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Abstract In SVMs community, the learning results are always a combination of the
selected functions. SVMs have two mainly regularization models to find the combination
coefficients. The most popular model withm input samples is norm-regularized the
classification function in a reproducing kernel Hilbert space(RKHS), and it is converted
to an optimization problem inRm by duality or representer theorem. Another important
model is generalized support vector machine(GSVM), in which the coefficients of the
hypothesis is norm-regularized in the Euclidean spaceR

m. In this work, we analyze
the difference between them on computing stability, computational complexity and the
efficiency of the Newton type algorithms, especially on the reduced SVMs for large scale
training problems. Many typical loss functions are considered. Our studies show that the
model of GSVM has more advantages than the other model. Some experiments are given
to support our analysis.
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1. Introduction

Based on the Vanpnik and Chervonkis’ structural risk minimization principle
[1, 2], support vector machines (SVMs) are proposed as the computationally
powerful machine learning methods for supervised learning. They are the popular
methods in the past 10 more years, and widely used in classification and regression
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problems, such as character identification, disease diagnoses, face recognition, the
time serial prediction, etc.

Historically, SVMs are motivated from a geometrical illustration, where an
optimal linear classification function with the maximal margin is found in the
feature kernel space. In this illustration, this optimal linear function may have an
offset and may not always come through the origin. But some research results
show that, when a large feature kernel space is considered, this illustrations with
offset have some flaws (see [3]) except that cause an additional equality constraint
in the dual problem, and the investigation of the generalization performance of
SVMs does not suggest that the offset offers any improvementfor such kernel
space like Gaussian kernels [4]. Roughly speaking, the offset only has advantage
on the linear classification problems, where the optimal linear classification
function is found in input space directly, and has little advantages on the nonlinear
classification with kernel function.

In this work, the nonlinear problem with kernel function is studied. For
simplicity, we only take the SVMs without offset into account as [3], [5] and
[6] do. Actually, the offset can be added with an extra attribute 1 added to every
sample [5].

1.1. Representer theorem

Representer theorem is an important result in learning problem where many
samples are acted as the inputs of the problem. It states thatthe solution
(hypothesis) of the learning problem is a linear combination of the input
samples (linear problem) or a linear combination of the kernel functions of the
input samples (nonlinear problem). This property has important computational
implications in kernel version learning problem, because it can transform the
problems in a very high or infinite dimensional space into a finite dimensional
problems with the size of the input learning data, where the finite combination
coefficients are solved according to the input data. Especially, many learning
methods for linear problems can be kernelized to solve nonlinear problems by
representer theorem. Many learning methods admit this, such as SVMs (Support
Vector machines [1, 2]), PCA (Principal Component Analysis [7]), LDA (Fisher
linear Discriminant Analysis [8]) etc.

Quantitatively speaking, given an input samples setT =
{(x1,y1), (x2,y2), · · · , (xm,ym)} for samplexi ∈ R

d and its labelyi ∈ {−1,1}, a
kernel learning classification problem is to learn a classification function f in a
reproduced kernel Hilbert spaces (RKHS)H corresponding to a kernel function
k : Rm×R

m →R with a good generalized capacity. RKHSH has the reproducing
property that admitsf (x) = 〈 f ,k(·,x)〉H and 〈k(·,x),k(·,z)〉H = k(x,z) for all
f ∈H andx,z∈R

d. It may be very high dimensions even infinite dimensions, thus
the learning problem onH can not be solved efficiently. Owing to the representer
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theorem, the solutionf ∈H to the learning problem can be represented as

f (·) =
m

∑
j=1

α jk(·,x j). (1)

This is a finite linear combination of the basic hypothesis inH. Instead to find an
optimal hypothesisf in H, to solve the optimal combination coefficientsα j in (1)
is a well-defined finite dimensional problem inRm.

Not all learning problems admit representer theorem. The first result on
representer theorem is introduced in [9, 10], and generalized by [11]. A
quantitative versions of the representer theorem are proven in [3, 12]. In [13] the
representer theorem is generalized to matrix version with spectral regularization
for collaborative filtering, a kind of multi-task learning algorithm. In [14], a
necessary and sufficient condition for a learning problem with a differentiable
regularizer to admit the representer theorem is given, and is also generalized to a
learning problem with matrix samples as inputs [14]. Recently, [15] gives another
kind of the necessary and sufficient conditions for a learning algorithm to be
kernelizable in the case when the instances are vectors, asymmetric matrices and
symmetric matrices, respectively.

1.2. Outline

This paper is organized as following: In Section 2, two related regularization
models of SVMs are introduced and many types of loss functionand their
conjugate function are listed. In Section 3, a simple comparison between
two models with least squares loss is given, where the computing stability
and the computational complexity are discussed. In Section4, reduced SVMs
with different loss functions are analyzed and the corresponding Newton-type
algorithms are discusssed,where SMW (Sherman-Morrison-Woodbury) identity
[16] is introduced to decrease the computational complexity ofModel 2, but
cannot be used to decrease the complexity of Model 1. Section5 gives some
experimental results to support our points. Section 6 concludes the paper.

2. Two Regularization Models for SVMs

There are two mainly regularization forms for SVMs. The firstmodel regularizes
the classification functionf on RKHS H namedModel 1 (M1 for short) as
follows:

M1: minf∈H,ξ∈Rm
λ
2 ‖ f‖2

H
+∑m

i=1L(ξi),
s.t. yi 〈 f ,k(·,xi)〉H+ξi = 1, i = 1,2, · · · ,m,

(2)

whereλ is the regularization parameter, the loss functionL : R → R+ ∪ {+∞}
has some typical forms listed in Table1, k : Rm×R

m → R is a kernel function
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with the reproducing property. The common used kernel functions are Gaussian

kernelK(x,z) = exp
(

− ‖x−z‖2

2σ2

)

and polynomial kernelk(x,z) =
(

x⊤z+1
)d

with

parameterσ andd respectively.
The second regularization form of SVMs is called the generalized support

vector machine (GSVM), which was first proposed in [17] with the hinge loss.
In [18, 19, 20, 21], GSVM is used to design some kinds of algorithms with
the squared hinge loss or the least squares loss. In GSVM model, only the
combinations coefficients of the hypothesisf in (1) are norm-regularized inRm.
A general form of GSVM fitting any loss function is given as following Model 2
(M2 for short):

M2: minβ ,ξ∈Rm
λ
2 ‖β‖2+∑m

i=1L(ξi),
s.t. yi ∑m

j=1 β jk(xi ,x j)+ξi = 1, i = 1,2, · · · ,m,
(3)

where we note the combination coefficients beβ which may be different with the
coefficientsα in (1) solved by M1.

At the first glance, optimization problem of M1 (2) is not well-defined, since it
will be solved in RKHSH, a very high dimensional, even infinite dimensional,
space. However, it can be converted to a finite dimensional problem by the
representer theorem [11, 5, 22] or duality [2, 23, 24, 25, 26, 27, 28]. Both models
are specified in the following two subsections.

