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Abstract The fixed effects Poisson (FEP) model is crucial for count data involving periods and cross-sectional units.
The maximum likelihood (ML) estimation method for the FEP model performs well without outliers, but its performance
degrades in their presence. Therefore, this paper introduces robust estimators for the FEP model. These estimators provide
stable and reliable results even when outliers are present. A Monte Carlo simulation study and an empirical application
were conducted to evaluate the performance of the non-robust fixed Poisson maximum likelihood (FPML) estimator and
the robust estimators: fixed Poisson Huber (FPHR), fixed Poisson Hampel (FPHM), and fixed Poisson Tukey (FPTK). The
findings from the simulation and application indicate that robust estimators outperform the FPML estimator in the presence
of outliers in count panel data. Furthermore, the FPTK estimator is more efficient than the other robust estimators.
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1. Introduction

Count data refers to observations that take nonnegative integer values, these values are generated from counting
because of the occurrence of an event, for example, the number of accidents that occur on the roads, the number of
patents granted to countries and companies, and the number of deaths due to a particular disease. Count data are
widely used in health and economic fields, so researchers are interested in models that deal with this type of data.
In these models, the count data are treated as a response variable [34].

In the econometric literature, the Poisson regression model has been widely used to analyze count data, for
example, in the field of healthcare and medicine, [4] used the Poisson regression model of count to model daily
death cases of COVID-19 in Nigeria. There are many studies interested in the application of the Poisson regression
model in other fields, see, e.g. [21, 32, 35, 30, 29, 8].

In recent years, panel data analysis has become one of the most exciting fields in the econometrics literature,
where panel data aim to study the data of the time dimension and the sectoral dimension to achieve the maximum
benefit from the data. According to [9], the panel dataset refers to the combining of observations on cross-section
and time-series, where the cross-section is observed over several periods.

Panel data regression models have become widely used among applied researchers due to their multiple
advantages compared to cross-section or time-series data models. Therefore, we will discuss one of the most
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important models used in panel data regression modeling, which is the fixed effects model. Many studies used the
fixed effects model; see, e.g. [1, 27, 37, 36, 38, 16, 5].

Despite the various models for count data regression, more progress has been made in improving the count data
models by using panel data regression models. In count panel data models, the dependent variable does not follow
the normal distribution, where the dependent variable takes nonnegative integer values. [18] introduced a variety
of econometric models to deal with count data in panel data models, where the Poisson model with fixed effects
is used by using the ML estimation method. For more studies and examples on count panel data in the fields of
econometrics, political, biological, and health sciences, see, for example, [39, 7, 28, 17, 23, 26, 22, 14, 15].

The existing studies for the robust estimators of the Poisson regression model are limited, where some studies
deal with outliers in the generalized linear models; see [20, 25, 3, 24, 2]. These studies introduced the Poisson
model for the data that contain outliers. The Monte Carlo simulation was performed to compare the performance
of the non-robust ML estimator with some robust estimators when the data suffer from the presence of outliers.
[11] developed a robust generalized quasi-likelihood estimation method to estimate the parameters in longitudinal
models for binary and count data with outliers. The simulation results show that the robust generalized quasi-
likelihood produces unbiased and consistent estimates compared to the classical generalized quasi-likelihood
estimation method.

Although panel data regression models are important, panel data often suffer from data outliers. These outliers
have adverse effects on classical estimation methods, where the studies of robust estimation methods for fixed-
effects panel data regression model are a few. For studies on robust methods for the fixed effects model, see
[12, 6, 33, 13].

In the econometric literature, there is no specific robust method for estimating parameters in FEP. Therefore, in
this paper, we introduce robust estimation methods for the FEP model in case the count panel data contains outliers
based on the weight function for Huber, Hampel, and Tukey Bisquare.

2. Fixed Effects Poisson and ML Estimator

The Poisson panel model is a discrete probability distribution of the count of randomly occurring events for
individuals i in the time t. The probability mass function of the FEP model is given by:

f(yit|Xk,it, αi, β) =
exp(−µit)(µit)yit

yit!
, i = 1, 2, . . . , N ; t = 1, 2, . . . , T (1)

where the dependent variable, or yit values are nonnegative integers, i.e., the model allows for the possibility of
counts where yit ≥ 0. Based on yit, we can write the model in terms of the mean of the response as:

yit = E(yit|Xk,it, αi, β) + uit (2)

where yit is the dependent variable for individuals i at time t, Xk,it is the itth observation on k explanatory
variables, αi represent constant term for cross-sections and differing from unit to unit and fixed over time. The
intercept αi includes the unobserved effect for special variables to the ith individual over time, β is the vector of
the regression coefficients, and uit is the error term of the model.

