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Abstract In this paper, we derive the recurrence relations for the moments of function
of single and two order statistics from Lindley distribution. We also consider the
maximum likelihood estimation (MLE) of the parameter of the distribution based on
multiply type-II censoring. The maximum likelihood estimator is comupted numerically
because it does not have an explicit form for the parameter. Then, a Monte Carlo
simulation study is carried out to evaluate the performance of the MLE obtained from
multiply type-II censored sample.
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1. Introduction

A random variable X is said to have Lindley distribution if its probability density
function (pdf) is given by

f(x) =
θ2

1 + θ
(1 + x) e−θx; x > 0, θ > 0, (1)

and it was introduced by Lindley (1952). The corresponding cumulative
distribution function (cdf) is given by

F (x) = 1− 1 + θ + θx

1 + θ
e−θx; x > 0, θ > 0. (2)

∗Correspondence to: Department of Statistics, King Abdulaziz University, Jeddah 21589, Saudi
Arabia. E-mail: bmalzahrani@kau.edu.sa

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright c⃝ 2014 International Academic Press



148 BANDER AL-ZAHRANI AND M. A. ALI

The Lindley distribution gives a better model where the exponential distribution
is not good fit. Since the equation F (x) = u, where u ∼ U(0, 1), cannot be solved
explicitly in terms of x, the inversion method for generation random data from the
Lindley distribution fails. However, one can use the fact that the distribution is a
special mixture of Exponential(θ) and Gamma(2, θ) distributions as

f(x) = pf1(x) + (1− p)f2(x);x > 0, θ > 0,

where p = θ/(1 + θ), f1(x) = θe−θx and f2(x) = θ2xe−θx.
To generate random data, Xi, i = 1, 2, · · · , n from the Lindley distribution with
parameter θ one may follow the acceptance-rejection method which can be given
by the following algorithm:

i. Generate Ui ∼ U(0, 1), i = 1, 2, · · · , n
ii. Generate Ei ∼ Exp(θ), i = 1, 2, · · · , n

iii. Generate Gi ∼ Gamma(2, θ), i = 1, 2, · · · , n
iv. If Ui ≤ p, then set Xi = Gi, otherwise, set Xi = Ei, i = 1, 2, · · · , n, where

p is as before.

Ghitany, et al. (2008) developed different properties of Lindley distribution. The
main aim of this paper is to develop recurrence relations of moments of order
statistics for the function of single and two order statistics. Also develop a
maximum likelihood estimation procedure of the parameter θ by Monte Carlo
simulation from multiply type-II censored sample. Then a comparison study will
be made between maximum likelihood estimates (Ghitany, et al., 2008) and MLE
from Monte Carlo study from multiply type-II censored sample.

Let X1, X2, · · · , Xn be a random sample of size n from the pdf (1)
corresponding to the cdf (2). Then X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote ordered
statistics for the above sample. Assume that n items are put on a life test, but only
r1-th, · · · , rk-th failures are observed, the rest are unobserved, where r1, · · · , rk
are considered to be fixed. This is the multiply Type-II censoring, for more details
see e.g. Jang et al. (2001) and Schenk et al. (2011). Multiply Type-II censoring
is a generalization of Type-II censoring where only the first k failure times are
observed. In this paper, we let 0 ≤ Xr1:n ≤ Xr2:n ≤ · · · ≤ Xrk:n < ∞ to be a
multiply Type-II censored sample from a population with pdf (1) and cdf (2) for
θ ∈ Rq, where, 1 ≤ r1 < r2 < · · · < rn ≤ n.

The motivation behind using multiply type-II censoring is made clear in the
particularl case if one fails to record the failure time of every subject, only several
failure times and the number of failures between them are recorded, see Kong and
Fei (1996).
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2. Recurrence relation for Moments from function of single order statistic

The pdf of r-th order statistic Xr:n, (1 ≤ r ≤ n) is given by

fr:n(x) =
n!

