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Exact travelling wave solutions of the symmetric
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Abstract In this article, we establish exact travelling wave solutions of the symmetric
regularized long wave (SRLW) by using analytical methods. The analytical methods
are: the tanh-coth method and the sech2 method which used to construct solitary wave
solutions of nonlinear evolution equations. With the help of symbolic computation, we
show that aforementioned methods provide a straightforward and powerful mathematical
tool for solving nonlinear partial differential equations.
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1. Introduction

Recently, the investigation of exact travelling wave solutions to nonlinear partial
differential equations plays an important role in the study of nonlinear modelling
physical phenomena. Also the study of the travelling wave solutions plays an
important role in nonlinear science. Nonlinear evolution equations are widely used
as models to describe complex physical phenomena and have a significant role in
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several scientific and engineering fields. A variety of powerful methods has been
presented, such as Hirota’s bilinear method [1], the inverse scattering transform
[2], sine-cosine method [3], homotopy perturbation method [19], homotopy
analysis method [5, 6], variational iteration method [7, 8, 9], the (G

′

G )-expansion
method [10, 11], tanh-function method [12], tanhcoth method [13], Bäcklund
transformation [14, 15], Exp-function method [16, 17, 18, 19, 20] and so on. In this
article, we used the analytical methods to investigate the symmetric regularized
long wave (SRLW) [18] in the following form

utt + uxx + uuxt + uxut + uxxtt = 0, (1)

which arises in several physical applications including ion sound waves in plasma
[18]. The article is organized as follows: In Sections 2 and 3 first we briefly give
the steps of the methods and apply the methods to solve the nonlinear partial
differential equations. In Section 4, the application of the analytical methods to
the symmetric regularized long wave (SRLW) will be introduced briefly. Also a
conclusion is given in Section 5. Finally some references are given at the end of
this paper.

2. Basic idea of tanh–coth method

The standard tanh method is well-known analytical method which first presented
by Malfliet’s [21] and developed in [21, 22]. By summarizing tanh–coth method
by Wazwaz [23] for a given NLPDE with independent variables X = (x, y, z, t)
and dependent variable u:

P(u, ut, ux, uy, uz, uxx, uyy, uzz, uxy, utt, utx, uty, utz...) = 0, (2)

can be converted to on ODE

Q(u,−cu′, u′, u′, u′, u′′, ...) = 0, (3)

which transformation ξ = k1x+ k2y − ct is wave variable. Also, c, k1 and k2 are
constants to be determined later. Introducing a new independent variable

Y = tanh(µξ), ξ = k1x+ k2y − ct, (4)

leads to the change of derivatives
d

dξ
= µ(1− Y 2)

d

dY
, (5)

d2

dξ2
= µ2(1− Y 2)

(
−2Y

d

dY
+ (1− Y 2)

d2

dY 2

)
, (6)
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d3

dξ3
= µ3(1− Y 2)

(
(6Y 2 − 2Y )

d

dY
− 6Y (1− Y 2)

d2

dY 2
+ (1− Y 2)2

d3

dY 3

)
. (7)

The tanh–coth method [24] admits the use of the finite expansion

u(µξ) = S(Y ) =

m∑
k=0

akY
k +

m∑
k=1

bkY
−k, (8)

where ak(k = 0, 2, ...,m), bk(k = 1, 2, ...,m) and µ are constants to be determined
later, but the degree of which is generally equal to or less than m− 1, the positive
integer m can be determined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in Eq. (3). If m is
not an integer, then a transformation formula should be used to overcome this
difficulty. For aforementioned method, expansion (7) reduces to the standard tanh
method [21] for bk = 0, 1 ≤ k ≤ m. Substituting Eq. (7) into the ODE results
is an algebraic system of equations in the powers of Y that will lead to the
determination of the parameters ak(k = 0, 2, ...,m), bk(k = 1, 2, ...,m) and c. To
show the efficiency of the method described in the previous part, we present some
examples.

