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Abstract Based on a new parametric kernel function, this paper presents a primal-
dual large-update interior-point algorithm (IPM) for semi-definite optimization (SDO)
problems. The new parametric function is neither self-regular function nor the usual
logarithmic barrier function. It is strongly convex and possesses some novel analytic
properties. We analyse this new parametric kernel function and show that the proposed
algorithm has favorable complexity bound in terms of the analytic properties of the
kernel function. Moreover, the complexity bound for our large-update IPM is shown to
be O(

√
n(logn)2 log nϵ ). Some numerical results are reported to illustrate the feasibility

of the proposed algorithm.

Keywords Semi-definite optimization, Kernel function, Interior-point algorithm,
Primal-dual algorithm, Polynomial complexity

DOI: 10.19139/soic.v1i1.8

1. Introduction

Throughout this paper we deal with complexity analysis of large-update primal-
dual IPMs for solving SDO problems. SDO problems are one of the fastest
developing branches of mathematical programming. They are convex optimization
problems over the intersection of an affine set and the cone of positive semi-
definite matrices. Since the Karmarkar’s path-breaking paper [6], a great many of

∗Correspondence to: Mingwang Zhang. Email: zmwang@ctgu.edu.cn.

ISSN 2310-5070 Copyright c⃝ 2013 International Academic Press
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researchers such as Nesterov, Nemirovsky [7], Todd [12] and so on have proposed
and analyzed various IPMs for convex optimization and SDO. Many plentiful
results have been reported [11, 14]. One main reason for this increasing interest
is that SDO problems have found numerous applications in various fields, such
as continuous and combinational optimization, structural design, statistics and
electrical engineering. Furthermore, lately efficient new algorithms, IPMs have
shown their powers in solving linear optimization (LO) and large classes of other
optimization problems.

In this paper, we deal with so-called primal-dual IPMs which are most efficient
from a computational point of view. We consider the standard form of SDO
problems:

(P ) min C •X,

subject to Ai •X = bi, i = 1, 2, · · ·,m,

X ≽ 0.

and its dual problem
(D) max bT y,

subject to
m∑
i=1

yiAi + S = C,

S ≽ 0.

where each Ai ∈ Sn and they are further assumed to be linearly independent,
b ∈ Rm, C ∈ Sn. Nesterov and Nemirovsky devote themselves to the study of
self-concordant barrier function and in 1988 they came to a conclusion that IPMs
can, in principle, apply to all the convex optimization problems. Since SDO is an
extension of LO, several IPMs designed for LO have been successfully extended
to SDO. Among all the methods, primal-dual IPMs are of highly efficient both
in theory and in practice. A significant work in this direction is the paper of
Nesterorv and Todd [8], they showed that the primal-dual IPM for LO maintains
its theoretical efficiency when the nonnegativity constrains in LO are placed by
a convex cone, as long as the cone is self-scaled. The most of polynomial time
primal-dual IPMs for LO use the classical logarithmic barrier function

ψc(t) =
1

2
(t2 − 1)− log t, (1)

J.Peng et al. [9, 10] introduced so-called self-regular kernel functions and
proposed primal-dual IPM for LO based on self-regular function, and also
extended the approach to SDO. The complexity bounds obtained by them are
currently the best known bounds, namely, O(

√
n log n log n

ϵ ), and O(
√
n log n

ϵ ),
for large-update IPMs and small-update IPMs for LO and SDO respectively.
However, to our best knowledge there is still a gap between the practical behavior
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of these algorithms and the theoretical performance results. In practice, large-
update IPMs are much more efficient than the so-called small-update IPMs. And
the vital gap between practice and theory has been referred to as the irony of
IPMs [9, 1]. Subsequently, Bai et al. [1] developed a class of primal-dual IPMs for
LO based on elibigle barrier function and obtained the same favorable iteration
bounds for the algorithms [9]. Later, other kernel functions were also put forward
[1, 3]. Recently, [16] developed some new analysis tools for convex quadratic
semi-definite optimization based on a new kernel function with iteration bound
O(

√
n(log n)2 log n

ϵ ). The bound is better than that by the classical primal-dual
IPMs based on logarithmic barrier function and some other kernel functions.

Motivated by [16], in this paper we propose a primal-dual large-update IPM for
SDO based on the kernel function:

ψ(t) =
t2 − 1

2
− (t− 1)ep(

1
t−1), t > 0. (2)

where 1 ≤ p < 2 is a parameter. This function ψ(t) is a parameterized version of
kernel function [16], however the analysis tools in [16] is no longer applicable.
We do some analysis about our new parametric kernel function ψ(t) and design
the corresponding primal-dual IPM based on ψ(t). And the primal-dual IPM
has favorable complexity bound in terms of the analytic properties of ψ(t).
The best complexity for SDO based on kernel function has been known as
O(

√
n(log n) log n

ε ), but it is worth mentioning that the kernel function ψ(t)
cannot be presented in other papers. Numerical results also indicated its favorable
practical behavior.

