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Abstract
This paper mainly focuses on the estimates for distribution of supremum for the
normalized φ-sub-Gaussian random fields defined on the unbounded domain. In
particular, we obtain the estimates for distribution of supremum for the normalized
solution of the hyperbolic equation of mathematical physics, which will be useful to
construct modeless. By using this result, we can approximate the solutions of such
equation with given accuracy and reliability in the uniform metric.
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1. Introduction

Study the certain classes of stochastic processes, their properties, the conditions
of boundedness and distribution of the supremum, as well as construction of
mathematical models of the processes are the classical problems in the theory
of stochastic processes.

In this paper we shall widely use the notion of φ-sub-Gaussian random
variables. It generalizes the notion of sub-Gaussian variables, which were
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introduced in the works by Kahana [3] and [4]. The Banach spaces of sub-
Gaussian type, namely the space Subφ(Ω) of φ-sub-Gaussian random variables
and processes, were introduced in the paper by Yu. Kozachenko and E. Ostrovsky
[8]. Properties of such spaces, sums of independent random variables from these
spaces, random processes from the space Subφ(Ω), conditions of boundedness
and estimates for the distribution of supremum of φ-sub-Gaussian processes for
the case when the process is defined on the space equipped with pseudometric
generated by this process, have been studied in the monograph [9]. The detailed
definition of φ-sub-Gaussian variables and spaces Subφ(Ω) was given in the
paper [6]. The properties of these random variables and their modifications have
been also investigated. The upper estimate of overrunning the level specified
by the continuous function by Subφ (Ω) stochastic process was obtained in
[16]. The theory of φ-sub-Gaussian processes was successfully applied in the
wavelets theory [27], the signal theory [10, 21, 22] and other areas of research
[1, 2, 7, 13, 14, 19, 20, 26, 28].

The estimates for distributions of supremum of Gaussian stochastic processes
defined on a compact set were investigated in many papers, in particular, in the
book [24]. Links to other connected articles can be found there. Estimation of
the distributions for a supremum of Subφ(Ω) stochastic processes defined on
compacts were considered in [16].

The increase rate of the random field from the space Subφ(Ω) defined on an
unbounded domain was not considered before. As it is shown in the section 4, the
estimates obtained in this paper can be used for investigation the increase rate of
the solutions of the mathematical physics problems as t → ∞.

Such results can be used in the different situations. Let, for instance, a
differential equation describes some physical process. It is known that if the given
process exceeds some level then a disaster occurs. Exceeding of such a level is a
rather rare event. If we have the estimates for the increase rate of the process on
infinity, then we can estimate probability of the disaster during some time span.

The paper consists of an introduction and three sections. The second section
provides the basic information on the theory of Subφ(Ω) spaces of random
variables. The third section presents the estimates for the distribution of supremum
of φ-sub-Gaussian random fields at infinity. The fourth section contains an
application of these estimates for the solution of a hyperbolic type equation of
mathematical physics, where t ∈ [0,+∞).
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2. Stochastic processes from the space Subφ (Ω)

Definition 1 ([5]). An even continuous convex function u (x) , x ∈ R1 such that
u (0) = 0, u (x) > 0 for x ̸= 0 and

lim
x→0

u (x)

x
= 0, lim

x→∞

u (x)

x
= ∞.

is called an N -function.

Definition 2 ([9]). The condition Q is satisfied for an N -function φ, if

lim inf
x→0

φ (x)

x2
= c > 0.

Lemma 1 ([9]). Let u (x) be an N-function. Then

1. u (α x) 6 α u (x) for 0 6 α 6 1 and x ∈ R;
2. u (α x) > α u (x) for α > 1 and x ∈ R;
3. u (|x|+ |y|) 6 u (x) + u (y) for x, y ∈ R;

4. the function u(x)
x is nondecreasing for x > 0.

Definition 3 ([5]). Let u (x) be an N -function. The function u∗ (x) =
sup
y∈R

(xy − u (y)) is called the Young-Fenchel transform of the function u (x).

The function u∗ (x) is an N -function as well.