(r − 1)! (n− r)!
[F (x)]

r−1
[1− F (x)]

n−r
f(x), x ∈ (0,∞) (3)

Let g(x) be a Borel measurable function of x in the interval x ∈ (0,∞), then

E [g (Xr:n)] = Cr:n

∫ ∞

0

g(x) [F (x)]
r−1

[1− F (x)]
n−r

f(x) dx.

= pθCr:n

∫ ∞

0

g(x)
[
1− (1 + px)e−θx

]r−1
[1 + px]

n−r

× (1 + x)e−(n−r+1)θx dx, (4)

where Cr:n = n!/((r − 1)! (n− r)!).
Theorem 1
For 1 ≤ r ≤ n; n = 1, 2, · · ·

E [g (Xr:n)]− E [g (Xr−1:n−1)] =
(n− 1

r − 1

) r−1∑
i=0

(−1)i−1−i
(r − 1

i

)
×

∫ ∞

0

g
′
(x)(1 + px)n−ie−(n−i)θx dx, (5)

where p = θ/(1 + θ) and q = 1/(1 + θ).

Proof. From (4), we have

E [g (Xr:n)]− E [g (Xr−1:n−1)] =
(n− 1

r − 1

)
θp

∫ ∞

0

g(x)
[
1− (1 + px)e−θx

]r−1

× [1 + px]n−r

[
n− r + 1− n (1 + px) e−θx

1− (1 + px)e−θx

]
× (1 + x)e−(n−r+1)θxdx.

Let q(x) = −
[
1− (1 + px)e−θx

]r−1
[1 + px]

n−r+1
e−(n−r+1)θx, then we have

E [g (Xr:n)]− E [g (Xr−1:n−1)] =

(
n− 1

r − 1

)∫ ∞

0

g(x) q′(x)dx,

which on integration by parts gives

E [g (Xr:n)]− E [g (Xr−1:n−1)] =

(
n− 1

r − 1

)∫ ∞

0

g′(x)
[
1− (1 + px)e−θx

]r−1

× [1 + px]n−r+1(1 + x)e−(n−r+2)θxdx. (6)
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Now expanding
[
1− (1 + px)e−θx

]r−1 binomially to get,

[
1− (1 + px)e−θx

]r−1
=

r−1∑
i=0

(−1)
r−1−i

(
r − 1
i

)
(1 + px)

r−1−i
e−(r−1−i)θx.

Putting this result in (6) and on algebraic simplification gives the required proof
of the result in (5).

Theorem 2
For 1 ≤ r ≤ n; n = 1, 2, · · ·

E [g (Xr:n)]− E [g (Xr−1:n)] =

(
n

r − 1

) r−1∑
i=0

(−1)
r−1−i

(
r − 1

i

)
×
∫ ∞

0

g′(x)(1 + px)
n−i

e−(n−i)θxdx.

Proof. The proof of this theorem is same as that of Theorem 1. Also, for further
details we refer to Ali and Khan (1998a).

Theorem 3
For 1 ≤ r ≤ n; n = 1, 2, · · ·

[E [g (Xr−1:n−1)]− E [g (Xr−1:n)] =

(
n− 1

r − 2

) r−1∑
i=0

(−1)
r−1−i

(
r − 1

i

)
×
∫ ∞

0

g′(x)(1 + px)
n−i

e−(n−i)θx dx.

Proof. The proof is same as that of Theorem 2 Also, we refer to Ali and Khan
(1998a).

It is important to note that the above theorems lead to establish the well-known
relation given in David and Nagaraja (2003), pp. 45.

Corollary 1
If g(x) = xk, for 1 ≤ r ≤ n; n = 1, 2, · · · , then

µ(k)
r:n − µ

(k)
r−1:n−1 = C (constant),

where

C = k

(
n− 1
r − 1

) r−1∑
i=0

n−i∑
j=0

(−1)r−1−i

(
r − 1
i

)(
n− i
j

)
pn−i−j Γ(n+ k − i− j)

[(n− i) θ]n+k−i−j
.
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Proof. Putting g(x) = xk in Theorem 1, to get

µ(k)
r:n − µ

(k)
r−1:n−1

= k

(
n− 1

r − 1

) r−1∑
i=0

(−1)r−1−i

(
r − 1

i

)
×
∫ ∞

0

xk−1(1 + px)
n−i

e−(n−i)θx dx.