The paper is organized as follows. In Section 2, we first describe matrix
functions used in later sections. And then we briefly recall the basic concepts
of IPMs for SDO. A generic primal-dual IPM for SDO is described in Section
3. In Section 4, we present the properties of ψ(t) and study the matrix function
ψ(V ) and Ψ(V ). We analyze the algorithm and derive the complexity bound for
SDO in Section 5. Some numerical results are provided in Section 6. Finally, some
concluding remarks follow in Section 7.

Some notions used throughout the paper are as follows. Rn, Rn+ and Rn++

denote the set of vectors with n components, the set of n-dimensional nonnegative
vectors and the set of n-dimensional positive vectors, respectively. ∥ · ∥ denotes
the Frobenius norm for matrices and 2-norm for vectors. Sn, Sn+ and Sn++ denote
the cone of symmetric, symmetric positive semi-definite and symmetric positive
define n× n matrices, respectively. The classical Löwner partial order ”≽” on
positive semi-definite (or positive definite) matrices means A ≽ B (or A ≻ B) if
A−B is positive semi-definite (or positive definite). The matrix inner product
A •B = Tr(ATB). For any symmetric positive definite matrix Q ∈ Sn++, the
expression Q

1
2 (or

√
Q ) denotes its symmetric square root. When λ is a vector we

denote the diagonal matrix Λ with entries λi by diag(λ). For any V ∈ Sn++, we
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denote by λ(V ) the vector of eigenvalues of V arranged in non-increasing order,
namely, λ1(V ) ≥ λ2(V ) ≥ · · · ≥ λn(V ). Finally, if g(x) ≥ 0 is a real valued
function of a real nonnegative variable, we write g(x) = O(x) if g(x) ≤ cx for
some positive constant c and g(x) = Θ(x) if c1x ≤ g(x) ≤ c2x for two positive
constants c1 and c2.

2. Preliminaries

In this section, we recall some basic definitions and several related conclusions
about matrix functions which will be used for analyzing the algorithm.

Theorem 2.1
(Spectral theorem for symmetric matrices in [5]) The real n× n matrix A is
symmetric if and only if there exists a matrix U ∈ Rn×n such that UTU = E and
UTAU = Λ where Λ is a diagonal matrix.

The columns ui of U are eigenvectors of A, satisfying Aui = λiui, i =
1, 2, · · ·, n, where Λ is a diagonal entry of Λ. Now we prepare to show how a
matrix function can be obtained from ψ(t).

Definition 2.2
(Definition 2.2 in [13]) Let V ∈ Sn++ be any symmetric n× n matrix and

V = QT diag(λ(V ))Q = QT diag(λ1(V ), λ2(V ), · · ·, λn(V ))Q, (3)

where Q is any orthonormal matrix that diagonalizes V. Let ψ(t) be defined as in
(2). The matrix function ψ(V ) : Sn++ → Sn is defined by

ψ(V ) = QT diag(ψ(λ1(V )), ψ(λ2(V )), · · ·, ψ(λn(V )))Q. (4)

The matrix function ψ(V ) depends only on the restriction of ψ(t) to the
spectrum of V (the set of eigenvalues). Suppose that ψ(t) is twice differentiable for
t > 0. The derivatives ψ′(t) and ψ′′(t) are well defined and obtained by replacing
ψ(λi(V )) in (4) by ψ′(λi(V )) and ψ′′(λi(V )), respectively, for each 1 ≤ i ≤ n.

Definition 2.3
(Definition 2.3 in [13]) The matrix function Ψ(V ) : Sn++ → R+ is defined by

Ψ(V ) := Tr(ψ(V )) =

n∑
i=1

ψ(λi(V )). (5)

Where ψ(V ) is given by (4). The matrix function Ψ(V ) will play an important
role in the following analysis, moreover we call both ψ(V ) and Ψ(V ) matrix
barrier function, which is determined by kernel function ψ(t).
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In the sequel, we state two inequalities, which are used in the following analysis.
If M,N ∈ Sn, then

|Tr(MN)| ≤ |λ1(M)|
n∑
i=1

|λi(N)|. (6)

Furthermore, if M1 ≼M2 and N ≽ 0, then

Tr(M1N) ≼ Tr(M2N). (7)

Definition 2.4
(Definition 2.5 in [13]) A matrixM(t) is said to be matrix of function if each entry
of M(t) is a function of t, i.e., M(t) = [Mij(t)].

The usual concept of continuity, integrability and differentiability can be
naturally extended to matrices of functions by interpreting them entry-wise.
Suppose that M(t) and N(t) be two matrices of function which are differentiable.
Then we have

d

dt
M(t) =

[
d

dt
Mij(t)

]
=M ′(t), (8)

d

dt
Tr(M(t)) = Tr(M ′(t)), (9)

d

dt
Tr(ψ(M(t))) = Tr(ψ′(M(t))M ′(t)), (10)

d

dt
(M(t)N(t)) =

[
d

dt
M(t)

]
N(t) +M(t)

[
d

dt
N(t)

]
=M ′(t)N(t) +M(t)N ′(t). (11)

Remark 2.1
In the rest of the section, when we use the function ψ(·) and its derivatives ψ′(·)
and ψ′′(·), these denote matrix function if the argument is matrix and a univariate
function if the argument is in R+.