Definition 4 ([6]). Let φ (x) be the N -function, for which Q-condition is satisfied.
The set of random variables ξ(ω), ω ∈ Ω, is called a space Subφ (Ω) generated by
the N -function φ (x) if Eξ = 0 and there exists a constant aξ such that

E exp {λξ} 6 exp {φ (λaξ)}

for all λ ∈ R1.

The space Subφ (Ω) is a Banach space with respect to the norm [9]

τφ (ξ) = sup
λ ̸=0

φ(−1) (lnE exp {λξ})
|λ|

.

Definition 5 ([6]). Let T be a parametric space. A stochastic process X =
{X (t) , t ∈ T} belongs to the space Subφ (Ω) , (X ∈ Subφ (Ω)) if X(t)∈
Subφ (Ω) for all t ∈ T .

Remark 1 ([8]). A Gaussian stochastic process X(t) with zero mean belongs to
the space Subφ (Ω), where φ (x) = x2

2 and τ(X(t)) = (E(X(t))2)1/2.
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Lemma 2 ([8]). If ξ ∈ Subφ (Ω) , then there exists a constant C > 0 such that
(E(ξ)2)1/2 ≤ Cτφ(ξ).

Definition 6 ([6]). A random variable ξ ∈ Subφ (Ω) is called strongly Subφ (Ω),
(SSubφ (Ω)) random variable if τφ (ξ) =

(
Eξ2

)1/2
.

Properties and applications of SSubφ (Ω) random variables and stochastic
processes from SSubφ (Ω) can be found in [9].

Definition 7 ([15]). A family ∆ of random variables ξ from a space Subφ (Ω) is
called SSubφ (Ω) family if

τφ

(∑
i∈I

λiξi

)
=

E

(∑
i∈I

λiξi

)2
1/2

for all λi ∈ R1, where I is at most countable and ξi ∈ ∆i, i ∈ I .

Definition 8 ([15]). The stochastic process {X (t) , t ∈ T} is called as a
SSubφ (Ω) process if the family of random variables {X (t) , t ∈ T, } is
SSubφ (Ω).

Theorem 1 ([15]). Let ∆ be a strongly Subφ (Ω) family of random variables.
Then the linear closure ∆ of the family ∆ in the space L2 (Ω) in the mean square
sense is a strongly Subφ (Ω) family.

Theorem 2 ([17]). Let Rk be the k-dimensional space, d(t, s) = max
1≤i≤k

|ti − si|,

T = {0 ≤ ti ≤ Ti, i = 1, 2, · · · , k}, Ti > 0. Assume that X = {X(t, t ∈ T )} is
separable and X ∈ Subφ (Ω) . If sup

d(t,s)6h

τφ (X (t)−X (s)) 6 σ (h) , where σ (h)

is a monotone increasing continuous function such that σ (h) → 0 as h → ∞, and∫
0+

Ψ

(
ln

1

σ(−1) (ε)

)
dε < ∞,

where Ψ(u) = u
φ(−1)(u)

. Then

P

{
sup
t∈T

|X (t)| > u

}
6 2Ã (u, θ) ,

for all 0 < θ < 1 and u >
2Iφ(θε0)
θ(1−θ) where

Ã (u, θ) = exp

{
−φ∗

(
1

ε̃0

[
u (1− θ)− 2

θ
Iφ (θε̃)

])}
,
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ε̃0 = sup
t∈T

(
E |X (t)|2

)1/2
,

Iφ (δ) =

δ∫
0

Ψ

(
k∑

i=1

ln

(
Ti

2σ(−1) (ε)
+ 1

))
dε.

3. The main result

Theorem 3. Let {ξ(x, t), (x, t) ∈ V } , V = [−A;A]× [0,+∞) be a separable
random field belonging to Subφ (Ω). Assume also that the following conditions
are satisfied.

1. [bk, bk+1] , k = 0, 1, . . . is a family of such segments, that −∞ < bk <
bk+1 < +∞, k = 0, 1, . . . Vk = [−A;A]× [bk, bk+1] ,

∪
k

Vk = V .

2. There exist the increasing functions σk(h), 0 < h < bk+1 − bk, such that
σk(h) −→ 0 as h −→ 0

sup
|x−x1|≤h,
|t−t1|≤h

(x,t),(x1,t1)∈Vk

τφ (ξ (x, t)− ξ (x1, t1)) 6 σk (h) (1)

and ∫
0+

Ψ

(
ln

1

σ
(−1)
k (ε)

)
dε < ∞, (2)

where Ψ(u) = u
φ(−1)(u)

, σ(−1)
k (ε) is an inverse function to σk(ε).