= k

(
n− 1

r − 1

) r−1∑
r=0

n−i∑
j=0

(−1)
r−1−i

(
r − 1

i

)(
n− j

j

)
pn−i−j

×
∫ ∞

0

xn+k−i−j−1e−(n−i)θx dx,

using the gamma function to the integrand to get the require result.

Corollary 2
If g(x) = xk, for 1 ≤ r ≤ n; n = 1, 2, · · · , then

µ(k)
r:n − µ

(k)
r−1:n = C (constant),

where

C = k

(
n− 1
r − 2

) r−1∑
i=0

n−i∑
j=0

(−1)r−1−i

(
r − 1
i

)(
n− i
j

)
pn−i−j Γ(n+ k − i− j)

[(n− i) θ]n+k−i−j
.

Proof. Putting g(x) = xk in Theorem 2 and the rest is similar to Corollary 1.

Corollary 3
If g(x) = xk, for 1 ≤ r ≤ n; n = 1, 2, · · · , then

µ
(k)
r−1:n−1 − µ

(k)
r−1:n = C (constant),

where

C = k

(
n− 1
r − 2

) r−1∑
i=0

n−i∑
j=0

(−1)r−1−i

(
r − 1
i

)(
n− i
j

)
pn−i−j Γ(n+ k − i− j)

[(n− i) θ]n+k−i−j
.

Proof. Putting g(x) = xk in Theorem 3 and the rest is similar to Corollary 1.

3. Recurrence relation for Moments from the function of two order statistics

The joint pdf of Xr:n = x and Xs:n = y, 1 ≤ r ≤ s ≤ n, is given by

fr,s:n(x, y) = Cr,s:n[F (x)]
r−1

[F (y)− F (x)]
s−r−1

[1− F (y)]
n−s

f(x)f(y),
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where 0 ≤ x < y < ∞, Cr,s:n = n!/((r − 1)! (s− r − 1)! (n− s)!).
If g is a Borel measurable function from R2 to R, then

E [g (Xr:n, Xs:n)]

= Cr,s:n

∫ ∫
0≤x<y<∞

{
g(x, y)[F (x)]

r−1
[F (y)− F (x)]

s−r−1

× [1− F (y)]
n−s

f(x)f(y)

}
dxdy.

= Cr,s:n θ2p2
∫ ∫

0≤x<y<∞

{ r−1∑
i=0

(−1)
r−1−i

(
r − 1

i

)
g(x, y)(1 + px)

r−1−i

×
[
e−θx − e−θy + pxe−θx − pye−θy

]s−r−1
[1 + py]

n−s

× (1 + x) (1 + y) e−θ[(r−i)x+(n−s+1)y]

}
dxdy. (7)

Theorem 4
For 1 ≤ r ≤ n; n = 1, 2, · · ·

E [g (Xr:n, Xs:n)]− E [g (Xr:n, Xs−1:n)]

=
Cr,s:n

(n− s+ 1)

∫ ∫
0≤x<y<∞

{ r−1∑
i=0

(−1)
r−1−i

(
r − 1

i

)
g′(x, y)(1 + px)

r−1−i

×
[
e−θx − e−θy + pxe−θx − pye−θy

]s−r−1
[1 + py]

n−s+1
(1 + x) (1 + y)

× e−θ[(r−i)x+(n−s+2)y]dxdy

}
, (8)

where g′(x, y) = d
dy g(x, y).