Without loss of generality, we assume that both (P) and (D) satisfy the interior-
point condition (IPC), i.e., there exists a strictly feasible pair (X0 ≻ 0, y0, S0 ≻
0) such that

Ai •X0 = bi, X0 ≻ 0, i = 1, 2, · · ·,m,
m∑
i=1

yiAi + S0 = C, S0 ≻ 0.

If (X0 ≽ 0, y0, S0 ≽ 0) is an optimal solution of (P ) and (D), we have
X0S0 = 0 , which is the so-called complementary condition. And this can be
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viewed as the extension of linear programming complementary condition. Then
the optimality conditions for the pair of problem (P) and (D) are

Ai •X = bi, i = 1, 2, · · ·,m, X ≽ 0,
m∑
i=1

yiAi + S = C, S ≽ 0. (12)

XS = 0.

The basic idea of primal-dual IPMs is to replace the third equation in the system
(12) by the parameterized equationXS = µE, with µ > 0, andE is the n× n unit
matrix. The system of relaxed optimality conditions is presented as follows.

Ai •X = bi, i = 1, 2, · · ·,m, X ≽ 0,
m∑
i=1

yiAi + S = C, S ≽ 0, (13)

XS = µE.

Since the IPC holds and the matrices Ai are linearly independent, the system
(13) has a unique solution. It is denoted as (X(µ), y(µ), S(µ)) and we call X(µ)
the µ− center of (P) and (y(µ), S(µ)) the µ− center of (D), respectively. The set
{(X(µ), y(µ), S(µ)) : µ > 0} gives a homotopy path, which is called the central
path of (P) and (D). If µ→ 0 then the limit of the central path exists. And the limit
point satisfies the complementarity condition, hence it naturally yields optimal
solutions for both (P) and (D).

The core idea of primal-dual IPMs is to follow the central path and to approach
the optimal set of SDO problems by µ→ 0. Newton method applied to system
(13) produces the following system:

Ai •∆X = 0, i = 1, 2, · · ·,m,
m∑
i=1

∆yiAi +∆S = 0,

∆X +X∆SS−1 = µS−1 −X.

(14)

A decisive observation for SDO is that ∆X in the above Newton system is
not necessary symmetric, although ∆S is symmetric. Many researchers have
proposed several methods for symmetrizing the third equation in (14) such that
the resulting new system has a unique symmetric solution. In this paper we use
the NT symmetrization scheme, from which the NT direction is derived. The main
idea of NT symmetrization scheme transfers the primal variable X and the dual
variable S into the same space: V-space. The term X∆SS−1 in the third equation
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is replaced by P∆SPT . Let

P = X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 = S− 1

2 (S
1
2XS

1
2 )

1
2S− 1

2 , D = P
1
2 . (15)

The matrix D can be used to scale X and S to the same matrix V :

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DSD. (16)

Obviously, the matrices D and V are symmetric and positive define. We have

V 2 =
1

µ
D−1XSD. (17)

Let us further define

Āi :=
1
√
µ
DAiD, i = 1, · · ·,m, DX :=

1
√
µ
D−1∆XD−1, DS :=

1
√
µ
D∆SD.

(18)
Then the (scaled) NT search direction (DX ,∆y,DS) satisfies the following
system 

Ai •DX = 0, i = 1, 2, · · ·,m,
m∑
i=1

∆yiAi +DS = 0,

DX +DS = V −1 − V.

(19)

It is not difficult to verify that the right-hand side in the third equation in (19)
equals minus the derivative of the classical logarithmic barrier function (1). Thus
replace the V −1 − V for −ψ′(V ) and let −ψ′(V ) := DV , we have the following
systems 

Ai •DX = 0, i = 1, 2, · · ·,m,
m∑
i=1

∆yiAi +DS = 0,

DX +DS = −ψ′(V ) = DV .

(20)

From the above system we can easily have

m∑
i=1

∆yiAi ·Aj = −Aj ·DS = −Aj ·DV , j = 1, 2, · · ·,m, (21)

According to the assume that Ai is independent, we can conclude that (21) has a
unique solution ∆y and then plugging ∆y into (20), we immediately get DS and
DX . At last we can get the direction (∆X,∆y,∆S) from (18). From the analysis
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we argue that the matrix function Ψ(V ) determines an IPMs in a natural way. It is
obviously that DX and DS are orthogonal, i.e,

Tr(DXDS) = Tr(DSDX) = 0. (22)

Thus we obtain that

(∥DX +DS∥)2 = ∥DX∥2 + ∥DS∥2 = ∥ψ′(V )∥2. (23)

In the analysis of the algorithm we also use the norm-based proximity measure
δ(V ), which is defined by

δ(V ) :=
1

2
∥ψ′(V )∥ =

1

2

√√√√ n∑
i=1

(ψ′(λi(V ))2.