3. c = {c(t), t ∈ R} is some continuous function, such that c(t) > 0, t ∈ R,
ck = min

t∈[bk,bk+1]
c(t).

4. sup
k

εk
ck

< ∞, sup
k

Iφ(θεk)
ck

< ∞.

5. The series
∞∑
k=0

exp
{
−φ∗

(
sck(1−θ)

2εk

)}
converges for some s in such a way

that sup
k

4εk
ck(1−θ) < s < u

2 , where εk = sup
(x,t)∈Vk

τφ (ξ(x, t)) , k = 0, 1, . . ..

Then

P

{
sup

(x,t)∈V

|ξ(x, t)|
c(t)

> u

}
6 2 exp

{
−φ∗

(u
s

)}
·

∞∑
k=0

exp

{
−φ∗

(
sck(1− θ)

2εk

)}
= 2A(u),

(3)
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for u > sup
k

Ĩφ(θεk)
ck

· 4
θ(1−θ) , where 0 < θ < 1

Ĩφ (δ) =

δ∫
0

Ψ

[(
ln

(
A

σ
(−1)
k (ε)

+ 1

))
+

(
ln

(
bk+1 − bk

2σ
(−1)
k (ε)

+ 1

))]
dε, k = 0, 1, . . . ,

Proof
Consider

P

{
sup

(x,t)∈V

|ξ(x, t)|
c(t)

> u

}
6

∞∑
k=0

P

{
sup

(x,t)∈Vk

|ξ(x, t)|
c(t)

> u

}
6

∞∑
k=0

P

{
sup

(x,t)∈Vk

|ξ(x, t)| > uck

}
, (4)

where ck = min
t∈[bk,bk+1]

c(t). It follows from the Theorem 2 that

P

{
sup

(x,t)∈Vk

|ξ(x, t)| > uck

}
6 2Ã(uck, θ) (5)

for some u >
2Iφ(θεk)
ckθ(1−θ) , 0 < θ < 1, where Ã(uck, θ) = exp{−φ∗( 1

εk
[cku(1− θ)−

2
θ Iφ(θεk)])}, Ĩφ (δ) =

δ∫
0

Ψ

[(
ln

(
A

σ
(−1)
k (ε)

+ 1

))
+

(
ln

(
bk+2−bk

σ
(−1)
k (ε)

+ 1

))]
dε,

εk = sup
(x,t)∈Vk

τφ (ξ(x, t)) , k = 0, 1, . . . ;

Let u > sup
k

Iφ(θεk)
ck

· 4
θ(1−θ) , then

Ã(uck, θ) = exp

{
−φ∗

(
1

εk

[
cku(1− θ)− 2

θ
Iφ(θεk)

])}
=

exp

{
−φ∗

(
cku(1− θ)

εk

[
1− 2Iφ(θεk)

cku(1− θ)θ

])}
6 exp

{
−φ∗

(
cku(1− θ)

2εk

)}
.

Since φ∗(x) is an N -function, then

φ∗(|x|+ |y|) > φ∗(|x|) + φ∗(|y|), x, y ∈ R (6)

and
x · y ≥ x+ y (7)

for x ≥ 2 and y ≥ 2.
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Thus we obtain from (6) and (7)that

φ∗
(
cku(1− θ)

2εk

)
= φ∗

(
u

s
· sck(1− θ)

2εk

)
> φ∗

(u
s

)
+ φ∗

(
sck(1− θ)

2εk

)
,

where s is some number, such that for all k = 0, 1, . . . we have inf
k

sck(1−θ)
2εk

> 2

and u
s > 2.

Since,

exp

{
−φ∗

(
cku(1− θ)

2εk

)}
6 exp

{
−φ∗

(u
s

)}
× exp

{
−φ∗

(
sck(1− θ)

2εk

)}
.

(8)
Then from (4), (5) and (8) we have

P

{
sup

(x,t)∈V

|ξ(x, t)|
c(t)

> u

}
6 2A(u),

where A(u) = exp
{
−φ∗ (u

s

)}
·

∞∑
k=0

exp
{
−φ∗

(
sck(1−θ)

2εk

)}
.