Proof. From (7), we have

E [g (Xr:n, Xs:n)]− E [g (Xr:n, Xs−1:n)]

=
Cr,s:n

(n− s+ 1)

∫ ∫
0≤x<y<∞

r−1∑
i=0

(−1)r−1−i
(r − 1

i

)
g(x, y)(1 + px)r−1−i

[
e−θx − e−θy

+pxe−θx − pye−θys−r−2
]
[1 + py]n−s (1 + x) (1 + y) e−θ[(r−i)x+(n−s+1)y]

[(n− r)
{
1− (1 + py) e−θy

}
− (n− s+ 1) θp (1 + x) e−θx − (n− s+ 1)]dx dy. (9)

Let

K(x, y) = −
[
e−θx − e−θy + pxe−θx − pye−θy

]s−r−1
[1 + py]n−s+1e−(n−s+1)θy.
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Then the right hand side of (9) becomes,

θp Cr,s:n

(n− s+ 1)

∫ ∫
0≤x<y<∞

r−1∑
i=0

(−1)r−1−i

(
r − 1

i

)
g(x, y)(1 + px)r−1−ie−θ(r−1)xK′(x, y)dx dy

where, K ′(x, y) = d
dy g(x, y) and hence the theorem (Ali and Khan, 1998).

The usual technique is establishing the recurrence relations will be to express
[1− F (x)] or F (x) as a function of x and f(x) and then obtain the general form
relations.

Corollary 4
If g(x, y) = xiyj and 1 ≤ r ≤ n; n = 1, 2, 3, · · ·

µ
(i,j)
r,r+1:n − µ(i+j)

r:n

=

r−1∑
m=0

r−1−m∑
t=0

n−r∑
u=0

(−1)
r−1−m

(
r − 1

m

)(
r − 1−m

t

)(
n− r

u

)
pn−m−t−u−1

×
∫ ∫

0≤x<y∞

xr−1−m−t+iyn−r−u+j−i (1 + x) e−(r−m)θxe−(n−r)θydxdy.

Proof. Set s = r + 1 and g(x, y) = xiyj in Theorem 4 and on algebraic
simplification in the same line of Corollary 1 to get the required proof.

4. MLE for θ from multiply type-II censored sample

The likelihood function of θ based on the multiply type-II censored sample as

L (x; θ) = L (xr1:n ≤ xr2:n ≤ · · · ≤ xrk:n; θ)

= C[F (xr1:n; θ)]
r1−1

k∏
i=2

[
F (xri:n; θ)− F

(
xri−1:n; θ

)]ri−ri−1−1

× [1− F (xrk:n; θ)]
n−rk

k∏
i=1

f (xri:n; θ) (10)
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Where, C is a constant free from θ. Taking log on both sides to get,

logL (x; θ)

= constant+ (r1 − 1) log [F (xr1:n; θ)]

+

k∑
i=2

(ri − ri−1 − 1) log
[
F (xri:n; θ)− F

(
xri−1:n; θ

)]
+(n− rk) log [1− F (xrk:n; θ) +

k∑
i=1

log f (xri:n; θ) (11)

Differentiating (11) with respect to θ and equate it to zero yields the likelihood
equation for θ

h (θ) =
δlogL

δθ
= (r1 − 1)

f (xr1:n; θ)

F (xr1:n; θ)

δ

δθ
f (xr1:n; θ)

+

k∑
i=2

(ri − ri−1 − 1)

[
f (xri:n; θ)− f

(
xri−1:n; θ

)][
F (xri:n; θ)− F

(
xri−1:n; θ

)][
δ

δθ
f (xri:n; θ)−

δ

δθ
f
(
xri−1:n; θ

)]
+(n− rk)

[−f (xrk:n; θ)

[1− F (xrk:n; θ)

δ

δθ
f (xrk:n; θ) +

k∑
i=1

δ
δθf (xrk:n; θ)

f (xri:n; θ)

= 0, (12)

where
δ

δθ
f (x; θ) =

(
2

θ
− x− 1

θ + 1

)
f (x; θ) .

The solution of (12) will be consistent, asymptotically normal and asymptotically
efficient under some conditions.

For the multiply type-II censored data, let the gap between xri−1:n and xri:n is
(ri − ri−1 − 1) and it is equal to the number of unobserved failures. Let maximum
gap g, where g = maxi(ri − ri−1 − 1).