And we have

DX = DS = 0n×n ⇔ δ(V ) = 0n×n ⇔ V = E ⇔ Ψ(V ) = 0. (24)

If and only if XS = µE. That is Ψ(V ) = 0 if and only if (X, y, S) =
(X(µ), y(µ), S(µ)), otherwise Ψ(V ) > 0. It is clear from the description that the
closeness of (X, y, S) to (X(µ), y(µ), S(µ)) is measured by the valued of Ψ(V ). If
(X, y, S) ̸= (X(µ), y(µ), S(µ)) then (∆X,∆y,∆S) is nonzero. By taking a step
along the search direction, with the step size α defined by some line search rules,
we construct a new triple (X, y, S) according to

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S. (25)

3. A generic primal-dual algorithm for SDO

We can now describe the algorithm briefly. According to the definition of the
matrix V , it is determined by the current iterates (X,S) and the center parameter
µ. Thus Ψ(X,S;µ) in the algorithm is another expression of the matrix function,
we denote Ψ(V ) := Ψ(X,S;µ). Given a kernel ψ(t), we can get a matrix barrier
function Ψ(V ). It is clear from the afore-mentioned description that the closeness
of (X, y, S) is measured by the value of Ψ(V ). As for a threshold parameter
given in advance, if Ψ(V ) ≤ τ , (X, y, S) is “close” enough to the current center
path, we start a new outer iteration by updating center parameter µ := (1− θ)µ,
otherwise we enter an inner iteration. The choice of the step size α and the barrier
update parameter θ play an important role both in theory and practice of IPMs.
The generic form of our algorithm is shown as follows:
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IPMs for SDO Based on a New Parametric Kernel Function
Input:
A threshold parameter τ ≥ 1;
an accuracy parameter ϵ > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a strictly feasible pair (X0, S0) and µ0 = 1 such that Ψ(X0, S0;µ0) ≤ τ .
begin
X := X0; y := y0;S := S0;µ := µ0;
whilenµ ≥ ϵ do
begin
µ := (1− θ)µ;
while Ψ(X,S;µ) > τ do
begin

Solve system (20) and use (18) to obtain (∆X,∆y,∆S);
Determine a suitable step size α;
Update (X, y, S) := (X, y, S) + α(∆X,∆y,∆S).
V := 1√

µ (D
−1XSD)

1
2 .

end
end

end

4. Properties of the Kernel (Barrier) Function

In this section, we study some basic properties of our kernel function ψ(t) and
the corresponding barrier function Ψ(V ). As we need the first three derivatives of
ψ(t) with respect to t frequently, we provide them as follows:

ψ′(t) = t− (1− p(t− 1)

t2
)ep(

1
t−1), (26)

ψ′′(t) = 1 +
(2p− p2)t+ p2

t4
ep(

1
t−1), (27)

ψ′′′(t) = −3p(2− p)t2 + p2(6− p)t+ p3

t6
ep(

1
t−1), 1 ≤ p < 2. (28)

It follows that ψ(1) = ψ′(1) = 0, and it is also quite straightforward to verify that

lim
t→0+

ψ(t) = lim
t→+∞

ψ(t) = +∞.
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Thus the univariate function ψ(t) is a kernel function. In order to analyze the
algorithm and compute the complexity bound of our algorithm, some properties
of the new kernel function are given in the following lemma.

Lemma 4.1
Let the function ψ(t) be defined as in (2). Then we have:
(a) ψ′′(t) > 1, t > 0,
(b) tψ′′(t) + ψ′(t) > 0, t < 1,
(c) ψ′′′(t) < 0, t > 0,

Proof
We first prove that (a) holds. From (27), we have

ψ′′(t) = 1 +
(2p− p2)t+ p2

t4
ep(

1
t−1).

Considering
f1(t) := (2p− p2)t+ p2 = p(2− p)t+ p2,

it is obvious that f1(t) is monotonically increasing and f1(0) = p2 > 0, hence
ψ′′(t) > 1 holds for all t > 0. Furthermore, for proving (b). We first have:

tψ′′(t) + ψ′(t) = 2t+
−t3 + pt2 + (p− p2)t+ p2

t3
ep(

1
t−1).

Since 1 ≤ p < 2, we have

−t3 + pt2 + (p− p2)t+ p2 ≥ −t3 + pt2 + p ≥ (p− 1)t3 + p > 0,

this prove that (b) is also satisfied. For proving (c), considering the numerator of
(28), letting

f2(t) := 3p(2− p)t2 + p2(6− p)t+ p3.

we have
∆ := p4(6− p)2 − 4p4(6− 3p) = p4(p2 + 12) > 0,

f2(0) = p3 > 0, 3p(2− p) > 0,

furthermore the axis of symmetry of f2(t) is

t = −p
2(6− p)

6p(2− p)
< 0.