Remark 2. In general, the condition 2 can not be essentially better, because,
for example, the given condition for the Gaussian stationary process is close
to the necessary and sufficient condition of boundedness of this process on an
interval with probability one. The inequality (3) for a whole class of processes
from Subφ(Ω) can be better at the expense of constants, since we always can
construct a processes from Subφ(Ω) that

P {|ξ(x, t)| > u} = c exp {−φ∗(cu)} .

at every point. It is clear, that we always can construct a function c(t) such that
conditions 4) and 5) are satisfied. So, it is desirable to construct a function c(t)
increasing as slowly, as possible. It was not the aim of the paper to find a function
c(t), which increases in the slowest way, but below we present the functions
increasing of which can not be improved.

Corollary 1. If the conditions of Theorem 3 holds, then there is such a random
variable ξ > 0, P {ξ > u} ≤ A(u), u > 0, where A(u) is given by (3), that

|ξ(x, t)| ≤ c(t)ξ

for all (x, t) ∈ V with probability one.

In the next example and Theorem 4 we consider the most interesting examples
of spaces Subφ(Ω). They are spaces, where φ(x) = |x|p

p for some p > 1, |x| > 1.
These spaces are subspaces of some Orlicz spaces of exponential type [6, 9].
In particular, for φ(x) = |x|2

2 these spaces include spaces of centered Gaussian
random variables.
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Example 1. Let φ(x) be a function such that φ(x) = |x|p
p for some |x| > 1 and all

p > 1. Then φ∗(x) = |x|q
q , 1

p + 1
q = 1, Ψ(x) = x

1− 1
p

p
1
p

for x > 1 and the condition

(2) holds for all ε > 0

∫
0+

(
ln

1

σ
(−1)
k (u)

)1− 1
p

du < ∞, (9)

The condition (9) holds if σk (h) = ak

∣∣∣ln( 1
|h| + d

)∣∣∣−δ

, for δ > 1− 1
p and ak >

0, k = 0, 1, . . . .. In this case, the assumption (1) of the Theorem 3 is satisfied if
for k = 0, 1, 2 there exist the constants ak > 0 and d > 1 such that

sup
|x−x1|≤h,|t−t1|≤h(x,t),(x1,t1)∈Vk

τφ (ξ (x, t)− ξ (x1, t1)) 6
ak∣∣∣ln( 1

|h| + d
)∣∣∣δ ,

for δ > 1− 1
p and some h.

Theorem 4. Let {ξ(x, t), (x, t) ∈ V } , V = [−A;A]× [0,+∞) be a separable
random field belonging to Subφ (Ω), where φ(x) = |x|p

p for |x| > 1, p > 1.
Assume the following conditions are satisfied.

1. [bk, bk+1] , k = 0, 1, . . . is a family of such segments, that −∞ < bk <
bk+1 < +∞, k = 0, 1, . . . Vk = [−A;A]× [bk, bk+1] ,

∪
k

Vk = V .

2. There exist constants ak > 0 and d > 1, such that A > 1
d , bk+1−bk

2 > 1
d and

sup
|x−x1|≤h,
|t−t1|≤h

(x,t),(x1,t1)∈Vk

τφ (ξ (x, t)− ξ (x1, t1)) 6
ak∣∣∣ln( 1

|h| + d
)∣∣∣α ,

for some |h| and α > 1− 1
p .

3. c = {c(t), t ∈ R} is some continuous function, such that c(t) > 0, t ∈ R,
ck = min

t∈[tk,tk+1]
c(t).

4. sup
k

εk
ck

< ∞, sup
k

(ak)
1
αq (εk)

1− 1
αq

ck
< ∞, sup

k

εk ln
(
A·

bk+1−bk
2

) 1
q

ck
< ∞.

