Then,
V TAP is an X-matrix, V and P are Z-matrices and we have

V TAP = X ⇒ A = V −TXP−1 = ZTZ, (18)

where X is an X-matrix, ZT = V −TX1/2 and Z = X1/2P−1.

Remark 1
Now, let A ∈ Zn×n, H1 = I and ∆k, k = 1, · · · , n/2, are unimodular. Then, the
sequence of Hi+1, i = 1, · · · , s generated by the Algorithm 2 are integer matrices
[5] and the Algorithm 2, leads to a WZ factorization, where the W and the Z are
integer W-matrix and Z-matrix, respectively.

2.1. The QZ Algorithm

Definition 5
A matrix Q is said a cross orthogonal matrix if QTQ is an X-matrix.

Definition 6
We say that a matrix A is factorized in the form QZ if

A = QZ, (19)

where the matrix Z is a Z-matrix and Q is a cross orthogonal matrix.

Theorem 6
Let A ∈ Rn×n, H1 = I , Vi = [ei, en−i+1], Qi = Fi = ATVi and PVi =
HT

i A
TVi, i = 1, · · · , s, with s = ⌊n/2⌋, if n is even, and s = ⌈n/2⌉, if n is odd.

Then, there exists a QZ factorization, obtained by the block scaled ABS algorithm.

Proof
Making use of the proof of Theorem 5.1 in [3], P is a cross orthogonal matrix and
we have

Stat., Optim. Inf. Comput. Vol. 2, September 2014.



252 E. GOLPAR-RABOKY, N. MAHDAVI-AMIRI

AP = W ⇒ AT = QZ, (20)

where Z = WT is a Z-matrix , Q = P−T and Q is a cross orthogonal matrix.
Thus, we admit a QZ factorization for AT . Of course, a QZ factorization for A is
easily found by applying the above process to AT .

3. ZW factorization using the block scaled ABS algorithm

Here, we present conditions for the existence and compute the ZW factorization
of a nonsingular matrix using the ABS algorithm.

Definition 7
We say that a matrix A is factorized in the form ZW if

A = ZW, (21)

where the matrices W and Z have the following structures:

Z =


1 • • • •
◦ 1 • • ◦
◦ ◦ 1 ◦ ◦
◦ • • 1 ◦
• • • • 1

 ,W =


• ◦ ◦ ◦ •
• • ◦ • •
• • • • •
• • ◦ • •
• ◦ ◦ ◦ •

 . (22)

Now, we give a new characterization of the necessary and sufficient conditions for
the ZW factorization.

Theorem 7
Let A ∈ Rn,n be a nonsingular matrix. A has a ZW factorization if and only if for
every k, 1 ≤ k ≤ s, with s = ⌊n/2⌋, if n is even, and s = ⌈n/2⌉, if n is odd, the
submatrix

Λk =

as−k+1,s−k+1 · · · as−k+1,s+k

... · · ·
...

as+k,s−k+1 · · · as+k,s+k


2k,2k

(23)

is invertible. Moreover, the factorization is unique.

Proof
The proof follows the lines of the proof for Theorem 5.5 in [3] replacing ∆i by
Λi.

Next, we propose a new formulation of Theorem 7 using the block scaled ABS
algorithm.

Stat., Optim. Inf. Comput. Vol. 2, September 2014.



A NEW INTERPRETATION OF THE INTEGER AND REAL WZ FACTORIZATION 253

Theorem 8
Let A ∈ Zn×n be nonsingular. If ∆k, k = 1, · · · , n/2, is nonsingular, then the
block ABS algorithm with parameter choices H1 = I, Qi = Vi = [en

2 −i+1, en
2 +i]

is well defined and the implicit factorization V TAP with pn
2 −i+1 =

HT
i en

2 −i+1, pn
2 +i = HT

i en
2 +i, i = 1, · · · , n/2, and V = [V1, · · · , Vn/2] leads to

a ZW factorization.

