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Abstract In econometrics and finance, volatility modelling has long been a specialised field for addressing a variety of
issues that pertain to the risks and uncertainties of an asset. However, volatility modelling for risk management is highly
dependent on the underlying error distribution. Hence, this study presents a Monte Carlo simulation (MCS) structure for
selecting an optimal or the most adequate error distribution that is relevant for modelling the persistence of volatility through
the Generalized Autoregressive Score (GAS) model. The structure describes an organised approach to the MCS experiment
that includes “background of the study (optional), defining the aim of the study, specifying the research questions, method
of implementation, and summarised conclusion”. The method of implementation is a process that consists of writing the
simulation code, setting the seed, setting the true parameter a priori, data generation, and performance evaluation through
meta-statistics. Among the findings, the study used both fat-tails and

√
N consistency experiments to show that the GAS

model with a lower unconditional shape parameter value (ν̂∗ = 4.1) can generate a dataset that adequately reflects the
behaviour of financial time series data, relevant for volatility modelling. This dynamic structure is intended to help interested
users on MCS experiments utilising the GAS model for reliable volatility persistence calculations in finance and other areas.
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1. Introduction

In finance and econometrics, the modelling of volatility has long been used to address a variety of issues concerning
the risks and uncertainties of an asset [69, 26]. This study follows the simulation design steps of our earlier study
on volatility persistence estimation through the family Generalized Autoregressive Conditional Heteroscedasticity
(fGARCH) model created by Hentschel [45] (see Samuel et al. [68]). That is, the family GARCH model was used
in our earlier study to begin a Monte Carlo simulation (MCS) design to determine appropriate innovations for
volatility persistence estimation (see Samuel et al. [68]). The Generalized Autoregressive Score (GAS) model is
used in this new study to extend the robust design. As a result, this study identifies a vital simulation structure that
is pertinent for selecting an optimal (or the most adequate) conditional error distribution for volatility persistence
modelling using the GAS model.

The GAS is a dynamic model that is used for time-varying parameter modelling, much like the GARCH model
(see [6]). It is an observation-driven model that was developed to model distributional asymmetries and large
changes, such as shifts or jumps, in financial time series [38]. The model has been practically applied by Oh and
Patton [61] for modelling systemic risk. Other broad applications are in market risk [42], spatial econometrics
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[10, 15], credit risk analysis [22], high-frequency data [62, 37], and dependence modelling [43, 48], among others
(see [6, 38]). Hence, this study’s main contribution is to show how the GAS model, using the GAS package [6],
can be effectively used to determine a suitable conditional distribution that is relevant for volatility persistence
estimation through MC simulation with empirical verification. Moreover, simulation through any model largely
revolves around generating an appropriate dataset that can produce a reasonable output approximation. Thus, one
further contribution of this study is to investigate how to use the GAS model to generate (or simulate) a dataset that
can adequately reflect the behaviour of financial time series data that is relevant for volatility modelling.

Volatility is related to variation in the price of an asset over time. In finance, the variance is used as a proxy for
volatility [18, 7]. However, emphasis is usually on conditional variance because time-varying volatility clustering
exists in most financial time series [7]. Volatility persistence is a measure of the speed of the decay of volatility
following a shock. The level of persistence has crucial economic implications that stem from the impact it has on the
predictability of future value [4]. Risk managers, policymakers, portfolio managers, financial market participants,
and other financial activities can derive benefits from a clear understanding of the effect of shocks on future
volatility, especially with information on whether the shocks are short-lived or (highly) persistent.

MCS studies are computer-based experiments that involve the use of known probability distributions for creating
data by pseudo-random sampling. The data may be simulated through parametric models or repeated resampling
[59]. MCS is used for approximating real-life scenarios, where it uses random quantities (or a probabilistic
approach) to provide deterministic outcomes [49]. Since its introduction by three scientists in the field of physics
[36], MCS has become an increasingly applied technique in a wide range of fields including finance, supply chain,
engineering, science [50], and in all portfolio and investment types [1]. One of the reasons for its wide applications
is that it is based on the concept of the central limit theorem where the distribution of its estimates follows (or
converges to) the Normal distribution [53].

This study used the daily Standard & Poor South African sovereign bond index (S&P SA bond index,
henceforth). They are the bond market’s data from Datastream [24] for the period January 4th, 2000, to June
17th, 2021, with 5598 data points. The period under study includes the COVID-19 pandemic crisis period that
began in 2020. The rest of this paper is structured as follows: Section 2 reviews the theories underlying the GAS
model, the true parameter recovery (TPR) measure, and the description of the simulation design. Section 3 shows
how the simulation structure is illustrated using financial bond returns data, with empirical verification. Section 4
discusses the main findings and Section 5 presents concluding remarks on the novelty of the study.

2. Methods

2.1. The GAS Model

Volatility persistence can be effectively modelled through a Score Driven (SD) model known as the Generalized
Autoregressive Score (GAS) proposed by Harvey [40] and Creal et al. [21] (see [6, 5, 13]). The model applies the
score of the conditional density function to determine the time variation in the parameters. The score functions
are robust to outliers because they discount extreme values by reducing the number of extreme observations
[40, 63, 2], and the model is suitable for modelling fat-tailed and skewed time series data like financial returns
[62, 40]. In addition, extensions to other time series dynamics, like asymmetry and long memory behaviour, are
possible through the GAS process. Moreover, maximum likelihood estimation (MLE) through the model is easy to
implement [6].

Creal et al. [19, 21, 22] showed that the robust GAS models incorporate many familiar observation-driven models
that include the Autoregressive Conditional Heteroscedasticity (ARCH) model [28], the simple (standard) GARCH
model [12], the Exponential GARCH (EGARCH) model [60], the Autoregressive Conditional Duration (ACD)
model [29], the Autoregressive Conditional Intensity (ACI) model [66], the Beta-t-GARCH model [40, 41], the
Autoregressive Conditional Multinomial (ACM) model [67], and several related models. In other words, new time-
varying parameter models of empirical interest are easy to formulate due to the flexibility of the GAS framework
(see [8]).
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2.1.1. Specification of the GAS Model Let N × 1 vector yt be the dependent variable of interest, ϑt the vector of
time-varying parameter, xt a vector of exogenous variables (i.e., the covariates), all at time t, and ξ a vector of static
parameters. Define Y t = {y1, . . . , yt}, Θt = {ϑ0, ϑ1, . . . , ϑt}, and Xt = {x1, . . . , xt} [20, 21]. The information set
that is available at time t consists of {ϑt,Ft}, where

Ft = {Y t−1,Θt−1, Xt}, for t = 1, . . . , n. (1)

It is assumed that the generation of yt is carried out by the observation density

yt ∼ p (yt|ϑt,Ft; ξ) . (2)

It is further assumed that the mechanism required to update the time-varying parameter ϑt is given by the
autoregressive updating equation

ϑt+1 = κ+

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjϑt−j+1. (3)

Ardia et al. [6] presented Equation (3) as:

ϑt+1 ≡ κ+ Ast + Bϑt, (4)

where κ, A and B are matrices of coefficients with appropriate dimensions and they are functions of the time-
invariant parameter ξ, while st is the scaled score and it is a suitable function of past data, st = st(yt, ϑt,Ft; ξ)
(see [20, 21]). The st indicates the direction to update the vector of parameters from ϑt to ϑt+1. Vector κ is
used to control the level of the process ϑt, while vector A is used to determine (or control) the impact of st on
ϑt+1, and vector B is used to determine the persistence of the process [6, 51]. To implement the GAS models,
matrices A and B are constrained to exist as diagonals (see [6, 61]). For instance, in a GAS model with Student’s
t conditional distribution, A ≡ diag(aµ, aϕ, aν) and B ≡ diag(bµ, bϕ, bν), where µ, ϕ and ν are location, scale and
shape parameters, respectively. Hence, bµ denotes the persistence of the conditional mean (location), while bϕ
refers to the persistence of the conditional variance (or scale) (see [6]).