We have f2(t) > 0, for t > 0. Thus we obtain the conclusion of (c), i.e. ψ′′′(t) <
0, t > 0. The lemma is proved.

Stat., Optim. Inf. Comput. Vol. 1, December 2013.



AN IPM FOR SDO BASED ON A NEW PARAMETRIC KERNEL FUNCTION 51

It has shown from the above lemma that ψ(t) is indeed a strongly convex kernel
function and suffice eligibility. We can also get some useful results and properties
of ψ(t) from [3]. Due to conditions ψ(1) = ψ′(1) = 0,we can completely describe
ψ(t) by its second derivative as follows:

ψ(t) =

∫ t

1

∫ ζ

1

ψ′′(ξ)dξdζ. (29)

We have the following lemma about our given kernel function.

Lemma 4.2
Let t1 > 0, t2 > 0, we have

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)).

Proof
This result can be derived by using Lemma 1 in [9], which states that the above
inequality holds if and only if tψ′′(t) + ψ′(t) ≥ 0 for all t > 0. Since ψ′′(t) >
1, ψ(1) = 0, we have ψ′(t) is monotonically increasing in t. For t ≥ 1, it follows
that ψ′(t) > 0. So we obtain that tψ′′(t) + ψ′(t) ≥ 0 for all t > 1. Furthermore we
have already proved that tψ′′(t) + ψ′(t) ≥ 0 for all 0 < t < 1 in lemma 4.1. Thus
we proved the lemma.

We call the property described in Lemma 4.2 exponential convexity.

Lemma 4.3
(Lemma 3.1 in [1]) When t1 ≤ 1 ≤ t2, and ψ(t1) = ψ(t2), then
(a) If ψ′(t1) ≤ 0, ψ′(t2) ≥ 0 then −ψ′(t1) ≥ ψ′(t2).
(b)For every β ≥ 1, we have

ψ(βt1) ≤ ψ(βt2).

and the inequality hold if and only if β = 1 or t1 = t2.

We start with the above Lemma to find an upper bound for Ψ(βV ) in terms of
Ψ(V ).

Lemma 4.4
(Proposition 3 in [9]) If V1, V2 are the positive definite symmetric matrices then

Ψ

(
(V

1
2
1 V2V

1
2
1 )

1
2

)
≤ 1

2

(
Ψ(V1) + Ψ(V2)

)
.

Lemma 4.5
Let the kernel function ψ(t) be defined as in (2). Then we have:
(a) 1

2 (t− 1)2 ≤ ψ(t) ≤ 1
2ψ

′(t)2, for all t > 0,
(b) Ψ(V ) ≤ 2δ(V )2, for any V ≻ 0,
(c) ∥ λ(V ) ∥≤

√
n+

√
2Ψ(V ), for any V ≻ 0.
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Proof
We can find a proof of (a) in [2]. To prove (b) of the lemma, using the second
inequality of (a), we have

Ψ(V ) =

n∑
i=1

ψ(λi(V )) ≤ 1

2

n∑
i=1

(ψ′(λi(V )))2

=
1

2
∥ ψ′(λi(V )) ∥= 2δ(V )2.

Then by using the first inequality of (a), one can obtain

2Ψ(V ) = 2

n∑
i=1

ψ(λi(V )) ≥
n∑
i=1

(λi(V )− 1)2

= ∥ λ(V )) ∥2 −2

n∑
i=1

λi(V ) + n ≥ (∥ λ(V ) ∥ − ∥
√
n ∥)2.

This completes the proof.

Corollary 4.6
(Corollary 3.4 in [16]) If V ≻ 0, then

∥V ∥ ≤
√
n+

√
2Ψ(V ) ≤

√
n+ 2δ(V ).

Note that at the start of each outer iteration of the algorithm, just before
the update of µ-update, the value of Ψ(V ) is increased. And then during the
subsequent inner iterations Ψ(V ) decreases. So next we derive an estimate for
the effect of a µ-update on the value of Ψ(V ). We describe the following two
important lemmas and we will omit their proofs by just providing appropriate
reference.

Lemma 4.7
(Lemma 3.5 in [16]) If β ≥ 1, then

ψ(βt) ≤ ψ(t) +
1

2
(β2 − 1)t2.

Lemma 4.8
(Lemma 3.6 in [16]) Let 0 ≤ θ < 1 and V ≻ 0. Then

Ψ

(
V√
1− θ

)
≤ Ψ(V ) +

θ

2(1− θ)
(2Ψ(V ) + 2

√
2Ψ(V ) + n).

By the assumption Ψ(V ) ≤ τ just before the update of µ,

Ψ

(
V√
1− θ

)
≤ τ +

θ

2(1− θ)
(2τ + 2

√
2nτ + n).
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We define

L(n, θ, τ) = τ +
θ

2(1− θ)
(2τ + 2

√
2nτ + n).

Since τ = O(n) and θ = Θ(1), we have

L , L(n, θ, τ) = O(n).