Proof
Let H1 = I, Vi = [v2i−1, v2i] = [en

2 −i+1, en
2 +i], Qi = [q2i−1, q2i] =

[en
2 −i+1, en

2 +i] and Hi+1 be defined by (5). Then, according to Theorem
5.5 in [3], we have

Hi+1 =

Ii K2i 0
0 0 0
0 L2i Ii

 , (24)

with Ki, Li ∈ Rn−2i,2i. Let Pi = [p2i−1, p2i] = HT
i [en

2 −i+1, en
2 +i], P =

[P1, · · · , Pn/2] and V = [V1, · · · , Vn/2]. Then, the block ABS algorithm produces
V TAP = L, where P is upper triangular and L is lower triangular. Now, we have

V TAP = L ⇒ APV T = V −TLV T ⇒ AZ = W, (25)

where W = PV T is aW-matrix with 1 as diagonal and 0 as off diagonal entries,
and W = V −TLV T is a Z-matrix.

Now, we are ready to present an algorithm for computing the WZ factorization.

Algorithm 3. The ZW factorization.

(1) Let H1 = In and i=1.

(2) Let Ai = [an
2 −i+1, an

2 +i]
T and [pn

2 −i+1, pn
2 +i] = HT

i [en
2 −i+1, en

2 +i].

(4) Let Qi = [en
2 −i+1, en

2 +i]. Update Hi by

Hi+1 = Hi −HiAi(Q
T
i HiAi)

−1
QT

i Hi, (26)

(5) Let i = i+ 1. If i ≤ n/2 go to (2).

(6) Compute AP = Z, where P = [p1, · · · , pn]. Stop.

Theorem 9
Let A be symmetric positive definite. Then, there exists a WTW factorization for
A, obtained by the ABS algorithm.
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Proof
Consider the assumption of Theorem 8 and let Vi = Pi, for i = 1, · · · s. Then,
V TAP is an X-matrix, V and P are W-matrices and we have

V TAP = X ⇒ A = V −TXP−1 = WTW, (27)

where X is an X-matrix, WT = V −TX1/2 and W = X1/2P−1.

Remark 2
Now, let A ∈ Zn×n, H1 = I and ∆k, k = 1, · · · , n/2, are unimodular. Then, the
sequence of Hi+1, i = 1, · · · , s generated by the Algorithm 3 are integer matrices
[5] and the algorithm leads to a ZW factorization, where the W and the Z are
integer W-matrix and Z-matrix, respectively.

3.1. The QW Algorithm

Definition 8
We say that a matrix A is factorized in the form QW if

A = QW, (28)

where the matrix W is a W-matrix and Q is a cross orthogonal matrix.

Theorem 10
Let A ∈ Rn×n, H1 = I , Vi = [es−i+1, es+i], Qi = Fi = ATVi and PVi =
HT

i A
TVi, i = 1, · · · , s, with s = ⌊n/2⌋, if n is even, and s = ⌈n/2⌉, if n is odd,.

Then, there exists a QZ factorization, obtained by the block scaled ABS algorithm.

Proof
Making use of the proof of Theorem 5.1 in [3], P is a cross orthogonal matrix and
we have

AP = Z ⇒ AT = QW, (29)

where W = ZT is a W-matrix and Q = P−T is a cross orthogonal matrix. Thus,
we admit a QW factorization for AT . Of course, a QW factorization for A is easily
found by applying the above process to AT .

4. Conclusions

We showed how to appropriate the parameters of the block scaled ABS algorithms
to construct algorithms for computing the WZ and ZW factorizations of a
nonsingular matrix and the WTW and ZTZ factorizations of a symmetric
positives definite matrix. New formulation of the necessary and sufficient
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conditions for the existence of the WZ and the ZW factorizations of a nonsingular
matrix were given. We also derived two new factorizations, the QZ and QW, with
QTQ being an X-matrix, and showed how to compute the factorizations using the
block scaled ABS algorithms. We also provided the conditions for the existence
of the integer WZ and ZW factorizations of an integer matrix and computated the
factorizations by the integer ABS algorithms.
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