The approach used by the GAS is based on the observation density in Equation (2) for a given parameter ϑt.
When a yt observation is realised, the time-varying ϑt can be updated to the next period t+ 1 using Equation (3)
with

st = St · ∇t, ∇t =
∂lnp (yt|ϑt,Ft; ξ)

∂ϑt
, St = S (t, ϑt,Ft; ξ) , (5)

where S(·) represents a matrix function, ∇t is the score of Equation (2) evaluated at ϑt, ln is the natural logarithm,
and St denotes the scaling matrix (see [6, 20, 21]). The score of the GAS model depends on the complete density
structure [20, 21]. Given that the driving mechanism in Equation (3) depends on the scaled score vector in Equation
(5), the GAS model with orders p and q can be defined by Equations (2), (3) and (5). This can be referred to as
the GAS(p,q) model, where the orders p and q are typically taken as p = q = 1 (see [20, 21]). However, readers can
refer to Creal et al. [21] for details on including more lags in the GAS process [8].

To account for the variance of ∇t, Creal et al. [21] suggested setting St to a power γ > 0 of the inverse of the
information matrix (I) of ϑt [6]. Precisely,

St = I−γ
t|t−1, It|t−1 = Et−1

[
∇t∇⊤

t

]
, (6)

where the expectation Et−1 is taken with respect to the conditional distribution of yt|y1:t−1. The parameter γ
usually takes 0, 1

2 , or 1 value [6], but other choices of St are also possible (see [8]). If γ = 0, St becomes an
identity matrix (I), which implies there is no scaling. If γ = 1

2 , then the conditional score ∇t is pre-multiplied by
the square root of its covariance matrix It, but if γ = 1, the conditional score ∇t is pre-multiplied by the inverse of
its covariance matrix It. The scaled score st is a martingale difference with respect to the distribution of yt|y1:t−1,
i.e., Et−1[st] = 0 for all t (see [6]).
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Figure 1. Flowchart on simulation design to select an optimal error distribution.

The GAS framework incorporates many familiar observation-driven models as a special case for an appropriate
choice of the scaling matrix St [21]. That is, various classes of observation-driven models can be obtained with
different choices of the scaled score st, hence these types of models are referred to as score-driven models
[51, 20, 21]. In order words, Equations (2), (3) and (5) encompass a large set of common time series models
for different choices of st [8]. For more details on the GAS models, see [6, 40, 19, 20, 13, 21, 22, 51, 9].

2.2. The True Parameter Recovery Measure

The true parameter recovery (TPR) measure was developed by Samuel et al. [68] as a means of measuring the
performance of the MCS estimator in recovering the true parameter. It is used as a proxy for the coverage of the
MCS experiment to calculate the level of recovery of the true data-generating parameter by the MCS estimator. It
is stated as:

TPR =

(
K −

[
(ϑ− ϑ̂)

ϑ
×K

])
%, (7)

where ϑ and ϑ̂ are the true parameter and estimator, respectively, while K = 0, 1, 2, . . ., 100 is the nominal
recovery level. A TPR outcome of 99% or 95%, for instance, denotes the recovery of 99% or 95% of the true
parameter by the MCS estimator. The estimator ϑ̂ can recover the true parameter ϑ completely when ϑ̂ = ϑ, where
ϑ > 0. Hence, the full recovery of the true parameter occurs where the TPR estimate is equal to the specified
nominal recovery level K, that is, TPR = K%.

2.3. The Design of the Simulation

The design of the simulation structure involves “(optionally) stating the background of the study, defining the
aim of the study, specifying the research questions, method of implementation, and summarised conclusion”.
The method of implementation is a process that consists of writing the simulation code, setting the seed, setting
the true parameter a priori, data generation, and performance assessment through meta-statistics. These steps, as
summarised by the flowchart [68] in Figure 1, are relevant for a successful simulation to select an optimal assumed
innovation distribution using the GAS model. Each step of the structure is detailed as follows:
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2.3.1. Aim of the Simulation Study After optionally stating the background of the study, the next step in the design
is to define the aim of the study, and it should be concisely stated to communicate the purpose of the study to
readers. The focus of many MCS studies is generally on the estimators’ abilities to recover the true parameters ϑ
[16], such that E(ϑ̂) = ϑ for unbiasedness, standard error (SE) or root mean square error (RMSE) tends to zero as
the sample size N → ∞ for good precision or efficiency of the true parameter’s estimator, and ϑ̂ → ϑ as N → ∞
for consistency. Hence, the study’s aim could be about those features, like the consistency, bias or unbiasedness,
precision or efficiency of the estimator. The aim may also focus on comparisons of multiple operations, like
comparing the efficiency of various conditional distributions to obtain the most efficient, or proposing a modified
version of an existing model.

2.3.2. State the Research Questions Next, relevant questions that point to the objectives of the simulation should be
specified and addressed in the study. The complexities of some statistical research questions may be better resolved
through simulation approaches. Simulation provides a robust process for responding to many methodological and
theoretical questions, and it can proffer a flexible structure for responding to certain questions that are relevant to
the quest of the researchers [39].

2.3.3. Method of Implementation We carry out the simulation and empirical studies of this paper in R software,
version 4.0.3, with RStudio version 2023.03.1+446, using the GAS [6, 13], tidyverse [74], patchwork [64],
SimDesign [17], rugarch [33, 34], forecast [47], and aTSA [65] packages.

The method of implementing the MCS is described as follows:

• Write the simulation code: Execution of a suitable simulation experiment that reflects a real-life situation
can be computationally intensive and very demanding, hence readable computer code with the right syntax
must be ensured. MCS code must be well organised to avoid difficulties during debugging. Code must be
efficiently and flexibly written and well arranged for easy readability.

• Set the seed: If a seed is not set, the simulation code will generate a different sequence of random numbers
whenever it is run [23]. A set seed is used to initialise the random number generator [34] and to ensure
reproducibility, where the same output is obtained for different runs of the simulation process [32]. It is
better to use the same seed values throughout the process [59], and this (seed) needs to be set only once, for
each simulation, at the start of the simulation session [59, 34]. The seed is essentially used for reproducibility.
Samuel et al. [68] used the GARCH model to show that as the sample size N increases, the arrangement (or
pattern) of the seed values generally does not influence the efficiency and consistency of an estimator. This
however may depend on the quality of the model used.