5. Analysis of the Algorithm for SDO

The decrease of the proximity function after one step will be estimated in this
section. Let us denote by V+ the scaled matrix defined by (15) and (16) where the
matrix X and S are replaced by X+ = X + α∆X , S+ = S + α∆S, respectively.
Throughout the paper we assume that the step size α is satisfied, where all
eigenvalues of the matrices V + αDX and V + αDS are not smaller than zero.
It is trivial to verify that V 2

+ is unitarily similar to the matrixX
1
2
+S+X

1
2
+ and thus to

(V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 . This further implies that the eigenvalue

of V+ are precisely the same as those of the matrix

V + :=

(
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

) 1
2

. (30)

Since the proximity function after one step is defined by Ψ(V+), from (5) it
follows immediately that

Ψ(V+) = Ψ(V +). (31)

As in the LO case in [9], we define the gap between the proximity before and after
one step as a function of the step size α, i.e.,

f(α) := Ψ(V+)−Ψ(V ) = Ψ(V +)−Ψ(V ). (32)

By Lemma 4.4, we have

Ψ(V+) = Ψ(((V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 )

1
2

≤ 1

2
(Ψ(V + αDX) + Ψ(V + αDS)).

Using the above inequality and the definition of f(α), we obtain that f(α) ≤
f1(α), where

f1(α) :=
1

2
(Ψ(V + αDX) + Ψ(V + αDS))−Ψ(V ). (33)
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Obviously, one has f(0) = f1(0). By (9)-(11), we further get

f ′1(α) =
1

2
Tr(Ψ′(V + αDX)DX +Ψ′(V + αDS)DS) (34)

and

f ′′1 (α) =
1

2

d2

dα2
Tr(Ψ(V + αDX) + Ψ(V + αDS)). (35)

Hence, by using the third equation of the system (20), we obtain

f ′1(0) =
1

2
Tr(ψ′(V )(DX +DS)) =

1

2
Tr(−ψ′(V )2) = −2δ(V )2.

One of the main results in this section is the following inequality. LetM,M +N ∈
Sn+ , we have

λi(M +N) ≥ λn(M)− |λ1(N)|, i = 1, 2, · · ·, n. (36)

In order to state conveniently, we denote δ = δ(V ) in the following presentation.
This lemma is significant to estimate the decrease of the barrier function during
an inner iteration.

Lemma 5.1
(Lemma 4.1 in [16]) If f1(α) is defined above, one has

f ′′1 (α) ≤ 2δ2ψ′′(λn(V )− 2αδ).

We continue to state several lemmas in order to obtain a suitable lower bound
on the step size α.

Lemma 5.2
(Lemma 4.2 in [1]) If the step size α satisfies

− ψ′(λn(V )− 2αδ) + ψ′(λn(V )) ≤ 2δ, (37)

one has f ′1(α) ≤ 0.

Lemma 5.3
(Lemma 4.3 in [1]) Let ρ : [0,∞) → (0, 1] be the inverse function of −1

2ψ
′(t)

restricted to the interval (0, 1]. Then, the largest possible solution of the step size
of α satisfying (37) is given by

ᾱ :=
1

2δ
(ρ(δ)− ρ(2δ)).

Lemma 5.4
(Lemma 4.4 in [1]) Let ρ and ᾱ be as defined in Lemma 5.3, then

ᾱ ≥ 1

ψ′′(ρ(2δ))
. (38)

We can denote α̃ = 1
ψ′′(ρ(2δ)) .
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Now, an upper bound for the amount of decrease in the real valued matrix
function Ψ(V ) during an inner iteration can be given in the following lemma.

Lemma 5.5
(Lemma 4.5 in [1]) If the step size α is such that α ≤ ᾱ , then

f(α) ≤ −αδ2.

Lemma 5.6

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
. (39)

Proof
Applying Lemma 5.4 and Lemma 5.5, the proof of this lemma is trivial.

Note that the right-hand side expression in (39) is monotonically decreasing in
δ. Yet we apply the above results to our kernel function. To this end, we need to
compute s = ρ(2δ), where ρ : [0,+∞) → (0, 1] denotes the inverse function of the
restriction of −1

2ψ
′(t) to the interval (0, 1]. This implies

−ψ′(s) = 4δ.

From (26), (27) and the above equality, we may write

α̃ =
1

ψ′′(s)
=

1

1 + ((2p− p2)s+ p2)s−4ep(
1
s−1)

,

and

ep(
1
s−1) =

s2(4δ + s)

s2 − ps+ p
.

Hence
s−1 = 1 + p−1(2 log s+ log(4δ + s)− log(s2 − ps+ p)).

Note that 0 ≤ s ≤ 1, 1 ≤ p < 2, we have

s−1 ≤ 1 + p−1(log(4δ + 1) + 1) ≤ p−1(log(4δ + 1) + 2);

1

s2
≤ p−2(log(4δ + 1) + 2)2 and s2 − ps+ p = (s− p

2
)2 − 1

4
p2 + p ≥ 3

4
.