3. Basic idea of sech2 method

We now describe the sech2 method for the given partial differential equations.
We give the detailed description of method which to use this method, we take
following steps:
Step 1. For a given NLPDE with independent variables X = (x, y, z, t) and
dependent variable u, we consider a general form of nonlinear equation:

P(u, ut, ux, uy, uz, uxx, uyy, uzz, uxy, utt, utx, uty, utz...) = 0, (9)

which can be converted to on ODE

Q(u,−cu′, u′, u′, u′, u′′, ...) = 0, (10)

which transformation ξ = k1x+ k2y − ct is wave variable. Also, c, k1 and k2 are
constants to be determined later.
Step 2. We introduce a new independent variable as following

Y = sech2(µξ), ξ = k1x+ k2y − ct, (11)

leads to the change of derivatives in the form
d

dξ
= −2µY

√
1− Y

d

dY
, (12)
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d2

dξ2
= −2µ2Y

√
1− Y

(
3Y − 2√
1− Y

d

dY
− 2Y

√
1− Y

d2

dY 2

)
, (13)

d3

dξ3
= −2µ3Y

√
1− Y

(
4(1− 3Y )

d

dY
+ 6Y (2− 3Y )

d2

dY 2
+ 4Y 2(1− Y )

d3

dY 3

)
,

(14)
where other derivatives can be derived in a similar manner. If we use a new
independent variable:

Y = sec2(µξ), ξ = k1x+ k2y − ct, (15)

leads to the change of derivatives in the form
d

dξ
= 2µY

√
Y − 1

d

dY
, (16)

d2

dξ2
= 2µ2Y

√
Y − 1

(
3Y − 2√
Y − 1

d

dY
− 2Y

√
Y − 1

d2

dY 2

)
, (17)

d3

dξ3
= 2µ3Y

√
Y − 1

(
4(3Y − 1)

d

dY
+ 6Y (3Y − 2)

d2

dY 2
+ 4Y 2(Y − 1)

d3

dY 3

)
. (18)

The sech2 method admits the use of a finite expansion of sech function

u(µξ) = S(Y ) =

m∑
k=0

akY
k, (19)

where a0, ak(k = 1, 2, ...,m) and µ are constants to be determined later. but, the
positive integer m can be determined by considering the homogeneous balance
between the highest order derivatives and nonlinear terms appearing in Eq. (10).
Step 3. Substituting Eqs. (12) –(14) or Eqs. (16) –(18) into Eq. (10) with the value
of m obtained in Step 2. Collecting the coefficients of Y k (k = 0, 1, 2, ...), then
setting each coefficient to zero, we can get the set of over-determined nonlinear
algebraic equations for a0, ai(i = 1, 2, ..., n), c and µ with the aid of symbolic
computation Maple.
Step 4. Solving the algebraic equations in Step 3, then substituting a0, ..., am, c in
Eqs. (15) and (19).

4. Symmetric Regularized Long Wave (SRLW) Equation

4.1. Using the tanh–coth method

Considering the following Symmetric Regularized Long Wave (SRLW) equation
by using the tanh–coth method, we obtain

utt + uxx + uuxt + uxut + uxxtt = 0, (20)
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and using the wave variable ξ = k1x− ct reduce it to an ODE

c2u′′ + k1
2u′′ − ck1uu

′′ − ck1(u
′)2 + c2k1

2u′′′′ = 0. (21)

Integrating Eq. (21) with respect to ξ and considering the zero constants for
integration, we obtain

(k1
2 + c2)u′ − ck1uu

′ + c2k1
2u′′′ = 0. (22)

Balancing the terms that involve u′′′ and uu′ in Eq. (22) gives

m+ 3 = 2m+ 1, (23)

so that
m = 2. (24)

The tanh–coth method allows us to use the substitution

u(ξ) = S(Y ) = a0 + a1Y + a2Y
2 +

b1
Y

+
b2
Y 2

. (25)

Substituting Eq. (25) in to Eq. (22), with the help of Maple gives the following set
of non-trivial solutions

a0 =
1 + c2 − 8c2µ2

c
, a1 = 0, a2 = 12cµ2, b1 = 0, b2 = 0, k1 = 1, (26)

or

a0 =
1 + c2 − 8c2µ2

c
, a1 = 0, a2 = 0, b1 = 0, b2 = 12cµ2, k1 = 1, (27)

or

a0 =
1 + c2 − 8c2µ2

c
, a1 = 0, a2 = 12cµ2, b1 = 0, b2 = 12cµ2, k1 = 1, (28)

where c and µ are arbitrary constants. Substituting Eqs. (26)–(28) into expression
Eq. (25), can be written as

u1(x, t) =
1 + c2 − 8c2µ2

c
+ 12cµ2 tanh2[µ(x− ct)], (29)

or

u2(x, t) =
1 + c2 − 8c2µ2

c
+ 12cµ2 coth2[µ(x− ct)], (30)

or

u3(x, t) =
1 + c2 − 8c2µ2

c
+ 12cµ2

(
tanh2[µ(x− ct)] + coth2[µ(x− ct)]

)
. (31)
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It is worth to point out that the following periodic solutions

u4(x, t) =
1 + c2 + 8c2µ2

c
+ 12cµ2 tan2[µ(x− ct)], (32)

or

u5(x, t) =
1 + c2 + 8c2µ2

c
+ 12cµ2 cot2[µ(x− ct)], (33)

or

u6(x, t) =
1 + c2 + 8c2µ2

c
+ 12cµ2

(
tan2[µ(x− ct)] + cot2[µ(x− ct)]

)
. (34)

which are the exact solutions of symmetric regularized long wave (SRLW)
equation. Can be seen that the results are the same, with comparing results
Darwish’s and Xu’s [18].