• Next, the true parameter value of the true sampling distribution (or true model†) is set a priori [58, 51].
• Following this, simulated return observations are generated using the true sampling distribution or the true

model given some sets of (or different sets of) parameters. Simulated data generation through the GAS
model is carried out using the R GAS package. The generation of random data through this package can
be implemented using either of two approaches [6, 13]. The first approach is to generate the data directly
from an estimated “uGASFit” object using the UniGASSim (univariate GAS simulation) function for the
simulated random data. In this study, we use “fit” as the uGASFit object. The second approach involves
the full specification of a GAS model that includes the selection of the conditional error distribution of the
time series process, and specifying the static parameter ξ = (κ, A, B) that controls the time variation in ϑt,
as described in Section 2.1. In this latter approach, the fit object will be specified as “fit = NULL” in the
UniGASSim function.
The data-generating (or simulation) process can be replicated multiple times or run only once. However,
data generation through the GAS package is generally designed to run only once. In their study through the
autoregressive process, Samuel et al. [68] showed that the outcomes of MCS experiments using the (family)
GARCH model are the same for datasets simulated with the same seed value, regardless of whether the

†The true model is described as the data-generating model fitted with the true error distribution (see [30]).
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simulation or data-generating process is run once or replicated multiple times. Hence, the outcome of a
single run is the same as the average of multiple runs or replications. Their findings further revealed that in
any multiple generated (or simulated) datasets in the family GARCH model, each simulated series is distinct
in randomness and shape, and it is different from every other series in the datasets.

• Next, the generated data are analysed and the estimates from the analysis are assessed using classic methods
through meta-statistics to obtain relevant information about the estimator. Meta-statistics (see [17]) are
metrics or performance measures used for evaluating the modelling outcomes by judging the closeness
between the true parameter and its estimate. The root mean square error (RMSE), bias, standard error (SE),
and relative efficiency (RE) as described below are part of the familiar meta-statistical summaries used in the
literature. Readers can refer to [59, 17, 71] for more meta-statistics.

Bias

Bias is defined as the mean difference between the true parameter and its estimate [30]. Its optimal value is
0 [71, 44]. Bias with a negative (positive) value indicates that the true parameter value is under-estimated
(over-estimated). However, the nearer the estimator is to zero (in absolute values), the better it is. Bias can
be stated in Monte Carlo simulations (see [16]) as:

bias =
1

L

L∑
i=1

(ϑ̂i − ϑ), (8)

where ϑ̂ denotes the sample estimate for the ith dataset, ϑ is the true parameter, and L is the number of
replications [71].

Standard Error

The standard error (SE), as presented (see [16, 75]) in Equation (9), is used to assess the sampling variability
in the estimation. It is a measure of the precision or efficiency of the true parameter’s estimator. The lower
the sampling variability, the more efficient or precise the true parameter’s estimator (see [59]). As the sample
size increases, the sampling variability decreases [71].

SE =

√√√√ 1

L

L∑
i=1

(ϑ̂i − ϑ̄)2, where ϑ̄ =

L∑
i=1

ϑ̂/L. (9)

RMSE

The root mean square error (RMSE) is used to assess the difference between the true value of a model and its
prediction. RMSE measure denotes the sampling error of an estimator in comparison with the true parameter
value [71], and it can be stated as:

RMSE =

√√√√ 1

L

L∑
i=1

(
ϑ̂i − ϑ

)2
. (10)

An estimator with lower RMSE will recover the true parameter value more efficiently [71, 75], and minimum
RMSE yields maximum precision [72]. An estimator is consistent when RMSE decreases such that ϑ̂ → ϑ
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as N → ∞ [59, 33]. RMSE, bias and sampling variability are connected as:

RMSE =
√

bias2 + SE2. (11)

That is, the RMSE measure includes both bias and SE, where low SE can be penalised for bias. The mean
squared error (MSE) can be derived by squaring the RMSE. It is expected that as the sample size increases,
the sampling error should decrease relatively, but this is not always the outcome [35].

Relative Efficiency

Sampling efficiency between one estimator and the other can be compared using the relative efficiency (RE)
statistic by creating ratios between the estimators’ RMSE values as shown in Equation (12). In the formula,
the first RMSE or RMSE1 is taken as the reference estimator, such that other RMSEs are assessed in relation
to it. The RE ≡ 1 when i = 1, and values above (less than) 1 indicate less (greater) efficiency. Less efficiency
means more variability than the statistic that is referenced, while greater efficiency indicates less variability
and higher precision for recovering the true parameter ϑ [71, 16]. RE < 1 suggests that estimator i is the
preferred one, i.e., if i = 2 for instance, estimator 1 is less efficient in relation to estimator i = 2 [25].

RE =

(
RMSEi

RMSE1

)2

. (12)

2.4. Discussion and Summary

After the method of implementation, the last step in the structure is the conclusion, which should reflect a summary
discussion of all relevant findings from the simulations, with answers provided to the research questions. The
novelty of the work is presented in the conclusion, and this may include the limitations encountered and the future
directions of the work.

3. Results: Simulation and Empirical

3.1. Practical Illustrations of the Simulation Structure with Applications to Financial Returns

This section practically illustrates how the design steps can be applied using MCS with empirical verification
through the real SA bond returns data. The steps are illustrated as follows:

3.2. The Background

As a preamble, simulation involving the GAS model can be conducted through the UniGASSim function with the
uGASFit object (e.g., using “fit” as the uGASFit object), and through the full specification of the GAS model (with
“fit = NULL” in the UniGASSim function)‡. In the latter approach which involves the full specification of the
model, the coefficients of the matrices κ, A and B in Equation (4) have to be specified. Both of these approaches
can be done with a shape parameter (or degree of freedom) that is time-varying (νt) or constant (ν). This illustrative
study focuses on νt. In the simulation structure, A and B matrices are constrained to exist as diagonals as described
in Section 2.1.1. Hence, aµ, aϕ, and aν are diagonal elements of A, while bµ, bϕ, and bν are diagonal elements of
B. In the outputs of the estimation, a1, a2, a3, b1, b2 and b3 are estimates of aµ, aϕ, aν , bµ, bϕ and bν , respectively.
Also κ ≡ (I − B)Λ−1(ϑ∗), where I is an identity matrix of a suitable size, ϑ∗ is the ThetaStar object, and Λ−1 is
a mapping function that is represented by the UniUnmapParameters() function§. The ThetaStar ϑ∗ is a vector of

‡Readers can refer to Page 52 of Catania et al. [14] for the usage of the UniGASSim function.
§That is, the inverse of the mapping function Λ−1 in κ is represented by the UniUnmapParameters() function in the GAS simulation code
of the R package GAS (see [6]).
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Panel A: GAS−Student’s t with v* = 10.3 Panel B: GAS−Student’s t with v* = 8.2 Panel C: GAS−Student’s t with v* = 4.1
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Figure 2. The QQ plots in Panels A, B, and C are obtained from GAS-Student’s t model fitted with ν∗ = 10.3, ν∗ = 8.2, and
ν∗ = 4.1, respectively. Each model is fitted to N = 30,000 simulated datasets.

the unconditional time-varying parameters, i.e., ϑ∗ = (µ∗, ϕ∗, ν∗)⊤, where µ∗, ϕ∗, and ν∗ are the unconditional
location, scale, and shape parameters, respectively. The coefficients kappa1, kappa2 and kappa3 in the estimation’s
outputs are vector κ’s elements, where κ ≡ (κµ, κϕ, κν)

⊤(see [6] for more details).
Volatility modelling for risk management is highly dependent on the underlying error distribution. In other words,

to minimize risk and adequately maximise asset returns, volatility needs to be modelled with an appropriate error
assumption when the true (underlying) error distribution is unknown. Hence, this illustrative study demonstrates
the dynamics of the GAS model as the true data generating process (DGP) for the simulation, where the outcomes
of the model fitted with each of seven assumed error distributions are compared to obtain the most suitable for
volatility persistence estimation. The assumed error distributions are the Gaussian, skew-Gaussian, Student’s t,
skew-Student’s t, asymmetric Student’s t with one tail decay parameter (AST1), asymmetric Student’s t with two
tail decay parameters (AST), and asymmetric Laplace distribution (ALD). Details on the error distributions can be
seen in [19, 21, 6, 33, 76, 52] or through the function DistInfo() in R package “GAS”.