Therefore, we conclude that

α̃ =
1

1 + ((2p− p2)s+ p2)s−4ep(
1
s−1)

=
1

1 + ((2p− p2)s+ p2) s+4δ
s2(s2−ps+p)

≥ 1

1 + 3p−1(4δ + 1)(2 + log(4δ + 1))2
.
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Using Lemma 5.5, we have

f(α̃) ≤ −α̃δ2 ≤ − δ2

4p−1(4δ + 1)(2 + log(4δ + 1))2
. (40)

Since the right-hand side of the expression in (40) is monotonically decreasing in
δ, we can express the decrease in terms of Ψ = Ψ(V ) as follows:

f(α̃) ≤ − pΨ

4
√
2(2

√
2Ψ + 1)(2 + log(2

√
2Ψ + 1))2

≤ − pΨ

4
√
2(2

√
2Ψ +

√
Ψ)(2 + log(2

√
2Ψ + 1))2

≤ − p
√
Ψ

24
√
2(2 + log(2

√
2Ψ0 + 1))2

. (41)

where the second inequality follows from Ψ0 ≥ Ψ ≥ τ ≥ 1. We need to count
how many inner iterations are required to return to the situation where Ψ(V ) ≤ τ
after a µ−update. We define the value of Ψ(V ) after µ−update as Ψ0 and the
subsequent values in the same outer iteration are denoted as Ψk, k = 1, 2, · · ·. Let
K denote the total number of inner iterations in the outer iteration. Then we need
the following technical results to get the iteration bound.

Lemma 5.7
(Lemma 3.5 in [9]) Let t0, t1, · · ·, tk be a sequence of positive numbers satisfying

tk+1 ≤ tk − βt1−γk , k = 0, · · ·,K − 1, (42)

where β > 0 and 0 < γ ≤ 1. Then K ≤ [tγ0/βγ].

Lemma 5.8
Let K denotes the total number of inner iterations in the outer iteration.Then we
have

K ≤ 48
√
2p−1(2 + log(2

√
2Ψ0 + 1))2Ψ

1
2
0 .

Proof
From (41), we have

Ψk+1 ≤ Ψk −
1

24
√
2p−1(2 + log(2

√
2Ψ0 + 1))2

Ψ
1
2

k .

Letting tk = Ψk, β = 1
24

√
2p−1(2+log(2

√
2Ψ0+1))2

and γ = 1
2 , we can get the result

of the lemma from Lemma 5.7.

Now we can derive the iteration complexity of our algorithm.
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Theorem 5.9
Given that τ = O(n) and θ = Θ(1), which are characteristics of the large-update
methods, Algorithm 1 will obtain an ϵ-approximate solution of problem (P) and
(D) in at most O(p−1

√
n(log n)2 log n

ϵ ).

Proof
It is well known that the number of outer iterations is bounded above by 1

θ log
n
ϵ

(See, e.g.,[15]). By multiplying this number and the upper bound for the number of
inner iterations per outer iteration, we can get an upper bound for the total number
of iterations, namely

K

θ
log

n

ϵ
=

48
√
2

θ
p−1(2 + log(2

√
2Ψ0 + 1))2Ψ

1
2
0 log

n

ϵ
.

Here we consider the case of a large-update methods, to this end we choose
τ = O(n) and θ = Θ(1), some elementary transformations reduce this iteration
complexity in the theorem. As a consequence the iteration bound is

O(p−1
√
n(log n)2 log

n

ε
).

The iteration bound significantly improves the so far iteration bound of large
update primal-dual interior point methods based on the classical logarithmic
barrier function. By taking proper parameters, one can easily seen that the obtained
upper bound gives the complexity result

O(
√
n(log n)2 log

n

ε
)

for the SDO problems which coincides with the complexity result for Convex
Quadratic Semidefinite Optimization in [16]. Obviously, the algorithm based on
our kernel function have favorable polynomial complexity.

6. Numerical Results

In this section, we present some numerical results. In order to make some
complementary discussions and comments on our algorithm, we consider the SDO
problems in [13], whose primal-dual pair of (P) and (D) have the following date:

A1 =


0 1 0 0 0
1 2 0 0 −1
0 0 0 0 1
0 0 0 −2 −1
0 −1 1 −1 −2

 , A2 =


0 0 −2 2 0
0 2 1 0 2
−2 1 −2 0 1
2 0 0 0 0
0 2 1 0 2

 ,
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A3 =


2 2 −1 −1 1
2 0 2 1 1
−1 2 0 1 0
−1 1 1 −2 0
1 1 0 0 −2

 ,

b =

−2
2
−2

 , C =


3 3 −3 1 1
3 5 3 1 2
−3 3 −1 1 2
1 1 1 −3 −1
1 2 2 −1 −1

 .
One may easily verify that X = E is feasible for the problem, and that y =
(1, 1, 1)T and S = E is feasible for the dual problem, where E is the 5× 5 unit
matrix. An optimal solution of the primal problem is given by