2.1. Regularization Model onH

M1 is the most popular model used in many research papers, such as [2, 5,
22, 23, 24, 25, 26, 27, 28] and the references therein. There are two popular
techniques to simply M1 (2) to a well-defined optimization problem. One is the
representer theorem and the other is the duality. Both techniques agree that the
optimal hypothesis (classification function) is a finite combination of the basic
functions inH as (1).

Duality [29] is used by many researchers to convert (2) as a finite dimensional
optimization problem [1, 2, 23, 24, 25, 26, 27, 28], but it always needs a concrete
loss function given in advance. Here we give a general dual form.

The Lagrangian dual of M1 in problem (2) is

max
γ

min
f∈H,ξ∈Rm

λ
2
‖ f‖2

H
+

m

∑
i=1

L(ξi)−
m

∑
i=1

γi (yi〈 f ,k(·,xi)〉H+ξi −1) , (4)

which is equivalent to

min
γ

{

−min
f∈H

{

λ
2 ‖ f‖2

H
−

m
∑

i=1
γiyi〈 f ,k(·,xi)〉H

}

−
m
∑

i=1
min

ξi

{L(ξi)− γiξi}−e
⊤γ

}

,

wheree is an appropriate vector whose all entries are 1. Solving thefirst inner
minimization problem above, we getf (·) = 1

λ ∑m
i=1 γiyik(·,xi), and the second
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inner minimization problem onξi is substituted by theconjugate function [29] of
loss functionL(·), denoted asL∗ : R→R+∪{+∞}, which is defined as

L∗(v) := max
u

{uv−L(u)}=−min
u
{L(u)−uv}.

Then Lagrangian dual (4) is simplified as the following optimization problem

min
γ

1
2λ

γ⊤YKYγ −e
⊤γ +

m

∑
i=1

L∗(γi), (5)

whereK is a symmetrical kernel matrix with its componentKi, j = k(xi ,x j), and
Y is a diagonal matrix withy = (y1,y2, · · · ,ym)

⊤ as its diagonal elements. The
duality relationship maintains the result (1) induced by the representer theorem.
Table1 lists some popular loss and their conjugate functions.

Table 1. Popular loss functions and their conjugate functions.

Loss Function Conjugate function

Hinge: L(u) = max{0,u} L∗(v) =

{

0, 0≤ v≤ 1
+∞, others

Huber: Lδ (u) =

{

max{0,u}, |u|> δ
(u+δ )2

4δ , |u| ≤ δ
L∗(v) =

{

δv(v−1), 0≤ v≤ 1
+∞, others

Logistic: Lp(u) =
1
p log(1+exp(pu)) L∗(v) =

{ 1
p log(1−v)(1−v)vv, 0≤ v≤ 1
+∞, others

Squared hinge: L(u) = 1
2 max{0,u}2 L∗(v) =

{

1
2v2, v≥ 0
+∞, v< 0

p-normed: L(u) = 1
p |u|

p(1< p< ∞) L∗(v) = 1
q |v|

q, 1
p +

1
q = 1

Least squares: L(u) = 1
2u2 L∗(v) = 1

2v2

Absolute: L(u) = |u| L∗(v) =

{

0, |v| ≤ 1
+∞, |v| > 1

As for the representer theorem, plugging (1) in (2) and eliminating the equalities
constraints, we have

min
α∈Rm

λ
2

α⊤Kα +
m

∑
i=1

L

(

1−yi

m

∑
j=1

α jKi, j

)

, (6)

(6) is called primal SVM in [5] and [22], and some algorithms are given according
to the different loss functions.

By the duality technique above, we can prove that the dual of problem (6) has
the same form as (5). So (6) and is equivalent to (5) naturally but they have
different computational stability since the small parameter λ appears different
place.
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2.2. Regularization Model onRm – GSVM

GSVM model (3) also admits the learned classification function asf (·) =
∑m

j=1 β jk(·,x j), and it can also be rewritten as the following unconstraint
optimization problem

min
β∈Rm

λ
2
‖β‖2+

m

∑
i=1

L

(

1−yi

m

∑
j=1

β jKi, j

)

. (7)

In [17], Mangasarian stated that the regularizer‖β‖2 could be replaced by any
norm or seminorm functiong(β ). It can easy show that the dual of (3) and (2) has
the same duality (5) if ‖β‖2 is replaced as‖β‖2

K := β⊤Kβ .

2.3. The relationship of two regularization models

Compared problem (6) and problem (7), it observes that the difference of M1 and
M2 is only on the first item of objective function, which is called the regularizer.
The former is induced from (2) where the regularizer isL2 norm of f in RKHS
H, while the latter is regularized withL2 norm of the coefficientsβ in R

m. All of
them can be specified as a optimization problem in finite Euclidean spaceRm by
the representer theorem or the duality.

3. Related Models with Least Squares Loss

In this section, the difference of two models is analyzed while the least squares
loss functionL(u) = 1

2u2 is used. At this situation, all models have the closed form
solutions and their differences can be compared analytically in the computational
stability view.

3.1. The related models and their relationships

On the one hand, as soon as the conjugate function of the leastsquares loss in
Table1 is plugged in the dual problem (5) induced byM1, we have

min
γ∈Rm

1
2

γ⊤
(

1
λ

K+I

)

γ −y⊤γ. (8)

Its output classification function is

fγ(·) =
1
λ

m

∑
i=1

γ∗i yik(·,xi) with γ∗ = λ (K +λI)−1y. (9)

This model is called least squares Support Vector Machine (LS-SVM), which is
first setup in [25] where their model has an extra equality constraint corresponding
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to the offset of the classification function. There are numerous applications [30]
on it because of its simplicity even though some researches [31] have shown that
it has a little bit lower accuracy sometimes.

By the representer theorem, the optimization problem (6) with the least squares
loss induced fromM1 is

min
α∈Rm

1
2

α⊤
(

λK+KK⊤
)

α −y⊤Kα. (10)

Its output classification function is

fα(·) =
m

∑
j=1

α∗
j k(·,x j) (11)

whereα∗ solves(λK+KK⊤)α = Ky.
On the other hand, with the least squares loss considered in (7), which is induced

by M2, we have

min
β∈Rm

1
2

β⊤
(

KK⊤+λI

)

β −y⊤Kβ +
m
2
. (12)

The corresponding output classification is

fβ (·) =
m

∑
i=1

β ∗
i k(·,xi) (13)

whereβ ∗ =
(

KK⊤+λI
)−1

Ky.
Model (12) is called Proximal Support Vector Machine (PSVM), first proposed

in [21]. It is also generalized to deal with multi-classification problem in [32] and
multi-surface classification problem in [33]. Recently, some new results based on
it about nonparallel classification hyperplane are reported [34].

Let α∗ be the solution of (10), γ∗ be the solution of (8) andβ ∗ be the solution
of (12). Comparing the related models (10), (8) and (12), we have the following
conclusion:

Proposition3.1
a) For M1 with least squares loss, problem (10) induced by representer theorem
may have multi-solutions (ifK is singular) and problem (8) induced by duality
has unique solution. However, their output classification functions are the same,
namely fα(·) = fγ(·), and 1

λ γ∗ is always one solution of (10).
b) For M2 with least squares loss, the induced problem (12) always has a unique
solution.