We can use the ML estimation method to estimate the regression coefficients of the model (1). The joint
probability function for the ith observation for model (1) is given by:

f(yit|αi, β,Xk,it) =

T∏
t=1

{
exp(−µit)

yit!
× (µit)

yit

}
(3)

where µit = exp(δi +X ′
k,itβ), taking the logarithm of joint probability function in (3) and summing over all

individuals, the log-likelihood function of individual i is:
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L(αi, β) = −αiT λ̄i + δiT ȳi + T ȳi lnλit −
T∑
t=1

ln yit! (4)

where δi = lnαi, ȳi = 1
T

∑T
t=1 yit, and λ̄i = 1

T

∑T
t=1 λit. Differentiating with respect to αi and setting to zero, we

get the ML estimator for αi:

α̂i = T ȳi

[
T∑
t=1

exp(X ′
k,itβ)

]−1

(5)

With the first derivative with respect to β and setting to zero for (4), taking into consideration all N observations,
we get:

N∑
i=1

T∑
t=1

X ′
(k,it)(yit − µit) = 0 (6)

The ML estimates for β have no closed-form solution, so numerical search procedures are used to find the ML
estimates for β in (6).

3. Proposed Robust Estimators

Robust regression for the Poisson panel model is an important tool for analyzing count panel data and providing
good results in the presence of outliers. The ML estimates for (6) can be affected when the count panel data contains
outliers. Therefore, we use the M estimation method to obtain stable estimations for the coefficients in the FEP
model.

[19] generalized the median to a larger class of estimators, called M estimators (or ML-type estimators). The
M estimation method is based on minimizing the residuals (disturbances) function, the residuals or disturbances
corresponding to the observation itth in the FEP model are:

Rit(αi, β) = yit − exp(δi +X ′
(k,it)β).

We can write the M estimator for the FEP model by minimizing the objective function ρ over all β as follows:

β̂M = min

N∑
i=1

T∑
t=1

ρ

(
ξit
σ̂

)
(7)

where ρ(·) is a continuous and symmetric objective function that satisfies certain properties. Often ρ(·) can be
formed by using a generalized linear combination of the residuals. ξit =

Rit(αi,β)√
α̂iλit

, λit = exp(X ′
(k,it)β), and σ̂ is

the median absolute deviation defined by:

σ̂ = 1.4826×M (|ξit −M(ξit)|) .

where M is the median. The M estimator of β based on the function ρ(ξit). Differentiating the objective function
ρ with respect to the coefficients β, and setting the partial derivatives to zero in (7), we find:

min
β

N∑
i=1

T∑
t=1

ψ

(
ξit
σ̂

)
∂

∂β
ξit = 0 (8)

where ψ(uit) = ρ′(uit) is the derivative for ρ(uit), where ψ(uit) is called the influence (score) function. If we
define a weight function Wξ(uit) =

ψ(uit)
uit

, we can rewrite (8) by using the weight, and then, we can obtain the
first-order condition for M estimators as following:
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N∑
i=1

T∑
t=1

ξ′itWξ(ξit)ξit = 0 (9)

where ξ′it =
∂
∂β ξit and Wξ(ξit) is an (NT ×NT ) matrix. When solving (9) depending on the weights of Huber,

Hampel, and Tukey bisquare, we can obtain three robust estimators for β in the FEP model. We can write the
weight function of Huber, Hampel, and Tukey bisquare in panel data regression as follows [10]:

• Huber’s weight function:

WHR(ξit) =

{
1, if |uit| < 1.345
1.345
|uit| , if |uit| ≥ 1.345

• Hampel’s weight function:

WHM (ξit) =


1, if |uit| < 2
2

|uit| , if 2 ≤ |uit| < 4

2
[
8/|uit|−1

8−4

]
, if 4 ≤ |uit| ≤ 8

0, otherwise

• Tukey’s weight function:

WTK(ξit) =

{
[1− (uit/4.685)

2]2, if |uit| ≤ 4.685

0, if |uit| > 4.685

We will show the algorithm of the robust M estimation method for the FEP model, which should be used when
the count panel data contain outliers to obtain a robust estimation.