4.2. Using the sech2 method

Considering the following Symmetric Regularized Long Wave (SRLW) equation
by using the sech2 method, and proceeding as before we obtain

utt + uxx + uuxt + uxut + uxxtt = 0, (35)

and using the wave variable ξ = k1x− ct reduce it to an ODE

c2u′′ + k1
2u′′ − ck1uu

′′ − ck1(u
′)2 + c2k1

2u′′′′ = 0. (36)

Integrating Eq. (36) with respect to ξ and considering the zero constants for
integration, we obtain

(k1
2 + c2)u′ − ck1uu

′ + c2k1
2u′′′ = 0, (37)

for simplicity suppose k1 = 1. By a similar derivation as illustrated in the previous
section, we obtain

m = 2. (38)

Therefore by use of the sech2 method, we may choose a solution in the form

u(ξ) = S(Y ) = a0 + a1Y + a2Y
2, a2 ̸= 0. (39)

Substituting Eq. (39) in to Eq. (37), and by using the well-known software Maple,
and equating the coefficients of the powers Y , we then get the following algebraic
relations:
− 2c2a2 − 2a2 + ca21 + 12c2µ2a1 + 2ca0a2 − 32c2µ2a2 = 0, (40)

60c2µ2a2 + 3ca1a2 = 0,
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−a1 − 4c2µ2a1 − c2a1 + ca0a1 = 0.

By using explicitly Eqs. (39) and (40) we solve this system with the aid of the
Maple Package, we obtain the system of following results:

a0 =
1

60

(9 + 36µ2)a22 + 400µ4

a2µ2
, a1 = −3a2, a2 = a2, c =

3

20

a2
µ2

, µ = µ. (41)

Substituting Eq. (41) in Eq. (39) along with (11), we obtain exact travelling wave
solution for Eq. (35) of the form:

u(x, t) =
1

60

(9 + 36µ2)a22 + 400µ4

a2µ2
− 3a2sech

2µ

(
x−

3

20

a2

µ2
t

)
+ a2sech

4µ

(
x−

3

20

a2

µ2
t

)
.

(42)
If we choose the following solution forms of Eqs. (15)–(18) and insert them into
Eq. (37), equating the coefficients of the powers Y , then we get the following
algebraic relations:

2a2 − 2ca0a2 − ca21 + 2c2a2 − 32c2µ2a2 + 12c2µ2a1 = 0, (43)

60c2µ2a2 − 3ca1a2 = 0,

a1 + c2a1 − 4c2µ2a1 − ca0a1 = 0.

By the same manipulation as illustrated above, we obtain

a0 = − 1

60

(9− 36µ2)a22 + 400µ4

a2µ2
, a1 = −3a2, a2 = a2, c = − 3

20

a2
µ2

, µ = µ. (44)

where c and µ are arbitrary constants. Substituting Eq. (44) in Eq. (39) along with
(15), we obtain exact travelling wave solution for Eq. (35) of the form:

u(x, t) =
1

60

(9− 36µ2)a22 + 400µ4

a2µ2
− 3a2sec

2µ

(
x +

3

20

a2

µ2
t

)
+ a2sec

4µ

(
x +

3

20

a2

µ2
t

)
.

(45)
which is the exact solution of symmetric regularized long wave (SRLW) equation.
Can be seen that the results are the same, with comparing results Xu’s [18].

5. Conclusion

In this article we investigated the symmetric regularized long wave (SRLW)
equation by the analytical methods. Obtained the solitary wave and periodic wave
solutions by the tanh-coth method and the sech2 method. These methods have
been successfully applied to obtain some new generalized solitonary solutions to
the symmetric regularized long wave (SRLW) equation. The tanh-coth method and
the sech2 method are more powerful in searching for exact solutions of NLPDEs.
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Some of these results are in agreement with the results reported specially by Xu’s
[18]. Also, new results are formally developed in this article. It can be concluded
that the these methods are a very powerful and efficient technique in finding exact
solutions for wide classes of problems.
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