For further background layout, it is known that financial data are fat-tailed [55], i.e., non-Normal. Hence, to
obtain a set of simulated observations that can closely reflect this fat-tailed behaviour of financial time series data
under the GAS modelling, we carry out experiments to compare the fat-tails outcomes of three different datasets
that are generated using three unconditional shape parameters or degrees of freedom ν∗ = {10.3, 8.2, 4.1}. We
execute this by fitting GAS-Student’s t model¶ with time-varying location, scale, and shape parameters to the SA
bond returns data to generate three sets of N = 30,000 simulated datasets. That is, the first dataset is obtained with
ν∗ = 10.3, the second and third with ν∗ = 8.2 and ν∗ = 4.1, respectively. For each simulated dataset, a quantile-
quantile (QQ) plot is produced as displayed in Figure 2. It can be seen from the figure that the plot in Panel C for
GAS-Student’s t with ν∗ = 4.1 displays the fattest tails than the other two panels with ν∗ = 8.2 and ν∗ = 10.3. The
tails of Panel C’s plot are about twice and more than twice as fat as those of Panels B and A, respectively. Hence,

¶GAS-Student’s t model is the GAS model fitted with a Student’s t error.
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the GAS model fitted to a Student’s t distributed error with ν∗ of 4.1 appears to be the most suitable among the
three to generate the required simulated financial returns data.

Based on the fat-tails outcomes, we further carry out two sets of experiments to examine the
√
N consistency of

datasets fitted with each of these three unconditional shape parameters ν∗ = {4.1, 8.2, 10.3}. In the first experiment,
we fit GAS-Student’s t model with time-varying location, scale, and shape parameters to the SA bond returns data
to obtain the parameter values that are used to generate three datasets of sample sizes N = {30,000; 31,000;
32,000}. That is, all the outcomes from the fit (with ν∗ fixed in turn to 4.1, 8.2 and 10.3) are used to generate the
three datasets. This data generation process is executed through the full specification of the GAS model. Precisely,
in the first set of this first experiment, we use the outcomes from the fit with ν∗ fixed to 4.1 to generate the three
datasets. In the second set, we also use the outcomes from the fit with ν∗ fixed to 8.2 to generate the next three
datasets. In the third set, we again use the outcomes from the fit with ν∗ fixed to 10.3 to generate the last three
datasets.

Next, we fit the GAS model with a time-varying scale parameter to each set of the three datasets under four
error distributions of the Gaussian, skew-Gaussian, Student’s t, and skew-Student’s t. Panel A of Table 6 shows the
RMSE, SE and bias outcomes of the fit under each error distribution for the GAS volatility persistence estimator
b̂ϕ. It can be seen from the table that the GAS model fitted with ν∗ = 4.1 gives the best consistency in terms of
RMSE, SE and absolute value of bias. That is, the model fitted using ν∗ = 4.1 outperforms those with ν∗ = 8.2
and ν∗ = 10.3 in consistency under the four error distributions. These outcomes are visually displayed in Figure
3, where Panels A and B show the superior performance of ν∗ = 4.1 in terms of SE and RMSE||, respectively, as
compared to those of ν∗ = 8.2 (in Panels C and D) and ν∗ = 10.3 in Panels E and F. The RMSE displays some
inconsistency for ν∗ = 8.2 and ν∗ = 10.3 in Panels D and F, respectively.

In the second experiment, we try to avoid potential initial value effects by generating three equal datasets, each
of sample size N = 30,000. From the datasets, we remove the first N = {13,000; 12,000; 11,000} to avoid the effect
of initial values, and then use the last N = {17,000; 18,000; 19,000} under each of the four error distributions as
shown in Panel B of Table 6. These trimmings (and subsequent ones in this study) are executed following the
simulation design of Feng and Shi [30]. The outcomes of the experiment are presented in Panel B of Table 6 in the
Appendix. It can be seen from the table that the GAS model fitted with ν∗ = 4.1 gives the best

√
N consistency

in terms of RMSE, SE and absolute value of bias when compared with those of ν∗ = 8.2 and ν∗ = 10.3 under
the four error distributions. These consistency outcomes are visually displayed in Figure 4, where Panels A and B
show the superior performances of ν∗ = 4.1 in terms of SE and RMSE, respectively, as compared to those of ν∗ =
8.2 in Panels C and D, and ν∗ = 10.3 in Panels E and F. Moreover, when compared with the outcomes of the first
experiment, it is observed as shown in Panels A and B of Figure 4 that the

√
N consistency of the estimator b̂ϕ

for ν∗ = 4.1 becomes better and more improved in terms of SE and RMSE after removing the initial value effects.
Hence, the Student’s t GAS model fitted with ν∗ = 4.1 outperforms those fitted with ν∗ = 8.2 and ν∗ = 10.3 in
consistency.

The Student’s t is used as the true error distribution for this illustration because it is assumed that financial data
appear to have a distribution much like it, and it is also believed that it can suitably deal with fat-tailed or leptokurtic
features [56, 27] commonly found in financial data [45]. However, to buttress the illustration, we further use the
AST1 as another true error distribution in addition to the Student’s t, and compare their outcomes. Besides these two
true sampling errors, users may choose to use any relevant non-Gaussian distributions, as stated in the DistInfo()
function, for their data generation based on individual research needs. For any chosen true error distribution, the
DistInfo() function reveals the parameters that must be specified as time-varying.

3.3. Aim of the Simulation Study

The aim of this study is to obtain the most suitable assumed error distribution to describe the returns for volatility
persistence estimation when the underlying error distribution is not known.

∥We did not report the plots of the
√
N consistency of the absolute value of bias for brevity reasons.
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(B) The Consistency of RMSE with v* = 4.1
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(C) The Consistency of SE with v* = 8.2
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(D) The Consistency of RMSE with v* = 8.2
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Figure 3. Panels (A) and (B) display the
√
N consistency of the GAS estimator b̂ϕ in terms of SE and RMSE for N =

{30,000; 31,000; 32,000} datasets with ν∗ = 4.1, while Panels (C) and (D) display those for ν∗ = 8.2, and Panels (E) and (F)
for ν∗ = 10.3.

3.4. Research Questions

The outcomes of this simulation study should help to respond to the following questions:

1. Which among the error assumptions is the most suitable for the GAS simulation process to estimate the
volatility persistence?
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Figure 4. Panels (A) and (B) display the
√
N consistency of the GAS estimator b̂ϕ in terms of SE and RMSE for N =

{17,000; 18,000; 19,000} datasets with ν∗ = 4.1, while Panels (C) and (D) display those for ν∗ = 8.2, and Panels (E) and (F)
for ν∗ = 10.3.

2. What type (i.e., weak or strong) of
√
N consistency, in terms of SE and RMSE, does the volatility persistence

estimator b̂ϕ of the GAS process exhibit?
3. How does the estimator b̂ϕ of the most suitable assumed error distribution compare to the estimator b̂ϕ of

competing assumed error distributions with regards to bias, and efficiency (or precision) in terms of RMSE,
SE and RE?
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4. How does the GAS estimator b̂ϕ perform in recovering the true parameter bϕ?