Condition 1: For all most all x, the derivatives

∂ilogf(x, θ)

∂θi
, i = 1, 2 and

∂i+1logf(x, θ)

∂x ∂θi
, i = 1, 2, 3

exists, and are piecewise continuous for all θ belongs to a non-degenerate
interval I and x ∈ [0,∞).
Condition 2: There exist nonnegative numbers a1, a2, λij , i = 1, 2, j =
1, 2, · · · , 5, such that when θ is in some neighborhood of true value θ0, and
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x is large enough,∣∣∣∣∂ilogf(x, θ)

∂θi

∣∣∣∣ ≤ a1x
λ1i , i = 1, 2,

∣∣∣∣∂i+1logf(x, θ)

∂x ∂θi

∣∣∣∣ ≤ a1x
λ1(i+2) i = 1, 2, 3,

and when x is small enough and close enough to zero,∣∣∣∣∂ilogf(x, θ)

∂θi

∣∣∣∣ ≤ a2x
−λ2i , i = 1, 2,

∣∣∣∣∂i+1logf(x, θ)

∂x ∂θi

∣∣∣∣ ≤ a2x
−λ2(i+2) , i = 1, 2, 3.

Also assume that there exists a function G(x) for each θ ∈ R,∣∣∣∣∂3logf(x, θ)

∂θ3

∣∣∣∣ ≤ G(x), for −∞ < x < ∞

and there exists K independent of θ such that∫ ∞

−∞
G(x)f(x, θ)dx ≤ K < ∞.

Condition 3: There exist positive numbers δ1 and δ2 for large enough x such
that

f(x, θ) ≥ δ1[1− F (x, θ)]
δ2

There exist positive numbers δ3 and δ4 for small enough x such that

f(x, θ) ≥ δ3[F (x, θ)]
δ4 .

Condition 4: For each θ in I , the integral,

0 <

∫ ∞

−∞

(
∂log f (x, θ)

θ

)2

f (x, θ) dx < ∞.

The conditions may be modified for multiple parameter case. Thus if the maximum
gap g is always bounded the likelihood equation (12) has a solution converging
in probability to the true value θ0 as n → ∞, i.e., lim

n→∞
θn

p→θ0. If the maximum
gap g is always bounded the solution of (12) is an asymptotically normal and
asymptotically efficient estimate of the true value θ0.
Under the conditions mentioned above and let limn→∞ n e−(n/g)ε → 0 for any
ε > 0. We assume ri+1−ri−1

ri−1 on the left tail or ri+1−ri−1
n−ri+1−1 on the right tail bounded

at two tails of order statistics then the MLE is consistent, see Kong and Fei (1996).
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Figure 1. Simulated MLE curves for n = 30 and m = 5.

5. Simulation Study

Usual algebraic solution for the equation (12) is not working due to the
properties of transcendental equation. Therefore, fixed point iteration can be
used to solve the above equation. For an initial value θ(1), the (i+ 1)th iterate
θ(i+1) can be obtained from the ith iterate θ(i+1) using θ(i+1) = h(θ(i)). The
iterative procedure can be stopped if |θ(i+1) − θ(i)| < ε, where ε is a pre-assigned
small positive number. The procedure of estimation is repeated 5000 times for
each value of θ with sample size, n = 30, multiply type-II censored sample
size, m = 5, 7, 9, 12, 15, 20 are presented in Table 5.2 and with n = 100, m =
5, 7, 9, 12, 15, 20 are presented in Table 5.3. A graphical comparison between
MLE obtained from the complete case and MLE obtained from multiply censored
sample are presented in Figure 1 and Figure 2 for sample size n = 30 and 100
respectively.

From Figure 1, it is observed that MLE and MLE from multiply censored
sample of θ are biased except for θ = 1.0. For θ < 1.0, both estimates are
positively biased where as MLE from censored sample is highly biased than MLE.
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Figure 2. Simulated MLE curves for n = 100 and m = 5.