For a common kernel matrixK, generally it hasσmax(K)≥ 1≥ σmin(K), where
σmax(K) is the maximum eigenvalue ofK andσmin(K) is the minimum eigenvalue
of K. Then we haveκ(λ I +K)≤ κ(λ I +KK⊤)≤ κ(λK +KK⊤), whereκ(A) is
condition number of a matrixA.
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Proposition3.2
From the computational view, the model derived by duality in(8) is the most
stable one and model of GSVMs in (12) is ranked second, and the model derived
by representer theorem in (10) is the worst one.

Thus for solving Ml, the optimization problem induced by duality technique
is more simple and stable than the problem induced by representer theorem
for a computational view. This explains why so many researcher focus on it
[35, 27, 36, 37, 38, 24, 39]. On the other hand, we have

Proposition3.3
The advantage of problem (10) over problem (8) is that there may have a sparse
solution whileK is low rank or is approximated by a low rank matrix.

This is also very important. Such as, compressed sensing [40], a very popular
research area, mostly focuses on studying the sparse solution of the system of
linear equations or called sparse representation problem.

3.2. Disadvantage of duality models with reduced method

In Proposition3.2, it shows that the model induced by duality is the most stable
one when the whole training kernel matrix is available to train SVMs. However,
while the samples numberm is larger enough, it is impractical to get the whole
kernel matrix to train SVMs based on duality. Fortunately, some practical results
[41, 24] and the theory results [3] show that the optimal output function is
always a sparsity linear combination of some basic functioncorresponding to a
part of training samples. Namely, in (1), many combination coefficients are 0.
Although this is not true when least squared loss is used, it is inspired researcher
to consider some reduced methods to get a well approximated solution of SVMs
[19, 31, 5, 27, 42] for large scale problems. In those methods, only some basic
functions corresponding to a subsetJ⊂M of input samples are chosen to combine
the output classification functionf as

f (·) = ∑
j∈J

α jk(·,x j), (14)

whereJ is sub-index set random chosen fromM with |J| ≤ 0.1|M| [19, 31, 42] or
well-chosen fromM with less cardinal [5, 43, 22].

Only training SVMs on the subsetJ is not a good choice unless it is just
the optimalsupport vectorsset, which is always not known in advance. The
experimental results in [19] also illustrate that training SVMs only on a random
subset is very worse than on the whole set. So a wise method forthe reduced SVMs
is plugged (14) in M1 (2) or M2 (3) with m losses considered in the objective
function andm equality constraints, which is called RSVMs (Reduced SVMs)in
[19, 31].
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Solving this kind of reduced problem in primal is only a|J| dimensional
problem, while the corresponding dual is stillm dimensional problem. This is
a barrier if we design the quadratic convergence rate algorithms like Newton-type
method on dual problem.

Of course there are some efficient algorithms at most with linear convergence
based on dual problem [44, 45] such as SMO [24, 36], SVMlight [23, 41].
And there are also some quadratic convergence rate algorithms [46, 28, 27], in
which the whole kernel matrixK is pre-computed and factorized approximated as
K ≈ GG⊤ with a low rankG. In this paper, we focus on the Newton-type methods
for RSVMs neither the pre-factorized kernel matrix nor the whole kernel matrix.

As a conclusion, training the problem in dual space is not a good choice for
reduced SVMs by Newton-type method. So, we only consider thetwo types primal
problems in the rest part of this work. One is regularized inH but converted to
finite optimal problem (15) by (14). The other is the reduced version of GSVM (3)
in the following (16).

4. Newton Methods for RSVM with Smooth Losses

In this section, we study training reduced SVMs with Newton-type methods for
the primal problems with different loss functions, and the learning results satisfies
(14) where with the index setJ ⊂ M is well-chosen or random chosen. Letr = |J|
be the reduced set size and it always setsr ≤ 0.1m.

Its the reduced form ofM1 (6) is as following

min
αJ∈Rr

λ
2

αJ
⊤KJJαJ +

m

∑
i=1

L (1−yiKiJαJ) . (15)

whereαJ ∈R
r is a sub-vector ofα consisted by the elements ofα in the subsetJ,

KIJ is a sub-matrix ofK consisted by all the elements at the rows in subsetI and
columns in subsetJ.

And the reduced version ofM2 (GSVM) (7) is:

min
βJ∈Rr

λ
2

βJ
⊤βJ +

m

∑
i=1

L (1−yiKiJβJ) . (16)

The only difference between (15) and (16) is also the first item in their objective
functions. For simplicity, two related reduced models are rewritten as:

min
z∈Rr

λ
2

z⊤Bz+
m

∑
i=1

L (1−yiKiJz) . (17)

whereB= KJJ, z= αJ for M1 andB= I, z= βJ for M2.
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4.1. Setup of the Newton-type algorithms

Here we train RSVMs according toM1 and M2 by Newton-type algorithms
on different losses. The most popular and meaningful loss ishinge loss L(u) =
max{0,u}, but it is not differentiable and Newton-type methods do notwork for it.
Some smooth loss functions are adopted to approximate it, includingleast squares
loss[21, 25], squared hinge loss[5, 46], Huber loss[2, 22, 47] and logistic loss
[19, 42]. Their concrete forms are listed in Table1.

Given a smooth loss in (17), smooth Newton algorithm or semi-smooth Newton
[48] algorithm has quadratic convergence rate. It solves Newton equations to
update the current solution iteratively. Specifically, at iterationt, for a givenzt ,
let ξ t

i = 1− yiK⊤
Ji z

t and I t = {i ∈ M|L(ξ t
i ) > 0}. The Hessian matrixHt and the

gradientgt of the objective function in problem (17) satisfy

Ht = λB+KJIt Λt
I t K⊤

JIt , (18)

gt = λBzt − ∑
i∈I t

yiL
′(ξ t

i )KJi, (19)

whereΛt := diag(L′′
p(ξ t

1), · · · ,L
′′
p(ξ t

m)), Λt
I t := Λt

I t I t for short,L′(·) andL′′(·) be
the first and second derivatives of loss functionL(·).

NotingKiJzt = yi(1−ξ t
i ), the corresponding Newton equation can be written as

(

λB+KJIt Λt
I t K⊤

JIt

)

z= ∑
i∈I t

yi
(

L′′(ξ t
i )(1−ξ t

i )+L′(ξ t
i )
)

KJi. (20)

Let z̄be the solution of (20). If the full Newton step is acceptable, then the next
zt+1 = z̄, otherwisezt+1 = (1− η)zt + η z̄, whereη is chosen by an inexact or
exact line-search scheme. Experiments show that the full step is often acceptable
for those convex problems and thebacktracking Armijo line-searchis pretty well
while the full step fails.

Remark4.1
Our Newton scheme (20) is equivalent to the traditional oneHtd = −gt , where
the new solutionzt+1 = zt + η d̄ with Newton directiond̄. The new version is
consistent with the least squares loss case(see the following equations (21)) and is
simple in computing the right hand side for most popular loss(see the right hand
side of the following equations (22) and (24) for details).