3.5. Method of Implementation

Since we intend to use the Student’s t and AST1 as the true error distributions to generate the simulated return
observations, the method of implementation is described via two Monte Carlo experiments. The implementation
method is illustrated using the full specification of the GAS model in the coefficients of matrices A, B and κ. For the
two true error distributions, the scale parameters’ descriptions of the conditional variance are within 0.975 < bϕ < 1
and 0 < aϕ < 0.15. The bϕ is the GAS volatility persistence parameter in the diagonal of matrix B (see [21, 11]).
Moreover, the bϕ parameter of the GAS model corresponds to the α+ β parameters of the GARCH model** [11].

Next, the two MCS experiments to illustrate the method of implementation are carried out using each of the two
true error distributions one after another as follows.

3.5.1. Method of Implementation with the Student’s t Error With Student’s t as the true innovation distribution,
the written code is first used to fit the true model GAS-Student’s t with time-varying†† location, scale and shape
parameters to the SA bond returns data through the UniGASFit function, to obtain the true parameter values for
the data generating process. The true parameter values are the MLE estimates obtained from fitting the GAS-
Student’s t model to the SA bond returns data. The time variation in the location, scale and shape parameters of
the fit are graphically described as displayed in Figure 5, with the location in the top panel, followed by the scale
and then the shape parameter graphics. The true parameter values used to generate the simulated returns data are
aµ = 0.0000, bµ = 0.3461, aϕ = 0.1400, bϕ = 0.9831, aν = 9.8356, bν = 0.5253, µ∗ = 0.0578, ϕ∗ = 1.0695 (and
ν∗ fixed to 4.1). The aµ, bµ denote the location parameters, aϕ, bϕ indicate the scale parameters, and aν , bν are the
shape parameters, while µ∗, ϕ∗ and ν∗ are the unconditional location, scale and shape parameters, respectively.
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Figure 5. GAS-Student’s t: Time-varying location (top panel), scale (middle panel), and shape (bottom panel) parameters.

Next, through the UniGASSim function, using seed 12345 in the code, the value of the scale parameter b2 =
bϕ = 0.9831 from the fit is set a priori as the true parameter for the MCS process, as shown in Table 1. This value

∗∗We examined this by comparing the estimate of the GAS persistence parameter b̂ϕ, fitted with a time-varying scale parameter, and the
estimate from the GARCH(1,1) model’s persistence parameter α̂1 + β̂1. We fitted both models to the SA bond returns data where the
innovation is Gaussian, and their results yielded b̂ϕ ≡ α̂1 + β̂1 ≈ 0.98.
††Time-varying parameters are specified as “TRUE” in the UniGASSpec function.
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Table 1. Simulation outcomes.

True model: GAS-Student’s t
True parameter: bϕ = 0.9831

Assumed error N b̂ϕ RMSEb̂ϕ
Biasb̂ϕ SEb̂ϕ

REb̂ϕ
TPRb̂ϕ

(95%)
17,000 0.9589 0.0249 -0.0242 0.0059 − 92.66%

Gaussian 18,000 0.9620 0.0217 -0.0210 0.0051 0.7575 92.97%
19,000 0.9643 0.0192 -0.0187 0.0043 0.7872 93.19%
17,000 0.9604 0.0234 -0.0227 0.0058 − 92.81%

skew 18,000 0.9630 0.0206 -0.0200 0.0050 0.7781 93.06%
Gaussian 19,000 0.9650 0.0185 -0.0180 0.0042 0.8055 93.26%

17,000 0.9775 0.0066 -0.0056 0.0034 − 94.46%
Student’s t 18,000 0.9780 0.0061 -0.0051 0.0032 0.8547 94.51%

19,000 0.9781 0.0058 -0.0049 0.0031 0.9268 94.52%
17,000 0.9775 0.0065 -0.0056 0.0034 − 94.46%

skew 18,000 0.9779 0.0061 -0.0051 0.0032 0.8692 94.50%
Student’s t 19,000 0.9782 0.0057 -0.0048 0.0031 0.8906 94.53%

17,000 0.9774 0.0066 -0.0057 0.0034 − 94.45%
AST 18,000 0.9777 0.0063 -0.0054 0.0033 0.9061 94.48%

19,000 0.9782 0.0058 -0.0049 0.0031 0.8398 94.53%
17,000 0.9775 0.0065 -0.0056 0.0034 − 94.46%

AST1 18,000 0.9780 0.0060 -0.0051 0.0032 0.8581 94.51%
19,000 0.9788 0.0053 -0.0043 0.0031 0.7623 94.59%
17,000 0.9768 0.0073 -0.0063 0.0037 − 94.39%

ALD 18,000 0.9775 0.0066 -0.0056 0.0035 0.8140 94.46%
19,000 0.9778 0.0062 -0.0052 0.0033 0.8827 94.49%

Note: Simulation outcomes from the true model GAS-Student’s t.

and all the other estimates (with the ν∗ that is fixed to 4.1) from the uGASFit object are used in the code to generate
three sets of N = 30,000 return observations.

Next, due to the effect of the initial values in the generation of the data, which may cause size distortion [70],
we discard the first N = {13,000; 12,000; 11,000} sets of observations at each stage of the generated 30,000 return
observations to avoid the distortion. Hence, we only use the last N = {17,000; 18,000; 19000} simulated returns
under each of the seven assumed errors as presented in Table 1. After generating the simulated return datasets, the
GAS model is fitted to them under each of the seven assumed error distributions. The full analytic code that shows
the lines of commands for each stage of the method of implementation is available from the authors on request.

Next, comparisons through the four meta-statistical summaries comprising of the RMSE, bias, SE and RE are
carried out for the volatility persistence estimator b̂ϕ in B. The most adequate assumed innovation for volatility
persistence estimation will be obtained from the estimator b̂ϕ with the best efficiency and precision (for recovering
the true parameter) in the meta-statistical comparisons executed under the seven innovation assumptions.

Now, comparing RMSE for b̂ϕ in Table 1, the AST1 assumed error distribution outperforms the other six assumed
errors, including the true error Student’s t, in efficiency with the least value as N tends to the peak at 19,000. For
bias comparison, the AST1 also outperforms the rest of the error assumptions with the lowest absolute value of
bias as N tends to the peak. Comparing SE, the Student’s t, skew-Student’s t, and AST1 are equal in performance
for efficiency and precision in terms of SE, and they outperform the rest. The AST assumed error follows them
in performance. Lastly, for RE comparison, we use each preceding RMSE as the reference estimator, i.e., RMSE1

as the reference estimator for RMSE2, and RMSE2 for RMSE3 under each error assumption. The outcomes show
that the AST1 displays the highest precision for recovering the true parameter than the rest, with the smallest RE
value as N tends to the peak. The RMSE and SE performance measures also showcase adequate

√
N consistency
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under the seven assumed error distributions. To summarise, when the true error distribution is Student’s t, the AST1
assumed error distribution relatively outperforms the other six error assumptions in efficiency and precision, and
in the overall performance.
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Figure 6. The true parameter recovery (TPR) outlook. The dotted line denotes the 0.95 (i.e., 95%) nominal recovery level.