5. The series
∞∑
k=0

exp

{
−1

q

(
sck(1−θ)

2εk

) 1
q

}
converges for some s, such that,

sup
k

4εk
ck(1−θ) < s < u

2 , where εk = sup
(x,t)∈Vk

τφ (ξ(x, t)) , k = 0, 1, . . .
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Then

P

{
sup

(x,t)∈V

|ξ(x, t)|
c(t)

> u

}
6 2 exp

{
−
1

q

(u
s

) 1
q

}
·

∞∑
k=0

exp

{
−
1

q

(
sck(1− θ)

2εk

) 1
q

}
= B(u)

(10)

for u > sup
k

1

p
1
p

(
2

1
q (ak)

1
αq (θεk)

1− 1
αq

1− 1
αq

+θεk ln
(
A·

bk+1−bk
2

) 1
q

)
ck

· 4
θ(1−θ) , 0 < θ < 1.

Proof
This Theorem follows from the Theorem 3, since in this case

Ĩφ (δ) =

δ∫
0

Ψ

[(
ln

(
A

σ
(−1)
k (ε)

+ 1

))
+

(
ln

(
bk+1 − bk

2σ
(−1)
k (ε)

+ 1

))]
dε =

1

p
1
p

δ∫
0

(
ln

(
A

(
e(

ak
ε )

1
α − d

)
+ 1

)
+ ln

(
bk+1 − bk

2

(
e(

ak
ε )

1
α − d

)
+ 1

)) 1
q

dε ≤

1

p
1
p

δ∫
0

(
ln

(
Ae(

ak
ε )

1
α

)
+ ln

(
bk+1 − bk

2
e(

ak
ε )

1
α

)) 1
q

dε ≤

1

p
1
p

 δ∫
0

2
1
q (ak)

1
αq

ε
1
αq

dε+ δ ln

(
A ·

bk+1 − bk
2

) 1
q

 =

1

p
1
p

(
2

1
q (ak)

1
αq

(δ)1−
1
αq

1− 1
αq

+ δ ln

(
A ·

bk+1 − bk
2

) 1
q

)
.

Then series in the conditions 5) of the Theorem 3 will have the following form

∞∑
k=0

exp

{
−φ∗

(
sck(1− θ)

2εk

)}
=

∞∑
k=0

exp

{
−1

q

(
sck(1− θ)

2εk

) 1
q

}
.

Corollary 2. If conditions of the Theorem 4 holds, then there is such a random
variable ξ > 0, P {ξ > u} ≤ B(u), u > 0, where B(u) is given by (10), that

|ξ(x, t)| ≤ c(t)ξ

for all (x, t) ∈ V with probability one.
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4. An example

In this section we consider the boundary-value problem of the first kind for a
homogeneous hyperbolic equation [25]. The problem is in finding a function
u = (u (x, y) , x ∈ [0, π] , t ∈ [0, t]) satisfying the following conditions:

∂

∂x

(
p(x)

∂u

∂x

)
− q(x)u− ρ(x)

∂2u

∂t2
= 0;

x ∈ [0, π] , t ∈ [0,+∞] ;

u(0, t) = u(π, t) = 0, t ∈ [0,+∞] ;

u(x, 0) = ξ(x),
∂u(x, 0)

∂t
= η(x), x ∈ [0, π] .

Assume also that (ξ(x), x ∈ [0, π]) and (η(x), x ∈ [0, π]) are SSubφ(Ω)
stochastic processes defined on a common complete probability space (Ω, ℑ, P ),
where φ(x) = |x|p

p , |x| > 1, p > 1.
Regardless of whether the initial conditions are deterministic or random, the

Fourier method consists in searching for a solution of the series

u (x, t) =

∞∑
k=1

Xk(x)

[
Akcos

√
λkt+

Bk√
λk

sin
√

λkt

]
, (11)

x ∈ [0, π] , t ∈ [0,+∞] ;

where

Ak =

∫ π

0

ξ(x)Xk(x)ρ(x)dx, k ≥ 1,

Bk =

∫ π

0

η(x)Xk(x)ρ(x)dx, k ≥ 1,

and where λk, k ≥ 1 and Xk = (Xk(x), x ∈ [0, π]), k ≥ 1 are eigenvalues and
the corresponding orthonormal eigenfunctions (with weight ρ(•)) of the following
Sturm-Liouville problem

d

dx

(
p(x)

dX(x)

dx

)
− q(x)X(x) + λρ(x)X(x) = 0,

X(0) = X(π) = 0.