For a kernel matrixK ∈ R
m×m, we always haveκ

(

λI+KJIt ΛtK⊤
JIt
)

≤

κ
(

λK+KJIt ΛtK⊤
JIt
)

. Roughly speaking, we conclude

Proposition4.2
The model (16) derived from M2 ismore stable than the model (15) derived from
M1 from the computational view.
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4.2. Specification of algorithms with different smooth losses

Following, the specification forms of (20) are analyzed according to different
smooth loss, including the least squares loss, the squared hinge loss, Huber loss
and the logistic loss.

4.2.1. Least squares lossWith the least squares lossL(u) = 1
2u2, Newton

equation (20) is independent toαt and the closed solution to (17) is obtained by
solving the following system of linear equations (21):

(

λB+KJMK⊤
JM

)

z = KJMy. (21)

If B = KJJ for M1, the coefficients matrix ofz may be semi-positive definite but
not positive definite. Thus there needs a ridge added to the coefficients matrix as
[43] does for the paper [5]. However, ifB = I for M2, the coefficients matrix of
z is always positive definite. The performance of the classifiers corresponding to
two models will be compared experimentally.

4.2.2. Squared hinge lossWith the squared hinge lossL(u) = 1
2 max{0,u}2, the

objective function of problem (17) is the piecewise quadratic functions. They
have no closed form solutions, but the minimizers can be found by Newton
method within finite iterations [49, 20, 5, 46]. Precisely the resulted method should
be called semi-smooth Newton method, where the Newton equations (20) are
simplified as

(λB+KJIt K
⊤
JIt )z= KJIt yI t . (22)

In [5, 43], they design a complicated procedure to iteratively update the Cholesky
factorization ofλB+KJIt K

⊤
I tJ with B= KJJ to reduced computational complexity,

and the computational complexity of their algorithm per iteration is less than
O(mr2). In their program [43], a ridge is added to the coefficients matrix to
overcome the potential singularity for M1. For simplicity,in this paper we use

Ht := Ht−1+KJItin
K⊤

JItin
−KJItout

K⊤
JItout

, (23)

to update the coefficients matrix of Newton equations (22) iteratively as [42, 46],
whereHt−1 = λB+KJIt−1K⊤

JIt−1. And then Newton equations (22) is solved by“\”
operator in Matlab, whereI t

in := {i|i ∈ I t , i /∈ I t−1}, I t
out := {i|i /∈ I t , i ∈ I t−1}.

Since|I t | > |I t
in|+ |I t

out| always holds [46], the computational complexity of this
algorithm per iteration is also less thanO(|I t | r2), and very less thanO(mr2). This
scheme works better in the situation where the reduced set israndomly selected in
advanced.

The only difference of two related models is the term ofB in (22). GSVM
model (M2) is more stable than M1 because its Hessian matrix is a definite positive
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matrix all the time and an extra ridge is also added to the coefficients matrix of
Newton equations (22) for M1. Their classification performance will be compared
experimentally in Section5.

4.2.3. Huber loss.Huber loss function [50] is defined as Lδ (u) :=
{

max{0,u} i f |u| ≥ δ ,
(u+δ )2

4δ i f |u|< δ ,
for a given smooth parameterδ . It is clear

that lim
δ→0

Lδ (u) = max{0,u}. In [47], some variations and generalizations are

given for the minimax problem.
With Huber loss, the objective function of problem (17) is also a piecewise

quadratic function, then their minimizers can be found by Newton method within
finite iterations, but the experimental results in Section5 show that it always needs
more iterations than the algorithm with the squared hinge loss. At iterationt,
Newton equations (20) are simplified as

(

λB+ 1
2δ KJIt K

⊤
JIt

)

z= 1+δ
2δ KJIt yI t +KJIt+

yI t
+
. (24)

where I t = {i ∈ M| |ξ t
i | ≤ δ} and I t

+ = {i ∈ M|ξ t
i > δ}. Its Hessian matrix

Ht = λB+ 1
2δ KJIt K

⊤
JIt can also be updated iteratively by the scheme similar as

(23):

Ht := Ht−1+ 1
2δ

(

KJItin
K⊤

JItin
−KJItout

K⊤
JItout

)

, (25)

whereI t
in := {i|i ∈ I t , i /∈ I t−1}, I t

out := {i|i /∈ I t , i ∈ I t−1}.

Tune the smoothing parameter δ . We need to tune the smoothing parameter
δ . Setting a smallδ to solve (24) is not a good choice because it may face a big
condition number of Hessian matrixHt . The difference between the hinge loss
and Huber loss isLδ (u)−max{x,0} ≤ δ

4 , and the total approximate error is less

than
|I0|δ

4 . If a proper smoothing precisionε is available, we can tuneδmin =
4ε
|I0|

.

At the beginning of the algorithm, we set a bigδ0 like δ0 = 1, and reduce it by
δk := 0.1δk−1 while the current solution is good under some criterions (such as
‖gt‖ ≤ 1), and repeat the algorithm untilδk ≤ max{10−4,δmin} and‖gt‖ ≤ ε for
a givenε .

4.2.4. Logistical lossLogistical loss is also called the exponential entropy
function, which is defined asLp(u) := 1

p log(1+exp(pu)). In [42], a stable form is

given asLp(u) := max{u,0}+ 1
p log(1+exp(−|pu|)) to overcome any potential

overflowing. With the Logistical lossLp(u), (20) is simplified as
(

λB+KJIt Λt
I t K⊤

JIt

)

z= KJIt Λt
I t K⊤

JIt z
t + ∑

i∈I t
+

yiL
′
p(ξ t

i )KJi. (26)
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whereI t
+ := {i ∈ M|L′

p(ξ t
i )≥ τ} andI t := {i ∈ M|L′′

p(ξ t
i )≥ τ} for a tiny number

τ like 10−10, Λt := diag(L′′
p(ξ t

1), · · · ,L
′′
p(ξ t

m)) andΛt
I t := Λt

I t I t . L′(u) andL′′(u) are

calculated asL′
p(u) =

min{1,exp(pu)}
1+exp(−p|u|) ,L

′′
p(u) =

pexp(−p|u|)

(1+exp(−p|u|))2
.

Tune the parameter p. In order to make the Newton method working well, we
should setp moderately such asp= 10 at the beginning, thenp := 10p if ‖gt‖ is
small and repeat the algorithm untilp= 104 and‖gt‖ ≤ ε for a givenε .

4.3. SMW identity and the advantage of GSVM

Sherman-Morrison-Woodbury (SMW) identity [16]

(A+UDU⊤)−1 = A−1−A−1U
(

D−1+U⊤A−1U
)−1

U⊤A−1, (27)

can be used to reduce the computational complexity for calculating (A +
UDU⊤)−1 while A−1 is very simple andD−1+U⊤A−1U has a small size.