Table 1 further reveals that the MCS estimator b̂ϕ considerably recovers the true parameter bϕ at the 95%
(i.e., 0.95) nominal recovery level. The recovery outcomes for the seven assumed error distributions are visually
displayed in Figure 6, where it is revealed that the MCS estimates perform considerably well in recovering the true
parameter as shown by the closeness of the TPR outcomes to the 95% nominal recovery level. This indicates that the
MCS experiments are well executed with suitably valid outcomes. However, the non-Gaussian error assumptions
perform better in the recovery than the Gaussian and skew-Gaussian error assumptions, as shown in the plots. It is
also observed from the results in the table that the MCS estimate b̂ϕ is directly proportional to the TPR outcome.
Hence, the smaller (larger) the MCS estimate, the smaller (larger) the TPR outcome.

3.5.2. Method of Implementation with AST1 Error The second illustration of the method of implementation is
carried out with the AST1 as the true error distribution. The written lines of code are first used to fit the true model
GAS-AST1 with time-varying location, scale, skewness, and shape parameters to the SA bond returns data through
the UniGASFit function. The time variations in these parameters are graphically displayed in Figure 7, with the
location in the top panel, followed by the scale, skewness, and shape parameter graphics downwards in subsequent
panels. The MLE estimates from the fit are used as the true parameter values to generate the simulated returns for
the MCS. The true parameter values used to generate the returns data are aµ = 0.0000, bµ = 0.8802, aϕ = 0.0420,
bϕ = 0.9788, aη = 0.1186, bη = 0.0000, aν = 0.0001, bν = 0.9702, µ∗ = 0.1548, ϕ∗ = 2.6392, η∗ = 0.5329 (and
ν∗ fixed to 4.1). The aµ, bµ are the location parameters, aϕ, bϕ denote the scale parameters, aη, bη are the skewness
parameters, and aν , bν are the shape parameters. The µ∗, ϕ∗, η∗ and ν∗ are the unconditional location, scale,
skewness, and shape parameters. Next, through the UniGASSim function, using seed 12345 in the code, the value
of the scale parameter b2 = bϕ = 0.9788 from the fit is set a priori as the true parameter for the MCS process as
presented in Table 2. This value and all the other estimates (with the ν∗ that is fixed to 4.1) from the uGASFit
object are used in the code to generate three sets of N = 30,000 return observations. Next, following the previous
trimming pattern, N = {17,000; 18,000; 19000} datasets are used under each of the seven assumed errors, as shown
in Table 2. The full code is available from the authors on request.

Now, comparing RMSE and SE for b̂ϕ in Table 2, the AST1 error assumption outperforms the other six assumed
errors in efficiency and precision with the least values as N tends to the peak. For bias comparison, the AST1 also
outperforms the rest, with the lowest absolute value of bias as N tends to the peak. The relative efficiency (RE)
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Figure 7. GAS-AST1: Time-varying location (top panel), scale (upper-middle panel), skewness (lower-middle panel) and
shape (bottom panel) parameters.

Table 2. Simulation outcomes.

True model: GAS-AST1
True parameter: bϕ = 0.9788

Assumed error N b̂ϕ RMSEb̂ϕ
Biasb̂ϕ SEb̂ϕ

TPRb̂ϕ
(95%)

17,000 0.9444 0.0346 -0.0344 0.0036 91.66%
Gaussian 18,000 0.9488 0.0302 -0.0300 0.0031 92.09%

19,000 0.9493 0.0300 -0.0295 0.0051 92.13%
17,000 0.9522 0.0268 -0.0266 0.0034 92.42%

skew 18,000 0.9527 0.0264 -0.0262 0.0034 92.46%
Gaussian 19,000 0.9531 0.0259 -0.0257 0.0033 92.50%

17,000 0.9747 0.0051 -0.0042 0.0030 94.60%
Student’s t 18,000 0.9746 0.0051 -0.0042 0.0030 94.59%

19,000 0.9752 0.0046 -0.0036 0.0028 94.65%
17,000 0.9744 0.0053 -0.0044 0.0030 94.57%

skew 18,000 0.9744 0.0053 -0.0044 0.0030 94.57%
Student’s t 19,000 0.9750 0.0047 -0.0038 0.0028 94.63%

17,000 0.9749 0.0049 -0.0039 0.0030 94.62%
AST 18,000 0.9744 0.0053 -0.0044 0.0029 94.57%

19,000 0.9753 0.0045 -0.0035 0.0028 94.66%
17,000 0.9750 0.0049 -0.0039 0.0030 94.63%

AST1 18,000 0.9749 0.0049 -0.0040 0.0029 94.62%
19,000 0.9755 0.0043 -0.0033 0.0027 94.68%
17,000 0.9745 0.0054 -0.0044 0.0031 94.58%

ALD 18,000 0.9740 0.0057 -0.0048 0.0031 94.54%
19,000 0.9748 0.0049 -0.0040 0.0030 94.61%

Note: Simulation outcomes from the true model GAS-AST1.
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comparison is not done here due to the weak
√
N consistency of the RMSE under the AST and ALD assumed

errors. In this study, consistency is termed “strong” (“weak”) when the estimator’s RMSE/SE value decreases as
the sample size N increases without (with) distortion. To summarise, when the true error distribution is AST1, the
AST1 assumed error distribution outperforms the other six error assumptions in efficiency and precision, and in
overall performance. It is also observed from the outcomes of the SEb̂ϕ

for both true models in Tables 1 and 2 that
the GAS model with the Gaussian error distribution is considerably consistent but not efficient when the true error
is not Gaussian.

Furthermore, as revealed in Table 2 and as visualised in Figure 8, the MCS estimator b̂ϕ considerably recovers
the true parameter bϕ at the 95% nominal recovery level, for each of the seven assumed errors. This suggests that
the MCS experiments are well carried out with suitably valid results. However, as observed under the true model
GAS-Student’s t, it is also observed here that the non-Gaussian error assumptions perform better in the recovery
than the Gaussian and skew-Gaussian error assumptions, as shown in the plots.

It can be seen from Figures 6 and 8, and in Tables 1 and 2 that the MCS estimator b̂ϕ performs slightly better at
recovering the true parameter bϕ under the Gaussian and skew-Gaussian assumed errors for the true model GAS-
Student’s t than it is for true model GAS-AST1. Moreover, the true model GAS-Student’s t displays better

√
N

consistency for the RMSE and SE metrics than the GAS-AST1 as revealed in the tables. Hence, these show the
preference of the Student’s t error distribution for the data generation process over the AST1 error distribution.

Gaussian skew−Gaussian Student’s t skew−Student’s t AST AST1 ALD
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Figure 8. The true parameter recovery (TPR) outlook. The dotted line denotes the 0.95 (i.e., 95%) nominal recovery level.

3.6. Empirical Study

Here, the results of the simulation modelling are verified empirically by using the actual returns from the SA bond
market index. Among the selected seven innovations, the most suitable for the GAS model to describe the market’s
returns for volatility persistence estimation is investigated. We transform the daily price data to the log returns by
taking the log-difference of the value of the index as:

rt = ln

(
Pt

Pt−1

)
× 100, (13)

where rt is the current returns, ln denotes the natural logarithm, and Pt is the daily closing bond price at time t.