Let V = [0, π]× [0,+∞) , [bk, bk+1] , k = 0, 1, . . . be a family of such
segments, that −∞ < bk < bk+1 < +∞, k = 0, 1, . . . Vk = [0;π]× [bk, bk+1] ,∪
k

Vk = V ,
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Sn (x, t) =

n∑
k=1

Xk(x)

[
Akcos

√
λkt+

Bk√
λk

sin
√

λkt

]
.

According to [18, 11] u(x, t) is the strongly Subφ (Ω) random field and the
condition

sup
|xk−yk|≤h
|tk−sk|≤h

(xk,tk),(yk,sk)∈Vk

∣∣∣E (Sn(xk, tk)− Sn(yk, sk))
2
∣∣∣ 12 ≤ a

|ln |h||δ

holds, where

a =

∞∑
k=1

(EA2
k

) 1
2 +

(
EB2

k

) 1
2

k

 (ln k)
δ
.

ε̃0 = sup
x∈[0,π]
t∈[0,T ]

(
E (u(x, t))2

) 1
2 ≤

∞∑
k=1

∞∑
l=1

[
|EAkAl|+

|EBkBl|
kl

+
|EAkBl|

l

] 1
2

= ε0.

(12)
Conditions of convergence of the series

∞∑
k=1

(EA2
k

) 1
2 +

(
EB2

k

) 1
2

k

 (ln k)
δ
,

∞∑
k=1

∞∑
l=1

[
|EAkAl|+

|EBkBl|
kl

+
|EAkBl|

l

] 1
2

were found in the book [11].
Let c = {c(t), t ∈ R} be some continuous function, such that c(t) > 0, t ∈ R,

ck = min
t∈[tk,tk+1]

c(t). Since εk = ε̃0, then conditions of the Theorem 4 hold if

sup
k

1

ck
< ∞, (13)

sup
k

ln
(
A · bk+1−bk

2

) 1
q

ck
< ∞, (14)

∞∑
k=0

exp

{
−1

q

(
sck(1− θ)

2ε0

) 1
q

}
< ∞. (15)
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Then, from 3 we have

P

{
sup

(x,t)∈V

|u(x, t)|
c(t)

> ω

}
6 2 exp

{
−
1

q

(ω
s

) 1
q

}
·

∞∑
k=0

exp

{
−
1

q

(
sck(1− θ)

2ε0

) 1
q

}
= D(ω).

(16)

For ω > sup
k

1

p
1
p

(
2

1
q (a)

1
αq (θε0)

1− 1
αq

1− 1
αq

+θε̃0 ln
(
A·

bk+1−bk
2

) 1
q

)
ck

· 4
θ(1−θ) , 0 < θ < 1.

Let us put bk = ek and show that the function c(t) = (ln t)
1
q satisfies the

conditions (13)–(15). Actually ck = (ln ek)
1
q = k

1
q . It is obviously that the

condition (13) holds true. Moreover,

sup
k≥1

ln (A (bk+1 − bk))
1
q

ck
= sup

k≥1

ln
(
Aek (e− 1)

) 1
q

k
1
q

< ∞

for every A > 0. Thus, the condition (14) holds for every A > 0 and

∞∑
k=0

exp

{
−1

q

(
sck(1− θ)

2ε0

) 1
q

}
=

∞∑
k=0

exp

−1

q
s

1
q
k

1
q (1− θ)

1
q

2ε0

1
q

 .

Since exp
{
−Dk

1
q

}
≤ 1

k2 for every constant D > 0 and sufficiently large k, we
deduce that condition (15) holds for every s > 0.

Corollary 3. There exists such a random variable ξ > 0, P {ξ > ω} ≤ B(ω), that

|u(x, t)| ≤ ξ(ln t)
1
q

for all (x, t) ∈ V with probability one.

Note that for the given example it is not easy to construct the function c(t),
which is increasing considerably slower than (ln t)

1
q .

5. Conclusion

The estimates for distribution of supremum for normalized φ-sub-Gaussian
random fields defined on unbounded domains are found. Received results can
be used for investigation of solutions of hyperbolic and parabolic equations
of mathematic physics. Using this results one can construct modeless, which
approximate solutions of such equations with given accuracy and reliability in
the uniform metric.
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