Based on the analysis above section, Hessian matrices of thecorresponding
problems always have the formλB+U tΛt

I tU t⊤, whereU t ∈ R
r×|I t | and diagonal

matrixΛt
I t ∈R

|I t |×|I t |. If B= I for solving M1 (GSVM), we can obtain the solution
of Newton equation (20) by SMW identity (27) as

λz= b
t −U t

(

λ (Λt
I t )−1+U t⊤U t

)−1
U t⊤

b
t (28)

wherebt is the right hand side of (20). So while|I t |< r, which always happens for
some kinds problem that has a sparse solution, the solution of Newton equation
(20) is obtained by (28) with the complexityO(r|I t |2), less thanO(r3), where the
second part of (28) is computed from right to left. This trick is invalid ifB= KJJ

for solving the problem induced from M1 (ifK−1
JJ is per-calculated, the total cost

for (28) is O(r2|I t |2) by SMW, very larger than that of M2). As a conclusion, we
have

Proposition4.3
If |I t |< r, Newton-type algorithm based on M2 (GSVM) hasless computational
complexity than the similar algorithm based on M1.

Next we will compare these two models on the classification performance
experimentally.

5. Experimental Results

In this section, we perform some experiments to compare the two related models
with Newton-type method, and four kinds of popular smooth loss functions are
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considered. In Section5.1, a nonlinearly separable example called the “tried and
true” checkerboard dataset [51, 37, 38, 18, 19, 46] is selected to train classification
surface with Newton-type methods based on two models, and inSection5.2, some
practical datasets from machine learning repositories [52] are adopted to evaluate
the models. All the experiments are run on a Personal Computer with a Intel Core
i3 2100 CPU and a maximum of 4Gbytes of memory available for all processes.
The computer runs Windows 7 with Matlab 7.10.

5.1. Artificial Data with reduced methods

In this section, we give some sets of experiments on an artificial dataset to
compare the performance of two kinds of regularization withreduced methods.
A nonlinearly separable example called the “tried and true”checkerboard dataset,
first given in [51], which has often been used to show the effectiveness of
nonlinear kernel methods [37, 38, 18, 19, 46], is selected to train classification
surface with Newton method based on two related models. Thischeckerboard
dataset is generated by uniformly discretized the regions[0,199]× [0,199] to
2002 = 40,000 points, and is labeled two classes “White” and “Black” spaced
by 4× 4 grids. Training sets are random sampled from the 40,000 checkerboard
data with different training sizesm, and the remainder of the points are left in the
testing set. Kernel function is chosen ask(x,y)= exp(−γ ‖x−y‖2) with γ = 0.001.
A ridge εI with ε = 10−8 is added to all Hessian matrices based on M1.

5.1.1. Comparing M1 and M2 with different smooth lossesIn this section, we
focus on comparing the performance of two models with difference smooth loss
functions. Two tables (Table2 and3) corresponding with the regularizerλ = 0.1
andλ = 0.01 are given, where the averaged test errors, averaged training time,
averaged iterations of Newton step and averaged numbers of training samples
satisfyingyi f (xi) ≤ 1 are listed with standard deviations. All the results are the
mean value on 20 random trials, and the standard deviations are given in brackets.

From the results in Table2 and Table3, we can get the following conclusions:

• Firstly, the results show that Newton method is very efficient to solve this
kind problems. The algorithms are stable for the problems with different size
training data since the changes of iteration are small for every algorithms on
different size problems. The training time is less than halfa minute even the
training data size as large as 25,000.

• On the test errors aspect, the results corresponding to M2 are always better
than the results corresponding to M1 for the squared hinge loss, logistical
loss and Huber loss. The only exception is on the least squares loss, where
the test errors corresponding to M1 better than the results of M2, but they
are all much worse than others, and we will specify it in Subsection5.1.2.
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Table 2. Comparisons of two regularization with different smooth loss functions. All the
results are the mean value on 20 random trials, and the standard deviations are given in
brackets. “LS”, “SH”, “Log” and “Hub” are “Least Squares loss”, “Squared Hinge loss”,
“Logistical loss” and “Huber loss” for short respectively.“M1+LS” means that the model
is based on M1 with least squares loss, and others have the similar meaning. (λ = 0.1)

Size→ m=4,000 m=8,000 m=15,000 m=20,000 m=25,000
Model↓ r=300 r=600 r=1000 r=1000 r=1,000

Test error(%) on the test sets with 40000−m samples.
M1+LS 2.92(0.39) 2.11(0.31) 1.46(0.27) 1.12(0.20) 1.05(0.12)
M2+LS 3.41(0.41) 2.96(0.30) 1.90(0.28) 1.52(0.23) 1.11(0.27)
M1+SH 1.19(0.23) 0.55(0.12) 0.20(0.07) 0.11(0.04) 0.08(0.04)
M2+SH 0.75(0.17) 0.22(0.08) 0.06(0.03) 0.04(0.02) 0.03(0.02)
M1+Hub 1.80(0.24) 1.06(0.18) 0.53(0.11) 0.30(0.08) 0.22(0.08)
M2+Hub 1.29(0.20) 0.38(0.12) 0.13(0.05) 0.09(0.03) 0.07(0.03)
M1+Log 1.80(0.24) 1.06(0.18) 0.53(0.11) 0.30(0.08) 0.22(0.08)
M2+Log 1.29(0.20) 0.38(0.12) 0.13(0.05) 0.09(0.03) 0.07(0.03)

Training time(s)
M1+LS 0.04(0.01) 0.22(0.03) 1.02(0.15) 1.43(0.21) 1.60(0.27)
M2+LS 0.03(0.01) 0.19(0.02) 1.10(0.17) 1.39(0.18) 1.69(0.31)
M1+SH 0.22(0.01) 1.35(0.02) 5.31(0.07) 6.89(0.09) 8.48(0.11)
M2+SH 0.21(0.01) 1.28(0.02) 5.22(0.11) 6.72(0.10) 8.47(0.21)
M1+Hub 0.74(0.04 3.62(0.25) 12.90(0.66) 15.45(0.80) 18.26(0.87)
M2+Hub 0.57(0.05) 2.60(0.25) 8.05(0.66) 10.70(0.79) 13.01(0.66)
M1+Log 0.52(0.06) 2.58(0.40) 9.97(1.07) 11.36(0.68) 13.46(1.16)
M2+Log 0.42(0.05) 2.14(0.12) 7.56(0.41) 9.74(0.61) 12.16(0.52)

Iterations of Newton step
M1+LS 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
M2+LS 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
M1+SH 10.8(0.6) 12.8(0.4) 14.3(0.6) 15.0(0.1) 15.5(0.6)
M2+SH 10.4(0.5) 11.8(0.6) 13.4(0.7) 14.7(0.7) 15.7(0.7)
M1+Hub 84.8(5.7) 86.8(9.0) 90.0(6.1) 89.5(7.9) 91.2(7.1)
M2+Hub 131.8(15.5) 138.9(17.1) 155.6(18.0) 153.8(18.6) 151.8(12.8)
M1+Log 46.3(4.5) 46.8(5.4) 49.6(5.4) 46.1(4.9) 45.5(5.7)
M2+Log 54.4(8.2) 62.0(6.8) 64.3(11.8) 57.9(8.3) 60.2(12.5)