3.6.1. Exploratory Data Analysis To begin with, the price and return series are first examined via exploratory data
analysis (EDA) as shown in Figures 9 to 11. The EDA visually inspects the content of the dataset to show possible
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Figure 9. Histograms of price (in Panel A) and returns (Panel B). The two colours merely demarcate the distribution where
the price is < 200 (with blue colour) and above 200 (with an indianred colour). This is also used where the returns < 0.

outliers and other vital information. The histogram plot in Panel A of Figure 9 shows a skewed non-symmetric
distribution that suggests non-stationarity in the price index, while Panel B reveals approximately symmetric or
stationary distribution in the return series. Panel A of Figure 10 also reveals the non-stationarity in the price
index as observed in the price series plot, while the return series plot in Panel B shows stationarity in the returns.
Figure 10 further reveals four obvious extreme spikes in the distributions of price and returns during the period
under study. These spikes are a result of severe global events and economic downturns that led to extreme market
volatilities, notably the 2002/2003 SARS epidemic outbreak [73], the 2008 global financial crisis caused by the
U.S. loans crisis, i.e., the defaults on consolidated mortgage-backed securities [3], the 2016 Brexit issues, and the
2020 COVID-19 pandemic outbreak. Figure 11 shows the price and return densities in Panels A and B respectively,
while Panels C and D display the movements of the price and return distributions with their densities.

3.6.2. Tests for Autocorrelation and Heteroscedasticity Next, we fit the Autoregressive Moving Average
(ARMA(u,v)) models (see [33]), with a Gaussian innovation distribution and a non-Gaussian (Student’s t)
innovation, to the stationary return series to check for the presence of autocorrelation (or serial correlation). The u
and v are the orders of the AR and MA processes, respectively. Student’s t innovation distribution is used because it
adequately reflects the distribution of financial data [46]. Among the candidate ARMA(u,v) models examined, both
ARMA(1,1) and ARMA(2,2) models as stated in Equations (14) and (15) are found adequate to remove possible
autocorrelation in the return residuals. The autocorrelation function (ACF) and partial ACF (PACF) plots of the
fit of the ARMA(2,2) model are displayed in Figure 12‡‡. Table 3 shows the results of the Weighted Ljung-Box
(WLB) tests (see [31]) on the “standardised” and “standardised squared” residuals for fitting the two models. The
p-values of the tests at lag order 9 for ARMA(1,1) and lag order 19 for ARMA(2,2) are all greater than 5% under
each error distribution. Hence, we cannot reject the null hypothesis of “no serial correlation” in the market’s returns.
This implies that serial correlation is captured in the return residuals.

rt = ϕ0 + ϕ1rt−1 + φ1εt−1 + εt (14)

rt = ϕ0 + ϕ1rt−1 + ϕ2rt−2 + φ2εt−2 + φ1εt−1 + εt (15)

Through the outcomes from the autocorrelation test, we carry out Engle’s ARCH test (see [28]) using the
Portmanteau-Q (PQ) and Lagrange Multiplier (LM) tests to examine the existence of heteroscedasticity in the

‡‡The ACF and PACF diagrams were plotted using the auto.arima() function in the R forecast package developed by Hyndman and
Khandakar [47].
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Table 3. ARMA(1,1) and ARMA(2,2) models’ outcomes on Bond returns.

Panel A Panel B
ARMA(1,1) ARMA(2,2)

Gaussian Student’s t Gaussian Student’s t
Test on standardised WLB(9) 2.2258 3.2100 WLB(19) 6.2949 10.3830
residuals p-value(9) (0.9728) (0.8563) p-value(19) (0.9573) (0.4060)
Test on standardised WLB(9) 6.5740 7.4880 WLB(19) 6.4740 7.5450
squared residuals p-value(9) (0.2376) (0.1617) p-value(19) (0.2473) (0.1577)

Note: WLB denotes the Weighted Ljung-Box test, where “(9)” and “(19)” are lags 9 and 19,
respectively.

residuals. These tests are carried out based on the null hypothesis of homoscedasticity in the residuals of an
Autoregressive Integrated Moving Average (ARIMA) model. The tests are executed using the arima() function,
in R package aTSA, for ARMA(1,1) and ARMA(2,2) models. The results of both tests reveal highly significant
p-values of 0 from lag order 4 to 24 as presented in Panels A and B of Table 4. Thus, the null hypothesis of
“no heteroscedasticity” in the residuals is rejected, which indicates the presence of volatility clustering. Volatility
clustering implies that big (small) changes in returns tend to be followed by big (small) changes of either sign
[57]. Based on the outcomes, we fit the GAS model with each of the seven error distributions to filter out the
heteroscedasticity in the returns.

3.6.3. Selection of the Most Appropriate Error Assumption Next, we use the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) (see [54, 33] for details) to select the optimal (or the most adequate)
assumed error distribution to describe the market’s returns for volatility persistence estimation through the fit of
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Table 4. Engle’s ARCH test results.

Panel A Panel B
ARMA(1,1) model ARMA(2,2) model

PQ test LM test PQ test LM test
Lag order PQ P-value LM P-value PQ P-value LM P-value

4 904 0 4729 0 888 0 4658 0
8 1127 0 2196 0 1104 0 2184 0
12 1400 0 1361 0 1377 0 1354 0
16 1517 0 1015 0 1497 0 1010 0
20 1575 0 807 0 1556 0 803 0
24 1624 0 666 0 1602 0 663 0

Note: PQ is the Portmanteau-Q statistic, and LM is the Lagrange-Multiplier statistic.

the GAS model. The error distribution with the lowest values of the information criteria is selected as the most
suitable to describe the market for volatility persistence modelling.

Table 5 shows that the GAS parameter estimates κ̂ϕ, âϕ and b̂ϕ are statistically significant at 1% level under
the seven assumed innovations. The only exception to these is the κ̂ϕ that is insignificant under the Student’s t
distribution. The comparisons of the seven assumed innovations are carried out with a time-varying scale parameter
in the GAS modelling, and the empirical outcomes of the information criteria as presented in Table 5 show that
the values of the AIC and BIC are lowest under the AST1 innovation. Hence, the AST1 innovation assumption
outperforms the other six assumed innovations. This outcome is consistent with the results of the MCS studies.
The result implies that the persistence of volatility in the returns of the SA bond market can be most suitably
described through the GAS model when the assumed innovation is AST1. As shown in the table, the volatility
persistence estimate b̂ϕ in B under this optimal AST1 error is 0.9790, indicating a considerably high persistence in
the returns.

Table 5. Empirical outcomes of GAS modelling on SA Bond returns data.

Panel A Normal skew-Normal Student’s t skew-Student’s t AST AST1 ALD
κ̂ϕ 0.0071* 0.0033* 0.0011 0.0034* 0.0206* 0.0204* 0.0053*
âϕ 0.0872* 0.0221* 0.1653* 0.0395* 0.0412* 0.0411* 0.0587*
b̂ϕ 0.9804* 0.9819* 0.9790* 0.9804* 0.9788* 0.9790* 0.9784*
AIC 17936.36 17900.84 17682.49 17672.13 17668.28 17666.39 17910.63
BIC 17962.88 17933.99 17715.64 17711.91 17714.69 17706.17 17943.78

Note: The “∗” indicates 1% level of significance. The table shows the outcomes of the fit of the GAS model for
time-varying scale parameters.