On the other hand when θ > 1.0, both estimators are negatively biased with almost
same value. For θ > 2.0, the MLE from multiplied censored sample admits the
better performance than MLE in complete case. From Figure 2, it is also observed
that MLE and MLE from multiply censored sample of θ are biased except for
θ = 1.0. For θ < 1.0, both estimates are positively biased where as MLE from
censored sample is moderately higher biased than MLE. On the other hand when
θ > 0.7, both estimators gives the same estimate and gradually goes to unbiased
at θ = 1.0. After then increase the negatively bias. Performance of MLE from
multiply censored sample goes to superior than MLE as increase the sample size
n(= 100).
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Table I. Estimated values of θ for n = 30 and m = 5, 7, 9, 12, 15, 20.

n θ MLE (θ̂n) S.E. (θ̂n) m MLE (θ̂m) S.E. (θ̂m)

30 0.5 1.74424 0.23863 5 4.16115 108.29687
7 5.19627 125.29512

0.6 1.52288 0.21213 5 2.46926 142.30428
7 3.09672 151.48994
9 3.68743 168.32375

12 4.07592 174.96544
0.7 1.35711 0.18284 5 1.72878 122.41613

7 2.00455 131.08574
9 2.46257 145.54077

12 2.81153 159.97457
0.8 1.24109 0.17249 5 1.38062 097.49470

7 1.49723 105.62920
9 1.66574 118.70461

12 2.00986 147.58269
15 2.24177 150.52720
20 2.27611 152.30640

1.0 1.04838 0.15706 5 1.04366 73.009340
7 1.04757 73.213190
9 1.07673 73.741700

12 1.09524 78.071560
15 1.14241 84.400380
20 1.15221 85.118260

1.5 0.76252 0.13409 5 0.70500 48.633980
7 0.67805 46.252740
9 0.61697 44.903430

12 0.57415 39.684760
15 0.50341 34.864700
20 0.45744 24.723070

2.0 0.59196 0.11506 5 0.57714 35.824450
7 0.53536 34.860380
9 0.48571 33.270660

12 0.42460 29.088130
15 0.35889 24.479550
20 0.29724 18.663180

2.5 0.47623 0.10041 5 0.50720 26.022670
7 0.48070 24.274150
9 0.40256 23.434160

12 0.34855 21.704760
15 0.29850 18.815920
20 0.22257 14.651580
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Table II. Estimated values of θ for n = 30 and m = 5, 7, 9, 12, 15, 20.

n θ MLE (θ̂n) S.E. (θ̂n) m MLE (θ̂m) S.E. (θ̂m)

100 0.5 1.72839 0.13082 5 1.94828 135.31219
7 2.11653 146.56967

0.6 1.49979 0.11160 5 1.58527 110.17368
7 1.65039 114.19110
9 1.73228 119.50743

12 1.87486 128.15120
0.7 1.34292 0.09419 5 1.36471 95.611090

7 1.39678 98.057820
9 1.42720 99.721370

12 1.49337 103.41175
0.8 1.22417 0.09121 5 1.21048 85.17485

7 1.22851 86.56835
9 1.24142 87.13272

12 1.26858 88.58547
15 1.29882 90.13348
20 1.35520 93.59640

1.0 1.03487 0.08526 5 1.00874 70.41334
7 1.00868 70.26557
9 1.00869 70.30250

12 1.01051 69.96724
15 1.00845 69.70745
20 1.01126 69.59897

1.5 0.74844 0.06983 5 0.73956 51.45035
7 0.73035 50.81887
9 0.72242 50.19667

12 0.70901 49.10274
15 0.69596 47.99910
20 0.67256 46.18182

2.0 0.58144 0.06097 5 0.59953 41.67866
7 0.58909 41.34870
9 0.58000 40.57883

12 0.56468 39.30672
15 0.55145 38.23132
20 0.52870 36.21664

2.5 0.46687 0.05465 5 0.50991 27.84197
7 0.49940 34.61033
9 0.49127 33.90684

12 0.47541 32.56191
15 0.46303 31.67288
20 0.44056 29.90937
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