Numbers of Support Vectors(training samples satisfiedyi f (xi)≤ 1).
M1+LS 2,480(19) 4,877(20) 9,009(34) 11,865(40) 14,644(39)
M2+LS 2,672(20) 5,254(28) 9,716(34) 12,922(39) 16,112(34)
M1+SH 701(17) 1,153(24) 1,757(20) 2,086(22) 2,398(19)
M2+SH 484(24) 641(18) 987(15) 1,180(28) 1,316(33)
M1+Hub 486(14) 809(18) 1,277(20) 1,573(22) 1,857(22)
M2+Hub 336(17) 440(15) 488(11) 573(16) 658(14)
M1+Log 486(13) 809(18) 1277(20) 1573(22) 1857(22)
M2+Log 336(17)) 440(15) 488(11) 573(16) 657(14)

• On the training time and iterations aspects, the training time of M1 and M2
is comparable for least squares loss while there needs only one iteration.
However, for other three loss, the algorithms based on M2 arealways faster
than the algorithms based on M1. Especially, for the Huber loss and logistic
loss, the iterations of Newton step corresponding to M2 are often very longer
than that of M1, but the training time is not. The reason is that SMW identity
can be applied to M2 but cannot be applied to M1. Specifically,at the first
several iterations, the cost to obtain the corresponding Newton direction
for all algorithms isO(r max{|I t |2, r2}) = O(r|I t |2) since |I t | in (18) is
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Table 3. Comparisons of two regularization with different smooth loss functions. All the
results are the mean value on 20 random trials, and the standard deviations are given in
brackets. “LS”, “SH”, “Log” and “Hub” are “Least Squares loss”, “Squared Hinge loss”,
“Logistical loss” and “Huber loss” for short respectively.“M1+LS” means that the model
is based on M1 with least squares loss, and others have the similar meaning. (λ = 0.01)

Size→ m=4,000 m=8,000 m=15,000 m=2,0000 m=25,000
Model↓ r=300 r=600 r=1000 r=1000 r=1,000

Test error(%) on the test sets with 40000−m samples.
M1+LS 2.39(0.22 1.67(0.21) 0.89(0.19) 0.53(0.12) 0.37(0.08)
M2+LS 3.48(0.31) 2.39(0.33) 1.71(0.23) 1.34(0.18) 1.23(0.17)
M1+SH 0.72(0.14) 0.23(0.05) 0.09(0.03) 0.06(0.02) 0.04(0.02)
M2+SH 0.35(0.09) 0.11(0.03) 0.05(0.02) 0.04(0.02) 0.02(0.02)
M1+Hub 1.01(0.18) 0.34(0.06) 0.22(0.07) 0.15(0.04) 0.11(0.05)
M2+Hub 0.52(0.13) 0.19(0.05) 0.10(0.03) 0.07(0.03) 0.05(0.02)
M1+Log 1.01(0.18) 0.34(0.06) 0.22(0.07) 0.15(0.04) 0.11(0.05)
M2+Log 0.52(0.13) 0.19(0.05) 0.10(0.03) 0.07(0.03) 0.05(0.02)

Training time(s)
M1+LS 0.03(0.01) 0.21(0.02) 0.93(0.03) 1.21(0.04) 1.47(0.02)
M2+LS 0.03(0.01) 0.20(0.02) 0.90(0.04) 1.17(0.03) 1.45(0.03)
M1+SH 0.23(0.01) 1.46(0.06) 5.69(0.09) 7.49(0.29) 9.17(0.35)
M2+SH 0.23(0.01) 1.43(0.08) 5.43(0.06) 7.18(0.10) 9.13(0.20)
M1+Hub 0.76(0.05) 3.79(0.20) 13.27(0.72) 15.72(0.69) 29.88(2.63)
M2+Hub 0.79(0.09) 3.47(0.29) 10.45(1.09) 13.44(0.91) 17.01(1.09)
M1+Log 0.73(0.17) 3.59(0.55) 13.17(1.59) 13.95(1.47) 16.52(2.47)
M2+Log 0.48(0.04) 2.38(0.23) 9.24(1.26) 13.17(1.12) 16.44(2.23)

Iterations of Newton step
M1+LS 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
M2+LS 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
M1+SH 14.9(0.6) 16.8(0.5) 18.7(0.7) 20.6(0.8) 21.5(0.8)
M2+SH 13.4(0.8) 16.8(1.3) 22.9(1.3) 24.4(1.6) 26.6(2.2)
M1+Hub 114.7(9.0) 114.3(6.7) 116.5(8.7) 118.1(7.8) 120.2(21.6)
M2+Hub 218.6(25.4) 264.1(26.0) 275.1(32.6) 273.1(24.2) 280.3(31.4)
M1+Log 74.2(20.0) 72.3(11.2) 72.8(13.1) 61.5(8.1) 62.0(12.9)
M2+Log 80.6(11.8) 96.2(14.6) 108.6(19.6) 113.5(16.2) 106.7(19.1)

Numbers of Support Vectors(training samples satisfiedyi f (xi)≤ 1).
M1+LS 2,328(19) 4,590(29) 8,552(34) 11,411(36) 14,269(28)
M2+LS 2,604(24) 5,138(27) 9,622(41) 12,826(45) 16,074(56)
M1+SH 357(18) 594(16) 1,028(19) 1,284(15) 1,473(16)
M2+SH 275(20) 322(12) 341(9) 391(11) 452(10)
M1+Hub 228(14) 366(11) 528(11) 619(11) 703(12)
M2+Hub 145(10) 154(7) 186(6) 224(6) 260(9)
M1+Log 228(14) 366(11) 528(11) 619(11) 704(10)
M2+Log 145(10) 154(7) 186(6) 224(6) 260(9)

larger than the reduced sizer; and after several iterations, we have|I t | < r,
hence the cost to solve Newton equations based on M2 can be reduced to
O(r|I t |2) by SMW identity, but the cost of the algorithms based on M1 is
still O(r max{|I t |2, r2}) = O(r3).

• Algorithms based on M2 often have less number of training samples
satisfiedyi f (xi) ≤ 1(low-confidence training samples) than those based
on M1 have, wheref (·) is the resulted classification function. The only
exception is corresponding to least squares loss too, and wewill specify
it in Subsection5.1.2too.
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• Compared four types of loss function, the squared hinge lossgets the best
generalization errors in all smooth losses. Its training time has only a little
longer than least squares loss which has the worst test errors. No matter how
large the training set, there are a few iterations(less than2 log(m)) of Newton
step needed.

• The advantages of the logistical loss and Huber loss are thatthey always
get the least low-confidence training samples than others. Especially while
M2 is applied, there always has a small number of low-confidence training
samples on the resulted classification function. The reasonis that those two
losses can converge to hinge loss ifp → +∞(or δ → 0), but the others
losses are not. We also notice that Huber loss has no any advantages over
the logistical loss, so we do not recommend the further researches on it.

The results in Table2 and Table3 show that M2 nearly wins all aspects, so we
can conclude that M2 has some advantages over M1. With the same parameters
set, the algorithms based on M2 always faster than the algorithms based on M1.
The former are always more stable in computing while the latter often need a ridge
added to the Hessian matrix as [43] does for the paper [5] to keep the Newton
direction well-defined.