From the empirical outcomes of the GAS model fitted with the AST1 innovation in Table 5, the equation of the
GAS model for the time-varying scale (or volatility) parameter can be stated as:

ϑt+1 = 0.0204 + 0.0411st + 0.9790ϑt. (16)

4. Discussion and Summarised Conclusion

In conclusion, it is observed from the MCS studies that using the UniGASSim function (with full specification
of the GAS model) approach, the AST1 consistently emerges as the optimal (or the most adequate) assumed
error distribution to use with the GAS model for the returns’ volatility persistence estimation when the underlying
distribution of errors is unknown. The result was verified empirically. The persistence of volatility under the optimal
assumed innovation revealed considerably high persistence in the volatility of the SA bond market’s returns.
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The conclusion proceeds with answers provided to the research questions. In answer to the first question,
AST1 is the most appropriate conditional distribution, among the seven assumed error distributions from the GAS
process simulation, to estimate the volatility persistence. Second, the volatility persistence estimator b̂ϕ displays
considerably strong

√
N consistency. To break this down, there is strong

√
N consistency for the estimator b̂ϕ under

all the seven assumed error distributions in the Student’s t true error distribution (or true model GAS-Student’s t)
for both RMSE and SE in Table 1. The AST1 true error distribution or true model GAS-AST1, in Table 2, also
shows a considerably strong

√
N consistency under the error assumptions, except the weak consistency in the AST

and ALD assumed errors for RMSE metric, and under the Gaussian assumed error for SE metric. Third, when
compared to competing assumed errors, the estimator b̂ϕ of the optimal AST1 error is the best overall in efficiency
and precision in terms of RMSE, SE and RE, and in the absolute value of bias under the two true error distributions,
as revealed in Tables 1 and 2.

Fourth, with the TPR measure used as a proxy for the coverage of the simulation experiments, the study’s
outcomes revealed a satisfactory performance of the GAS volatility persistence estimator b̂ϕ in recovering the true
parameter bϕ at the 95% nominal recovery level. This indicates that the MCS experiments are well carried out
with suitably valid outcomes under the two true models. However, the non-Gaussian error assumptions performed
better in the recovery than the Gaussian and skew-Gaussian assumed errors. The study also observed from the
outcomes of the TPR measure and the

√
N consistency of the RMSE and SE, that the Student’s t is a preferred

error distribution for data generation than the AST1.
This illustrative study through the GAS simulation modelling focused on time-varying shape parameter or degree

of freedom νt, where the “shape = TRUE”. Interested users and readers can try the other approach with “shape =
FALSE” (i.e., constant shape parameter or degree of freedom ν). Any argument specified as “FALSE” in the
UniGASSpec function for the GAS specification is constrained to 0 (see [6] or use help(UniGASSpec) in the R
GAS package for details).

5. Concluding Remarks

This novel study presents a step-by-step simulation structure for selecting an optimal assumed distribution for the
error term to model volatility persistence through the observation-driven GAS model using the GAS package, with
relevant findings. The structure discloses an organised approach to the Monte Carlo simulation (MCS) experiment
that includes “background of the study (optional), defining the aim of the study, specifying the research questions,
method of implementation, and summarised conclusion”. The method of implementation is a process that consists
of writing the simulation code, setting the seed, setting the true parameter a priori, data generation, and performance
evaluation through meta-statistics. This handy structure is exemplified using financial returns data, which makes it
easily applicable to users for effective MCS studies.

Some of the works that have been used in the literature to generally describe the simulation approach to solving
problems include [59, 17, 30], and [71], among others, but none of these has directly designed a simulation structure
for volatility modelling involving autoregressive models. Specifically, whilst the empirical approach of volatility
modelling involving autoregressive models is pervasive in the literature, an organised simulation framework to
select an optimal conditional distribution for the error term to model volatility has been rarely studied. Hence, this
tutorial study is motivated by the inclination to derive a flexible but robust simulation framework for improved
volatility persistence estimation using the autoregressive GAS model. The findings in this paper may help current
practitioners and upcoming researchers in finance and other sectors involved with volatility modelling to better
understand the relevant simulation steps necessary for an improved volatility persistence estimation through this
model. Hence, this paper has contributed to addressing inadequate literature on the relevant simulation steps needed
to select a suitable conditional error distribution for modelling the persistence of volatility.

Among the findings, this study used both the fat-tails and
√
N consistency experiments to show that the GAS

model with a lower unconditional shape parameter or degree of freedom value (ν̂∗ = 4.1) can generate a dataset
that adequately reflects the behaviour of financial time series data, relevant for volatility modelling. This dynamic
approach, to the best of the authors’ knowledge, has not been used in prior works, and the finding could be a
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relevant guide to users on how to obtain appropriate simulated financial time series data through the GAS model. It
is also observed that to determine the sample size that is adequate for a particular simulation, focus should be put
on the level of accuracy or precision (in this case, on efficiency and/or consistency) of the target statistic of interest.
If a set of sample sizes yields the same efficiency outcomes, the outcome with the best consistency in the set can
be used for a final decision on sample size determination.

Furthermore, in line with the findings of Gilli et al. [35] and Feng and Shi [30], the outcomes from this study
also showed that increasing the samples or sample size does not always reduce the sampling error (RMSE). The
RMSE results may be strongly or weakly

√
N consistent. Moreover, it is observed that the volatility persistence

estimator of the GAS model displays appreciable
√
N consistency. In addition, consistent with the outcomes of

other autoregressive models like the GARCH models (see [30, 68]), this study also revealed that the GAS model
with the Gaussian error distribution is consistent but not efficient when the true error distribution is not Gaussian.
Also, the outcomes of the illustrative studies showed that the AST1 error assumption is the most suitable among
the seven assumed errors to describe the financial returns for volatility persistence modelling. The application of
this (AST1) error distribution with the GAS model revealed a considerably high persistence of volatility in the SA
bond returns. In a broader context, the outcome of this robust estimation approach using the AST1 fitted with the
GAS specification could be useful to investors and financial practitioners in enhancing the accuracy of their risk
measurement for investment decisions and portfolio management.

Lastly, the true parameter recovery (TPR) measure was used as a proxy for the coverage of the MCS experiments.
This measure is a robust but flexible presentation of the concept of the estimator’s coverage, and it is easy to use
for measuring the level of recovery of the true parameter value by the MCS estimates. Its outcomes revealed
considerably good performance of the MCS estimator at recovering the true parameter. Hence, in the absence of a
reliable and accurate means of calculating the coverage of a simulation experiment involving the GAS or any other
model, this study has further largely contributed to providing for such calculation through the proxy TPR measure.
It is expected that this robust structure will adequately guide interested researchers on MCS experiments using the
GAS model and package for selecting an optimal assumed innovation for volatility modelling in finance and other
areas.

5.1. Limitations in the Study

The following limitations are noticed in this study. First, MCS is somewhat complex and time-demanding, hence
it requires adequate planning with critical and analytical reasoning to be properly executed. Second, the quality of
the simulation modelling may depend on the quality of the model used. Third, implementing the experiments may
sometimes involve large computational time. Furthermore, this study shows that a considerably large sample size
may sometimes be required to obtain a reasonable output approximation. It is also noticed that the GAS package
does not have a provision to test for serial correlation in the returns, hence we used the Weighted Ljung-Box (WLB)
statistic through the R rugarch package and the auto.arima() function in the R forecast package to carry out the test.
Lastly, since the package also does not make provision for estimating the coverage of the MCS experiments, this
study used the TPR measure as a proxy for the coverage, and it is observed that the MCS estimates considerably
recovered the true parameters.

5.2. Future Research Interest

For future work, the authors intend to extend the simulation structure ideas to volatility forecasting through the
model.
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