X =


0.0714 −0.0718 0.0169 0.0649 −0.1583
−0.0718 0.0724 −0.0183 −0.0602 0.1676
0.0169 −0.0183 0.0103 −0.0084 −0.0772
0.0649 −0.0602 −0.0084 0.1481 0.0056
0.1583 0.1676 −0.0772 0.0056 0.6022


and for the dual problem an optimal solution is given by

y =

0.85851.0937
0.7831

 , S =


1.4338 0.5754 −0.0295 −0.4043 0.2169
0.5754 1.0956 0.3401 0.2169 −0.1120
−0.0295 0.3401 1.1874 0.2169 0.0478
−0.4043 0.2169 0.2169 0.2831 −0.1415
0.2169 −0.1120 0.0478 −0.1415 0.0957

 ;

the optimal value of both problem is equal to −1.0957.
The main goal of this section is to compare iteration numbers of the algorithm

for the following kernel functions:

φ(t) =
t2 − 1

2
− (t− 1)ep(

1
t−1), φ1(t) =

t2 − 1

2
− (t− 1)e

1
t−1,

φ2(t) =
t2 − 1

2
− log t, φ3(t) = t+ t−1 − 2,

where p = 1, 1.2, 1.4, 1.6, 1.8, 1.9, φ1(t) is the new kernel function proposed
in [16], φ2(t) is the classical logarithmic kernel function in [11], and φ3(t) is
the non-self-regular kernel function in [13]. We took the barrier update parameter
θ ∈ {0.1, 0.3, 0.5}, the step size α ∈ {0.3, 0.4, 0.5}, the threshold parameter τ = 3,
and the accuracy parameter ε = 10−8 in all experiments. The iteration numbers of
the algorithm based on the above kernel functions are shown in the following
tables.
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The number of iterations for φ(t), p=1, i.e. φ1(t)
HHHHHα

θ 0.1 0.3 0.5

0.3 96 74 70
0.4 54 54 51
0.5 41 41 38

The number of iterations for φ(t), p=1.2
HHHHHα

θ 0.1 0.3 0.5

0.3 73 71 68
0.4 52 51 48
0.5 39 38 37

The number of iterations for φ(t), p=1.4
HHHHHα

θ 0.1 0.3 0.5

0.3 70 68 66
0.4 50 49 46
0.5 38 36 35

The number of iterations for φ(t), p=1.6
HHHHHα

θ 0.1 0.3 0.5

0.3 67 66 64
0.4 48 47 45
0.5 37 36 34

The number of iterations for φ(t), p=1.8
HHHHHα

θ 0.1 0.3 0.5

0.3 65 64 62
0.4 46 46 44
0.5 35 34 33

The number of iterations for φ(t), p=1.9
HHHHHα

θ 0.1 0.3 0.5

0.3 64 64 61
0.4 46 45 43
0.5 27 27 26
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The number of iterations for φ2(t)
HHHHHα

θ 0.1 0.3 0.5

0.3 77 75 70
0.4 56 54 51
0.5 43 41 38

The number of iterations for φ3(t)
HHHHHα

θ 0.1 0.3 0.5

0.3 207 226 189
0.4 160 175 189
0.5 130 143 153

From the above tables, it is found that in most cases our new kernel function φ(t)
can produce better iteration numbers than those by the kernel functions φ1(t) and
φ2(t). Obviously, φ3(t) gives iteration numbers that are definitely worst compared
to the other kernel functions, especially compared to our kernel function.

The results in these tables also show that the algorithm based on our new
kernel function φ(t) is effective and the iteration numbers of the algorithm depend
on the values of the parameter θ and step size α. Taking these parameters into
consideration, p = 1.9 gives the best result among the parameter settings that we
considered. In fact, for each θ that considered, larger values of α gives better
iteration numbers. However the step size α should have an upper bound in practical
computation. In most cases, for each α larger θ gives better iteration numbers for
φ(t), φ1(t) and φ2(t), while for φ3(t), smaller θ gives better results. Obviously,
the iteration bound suggest to take p as large as possible in the given range of the
parameter p.

7. Concluding Remarks

In this paper we have presented a large-update primal-dual IPM for SDO based
on a new parametric kernel function. The kernel function (2) is inspired by
the recent work of Zhang [16]. To the best of our knowledge, this new kernel
function is never mentioned before. It is a parameterized version, and the resulting
analysis is also different from others. We have shown that it yields a favorable
iteration bound which is in accordance with [16]. Although our kernel function is a
parameterized version, the iteration bound is the same as that of p = 1. Numerical
results indicated that our algorithm have more advantages over other algorithms
in most cases. This is the first work in which the new parametric kernel function
is considered for complexity analysis of IPMs for the SDO problems. The use of

Stat., Optim. Inf. Comput. Vol. 1, December 2013.



AN IPM FOR SDO BASED ON A NEW PARAMETRIC KERNEL FUNCTION 61

other analytical methods may be worthy of further research. And extending the
results of this paper to cone optimization seems an interesting topic.
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