Although the data in Table2 and Table3 shows that M1 is better than M2
with the least squared losson the two aspects (Test errors and Number of support
vectors), in Section5.1.2we will show that the resulted classification curves based
on M1 have a strange behavior (drawback) but the curves basedon M2 hasn’t.

Based on all those experiments, M2 plus squared hinge loss isthe best model
to train reduced SVM with Newton method, in which the reducedset is random
chosen. In Section5.1.3, we will do more experiments to compare the well-chosen
reduced scheme [43, 5] and rand-chosen scheme[19, 31], where M1 and M2
equipped with square hinge loss are considered only.

5.1.2. Drawback of M1 with the least squares lossThe experiments in Section
5.1.1 show that M2 has many advantages over M1 almost all aspects except
that it equipped with the least squares loss function. Here we give some plots
to compare the M1 and M2 with least squares loss in details. M1equipped with
least squares loss is called LS-SVM [25, 30], and M2 equipped with least squares
loss is called PSVM [21, 32, 33, 34]. Eight plots with different training data sizes
and regularizer paremeters are given in Fig.1. The regularizer parameters are set
asλ = 0.1 for Fig.1 (a)-(d) andλ = 0.01 for Fig.1 (e)-(h).

Form Fig.1, it shows that the classification lines of two models corresponding
to same size training data are very similar, and hence the test accuracy are very
similar too, but the high confidence areas (satisfyingyi f (x) > 1 corresponding to
the red or dark red areas in the plots) are very different. ForM2 (PSVM), the high
confidence area is regular (See(c), (d), (g) and(h) in Fig. 1)–The more central
the grid, the higher the confidence, and the exception happens only on the corners.
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(a) M1(λ=0.1
m=8,000,r=600)
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(b) M1(λ=0.1
m=15,000,r=1000)
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(c) M2(λ=0.1
m=8000,r=600)

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

(d) M2(λ=0.1
m=15,000,r=1000)
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(e) M1(λ=0.01
m=8,000,r=600)
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(f) M1(λ=0.01
m=15,000,r=1000)
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(g) M2(λ=0.01
m=8,000,r=600)
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(h) M2(λ=0.01
m=15,000,r=1000)

Fig. 1. Comparison of M1 and M2 with least squares loss on checkerboard problems.
The blank line is classification functionf (x) = 0 and the blue and green lines are support
lines corresponding tof (x) = ±1 respectively. The blue “+” and the green “o” are the
training samples satisfyingyi f (xi) < 1 corresponding toyi = ±1 respectively. It shows
that M1 (Left 4 plots) has some kind of behavior (drawback) onthe classification curves.

But for M1 (LS-SVM), the high confidence area is strange on nearly every grids
(See(a), (b), (e)and(f) in Fig.1)–the central of the grids are not always in the high
confidence area, especially for the case with the regularizer parameterλ = 0.01. It
shows that M1 has some kind of strange behavior (drawback) onthe classification
curves.

5.1.3. Comparing two reduced models on random-chosen scheme and well-
chosen schemeIn this part, we perform some experiments to compare M1 and
M2 on the random-chosen (RC) reduced set scheme as in RSVM [19, 31, 42] and
well-chosen (WC) reduced set scheme as in [5]. Only the squared hinge loss is
considered because it achieves the best performance in the former experiments.
The codes for well-chosen reduced set algorithms are gottenfrom the site [43]
which is based on M1. And we made a very minor modification to apply it to M2.

For well-chosen scheme, the reduced set is augmented from empty set
iteratively where a well designed technique (see [5] in details) is abided to select
some samples which will be put into the reduced set until the set size reached
rWC, whererWC is set as 2% of the training sizem as the default value in [43] but
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limited by upper bound 200. For the comparison propose, we set the reduced size
rRC= 2rWC for random-chosen scheme.

In [43], the Matlab code designed by Chapelle is very efficient, where the fast
rank 1 updating Cholesky factorization is used to update theHessian matrix of the
problem corresponding to the current solution while oneactive sampleis added
into or deleted from the active setI := {i ∈ M|1−yiKiJzt > 0}, and some powerful
codes are designed to select the basic samples into reduced set. The total cost per
iteration is less thanO(mr2WC). His code is more than 200 lines in Maltab. The
total cost of the random-chosen scheme isO(|I t |r2

RC) per iteration, which is also
less thanO(mr2RC). Maybe the cost per iteration of random-chosen scheme is larger
than that of well-chosen scheme sincerRC= 2rWC. However our Matlab code for
the random-chosen scheme with squared hinge loss is simple,only about 30 lines.

Some experimental results are reported in Table4, where two different models
with two different reduced schemes are compared on the squared hinge loss
situation. The regularizer parametersλ = 0.1 andλ = 0.01 are considered.

Table 4. Comparison on two regularization with well-chosen(WC) reduced scheme and
random-chosen(RC) reduced scheme with the squared hinge loss functions for different
size of training problem(λ = 0.1 (light part) andλ = 0.01 (dark part)). All the values are
averaged on 20 random trials with the standard deviations inbrackets.

Train size→ m=4,000 m=8,000 m=15,000 m=20,000 m=25,000
rRC=160 rRC=320 rRC=400 rRC=400 rRC=400

Models↓ rWC=80 rWC=160 rWC=200 rWC=200 rWC=200
Test errors(%) on the test sets with 40000−m samples.

M1(λ=0.1
RC ) 1.14(0.18) 0.50(0.09) 0.20(0.06) 0.13(0.05) 0.08(0.03)

M2(λ=0.1
RC ) 1.05(0.21) 0.27(0.08) 0.12(0.05) 0.07(0.03) 0.04(0.02)

M1(λ=0.1
WC ) 1.32(0.18) 0.61(0.09) 0.24(0.07) 0.16(0.06) 0.10(0.03)

M2(λ=0.1
WC ) 1.30(0.24) 0.42(0.09) 0.16(0.05) 0.11(0.04) 0.07(0.02)

Training time(s)
M1(λ=0.1

RC ) 0.07(0.00) 0.49(0.02) 1.41(0.02) 1.91(0.03) 2.34(0.03)
M2(λ=0.1

RC ) 0.07(0.01) 0.46(0.01) 1.31(0.03) 1.78(0.03) 2.20(0.04)
M1(λ=0.1

WC ) 0.47(0.06) 1.24(0.03) 2.56(0.05) 3.32(0.10) 4.06(0.09)
M2(λ=0.1

WC ) 0.44(0.02) 1.25(0.04) 2.58(0.10) 3.33(0.11) 4.07(0.11)
Test errors(%) on the test sets with 40000−m samples.

M1(λ=0.01
RC ) 0.71(0.17) 0.21(0.05) 0.09(0.03) 0.06(0.03) 0.03(0.02)

M2(λ=0.01
RC ) 0.50(0.16) 0.10(0.03) 0.06(0.02) 0.04(0.02) 0.03(0.01)

M1(λ=0.01
WC ) 0.78(0.20) 0.28(0.06) 0.12(0.04) 0.07(0.03) 0.04(0.02)

M2(λ=0.01
WC ) 0.75(0.18) 0.14(0.05) 0.07(0.03) 0.05(0.02) 0.03(0.02)

Training time(s)
M1(λ=0.01

RC ) 0.08(0.00) 0.52(0.02) 1.51(0.02) 2.02(0.02) 2.49(0.03)
M2(λ=0.01

RC ) 0.07(0.00) 0.50(0.01) 1.46(0.04) 1.97(0.04) 2.43(0.05)
M1(λ=0.01

WC ) 0.46(0.01) 1.21(0.03) 2.40(0.07) 3.05(0.07) 3.78(0.09)
M2(λ=0.01

WC ) 0.44(0.01) 1.17(0.04) 2.56(0.06) 3.34(0.08) 4.19(0.14)
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From the results in Table4, it shows that the random-chosen scheme is
comparable with the well-chosen scheme under our settings:The training time of
the random-chosen scheme is less than the training time of the well-chosen scheme
while their test errors are comparable. It observes that thealgorithms based on M2
with random-chosen scheme win all aspects: For every dataset, they are the faster
ones and have the lowest test errors. Taking the simple implemental of the random-
chosen scheme into consideration, we can conclude that M2 with random-chosen
reduced scheme is the best model in the related models.

5.2. Benchmark data experiments comparison

Four large scale practical data sets of machine learning databases from the site of
[52] are adopted to evaluate the related algorithms. These dataare also appeared
in [5]. For simplicity, Gaussian kernel functionk(x,y) = exp(−γ‖x− y‖2) with
the different spread parametersγ is used for all datasets. Kernel spread parameters
γ and regularizer parametersλ are roughly chosen by 10-fold cross-validation
within γ ∈

{

2−5,2−4, · · · ,25
}

andλ ∈
{

10−5,10−4, · · · ,1
}

. The details of the data
sets and the corresponding selected parameters are listed as follows:

Adult—It is the version given by Platt which has 32,561 training examples and
16,281 test examples. Each example has 123 binary features,and the parameters
areλ = 1 andγ = 2−4.

Shuttle—It is a multi-class data set with seven classes including 43,500
training examples and 14,500 test examples. Each example has 9 features. Here a
binary classification problem is solved to separate class 1 from the rest, and the
parameters used areλ = 10−2 andγ = 24.

IJCNN—It has 49,990 training examples and 91,701 test examples. Each
example is described by 22 features, and the parameters usedareλ = 10−4 and
γ = 2−1.

Vechile—It is the combined SensIT Vehicle in site [52]. It has 78,823 training
examples and 19,705 test examples in three classes. Each example has 100
features. Here the binary classification problem is trainedto differentiate class
3 from the rest, and the parameters are set asλ = 10−2 andγ = 2−2.

Firstly, we compare the random-chosen(RC) scheme with well-chosen(WC)
scheme of [5] on the selected datasets, where the reduced size of well-chosen,rWC,
is set from 10 to 1000, and the reduced size of random-chosen is set asrRC= 2rWC.
The plots of the test errors and training time according to different reduced sizes
are given in Fig.2, where the test error plots are according to lefty−axis(blue)
while training time plots are according to righty−axis(red). All the values are
averaged on 10 trials.

It shows that the difference of the test errors on two schemesis small and it
will be diminished further if the parameters(γ and λ ) are set finely. However,
the training time of two schemes varies. We can classify fourdatasets according
to their test errors: Adult and Vechile are belonging to“hard” dataset(test error
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Fig. 2. Comparison of Well-Chosen(WC) Scheme and Random-Chosen(RC) Scheme on
large benchmark data sets.

larger than 10%), IJCNN is the “easy” dataset(test error between 1% to 5% )
and the Shuttle is the “very easy” dataset(test error less than 0.5%). For “hard”
datasets, the training time of the algorithms based on RC scheme is less than14
of the training time based on WC scheme(See Figure2(a) and(b)). For “easy”
dataset, the training time of the algorithms based on RC scheme is about12 of the
training time based on WC scheme(See Figure2(c)). On the contrary, for “very
easy” dataset, the training time of the algorithms based on WC scheme is less
than the training time based on RC scheme(See Figure2(d)). For “hard” datasets,
the WC scheme of [5] may need to cost more time to select the proper basic
functions, hence needs more time to convergence. At this situation, RC scheme is
very efficient. Since the “very easy” dataset is scarce, we can conclude that RC
scheme is more efficient than WC scheme in most of cases.

In this set of experiments, the difference between M1 and M2 is less. Next we
perform more experiments to compare them further. We only consider the RC
scheme.
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Following we give the experimental result on those 4 data sets with reduced
method to compare M1 and M2 further, where only the RC scheme is considered
and the reduced size is set roughly as 4%m and is limited by upper bound 2000.
The parametersγ andλ are set as above. The results in Table5 are averaged on
10 random chosen reduced set. The averaged test errors and the training time are
given with their standard deviations in brackets.

Table 5. Experimental results on the 4 benchmark data sets from repository [52]. All the
values are averaged on 20 random trials with the standard deviations in brackets.

Data Set Adult Shuttle IJCNN Vechile
Test error(%)

M1+RC 14.79(0.08) 0.07(0.005) 1.88(0.06) 11.63(0.07)
M2+RC 14.76(0.06) 0.12(0.007) 1.27(0.18) 11.61(0.05)

Training time(s)
M1+RC 18.8(0.3) 38.9(1.0) 61.5(2.6) 91.9(5.6)
M2+RC 18.2(0.5) 45.1(1.7) 48.9(1.8) 85.4(2.5)

From the data in Table5, M2 has a few advantages over M1. The algorithms
based on M2 are also faster than the algorithms based M1, and the test errors
achieved by M2 are better than those achieved by M1 on most data sets. The only
exception is on the “easiest” data set “Shuttle” whose test error will be less than
0.1%.

6. Conclusions

There are two main regularization models of SVMs. One, listed as M1 in this
paper, is the most popular model where the classification function is norm-
regularized in a reproduced kernel Hilbert space. The other, named as M2 in this
paper, is GSVM, where only the coefficients of the classification function is norm-
regularized in a Euclidean spaceRm. All of them are converted tom dimension
optimization problem by the duality or the representer theorem. In this paper, we
study the difference of two models, where the quadratical convergence Newton
algorithms are used to train the models with difference lossfunctions in primal.

The experimental results in Section 5 reveal that, M2 wins M1on nearly all
aspects, and the classification plots in Figure1 also show that LS-SVM induced
from M1 has some kind of drawback on the classification curveswhile PSVM
induced from M2 has not. It also observes that the random-chosen reduced set
scheme [19, 31, 42]is comparable with or sometimes better than the well-chosen
reduced set scheme [5] for reduced SVMs with squared hinge loss.

As a conclusion, our studies support that M2 have more advantages over M1,
such as simple in computing the Hessian matrix, stable in solving the Newton
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direction and fast the algorithm etc. All of those reveal that if training SVMs with
reduced method, GSVMs with the random-chosen reduced set are the better choice
for common users. This work gives a good explanation of GSVM and is valuable
to extend the using of GSVM.
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