1. Estimating regression coefficients for the count panel data by using the FEP model.
2. Calculate initial parameters (β̂FPML) by using ML estimation method.
3. Calculate residuals value ξit =

Rit(αi,β)√
α̂iλit

.
4. Calculate median absolute deviation σ̂i.
5. Calculate standardized residuals uit = ξit

σ̂i
.

6. Calculate the weight value Wξ(ξit).
7. Estimate β̂FPHR, β̂FPHM , and β̂FPTK estimators based on Wξ(ξit).
8. Repeat steps 3-6 to obtain a convergent value of β̂FPHR, β̂FPHM , and β̂FPTK estimators.
9. Examine the significance of the independent variables on the dependent variable and compare the

performance of these estimators using some criteria, for example, use:

AIC = 2p− 2 logL; BIC = p log(n)− 2 logL.

where p is the number of parameters, n denotes the total number of observations, and L denotes ML value.

It is known that Classical estimation methods are affected by outliers like ordinary least squares and ML.
Therefore, robust estimation methods have been proposed to deal with outliers to obtain good and stable results in
the presence of outliers. To achieve this resistance, we used the M estimation method to achieve high robustness or
high efficiency for estimators, where the M estimator is more efficient than traditional estimators, see, e.g. [41, 31].
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4. Monte Carlo Simulation Study

The Monte Carlo simulation was conducted to examine the effect of outliers on estimates in the FEP model. Some
studies have been relied upon when designing simulation, see [40, 2]. R software is used to conduct our simulation.

4.1. Algorithm of Simulation

The algorithm of the Monte Carlo simulation study for the FEP model is based on the following:

1. We design the panel data set to obtain the total number of observations (n = N × T ) with the following
steps:

(a) The values of cross-section (N) were chosen to be 20, 50, 100, and 200 to represent small, moderate,
and large samples for the number of individuals, respectively.

(b) The values of Time-series (T ) were chosen to be 5, 10, and 20 to represent different sizes for the time
period.

2. We generate count panel data as follows:

(a) The vector of true parameters was chosen to be β = 1.
(b) The independent variables (Xk,it) were generated from uniform distribution on interval (−0.5, 1),

where the number of independent variables was k = 3 and 6.
(c) The dependent variable (yit) was generated from the Poisson distribution with a mean equal to

exp(δi +X ′
k,itβ).

(d) The percentage of outliers (τ%) in the dependent variable was chosen to be 0, 5, 10, and 20. This
percentage is calculated from the total number of observations (n). When the proportion of outliers
equals zero (τ = 0%) this means that count panel data do not contain outliers.

(e) The outliers generated from Poisson distribution with mean equal to 8 IQR[exp(δi +X ′
k,itβ)], where

IQR is the interquartile range.

3. Estimating regression coefficients with the following steps:

(a) Estimate parameters (β̂FPML) by using ML estimation method.
(b) Calculate residuals value ξit =

Rit(αi,β)√
α̂iλit

(c) Calculate median absolute deviation σ̂i.
(d) Calculate standardized residuals uit = ξit

σ̂i
.

(e) Calculate the value of weights WHR(ξit),WHM (ξit), and WTK(ξit).
(f) Estimate regression coefficients: FPHR estimator (β̂FPHR), FPHM estimator (β̂FPHM ), and FPTK

estimator (β̂FPTK) estimator using weighted ML estimation method with weight Wξ(ξit).

4. For all experiments of simulation, we ran 1000 replications.
5. We examine the performance of these estimators with the following steps:

(a) Calculate the mean squared error (MSE) and mean absolute error (MAE) for N,T, P , and τ different
for each parameter separately as follows:

MSE =
1

1000

1000∑
l=1

(β̂l − β)2; MAE =
1

1000

1000∑
l=1

|β̂l − β|.

where β̂l is the vector of estimated values of β at lth experiment of 1000 replication of simulation, while
β is the vector of true parameters, where better estimator is the one has small total MSE and total MAE.

(b) Calculate the mean relative efficiency (MRE) of M estimators for all T and τ for each N separately to
compare the performance of estimators (FPHR, FPHM, and FPTK). The MRE is calculated as:

MRE(β̂R) =
MSE(β̂FPML)

MSE(β̂R)
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where β̂R represents β̂FPHR, β̂FPHM , and β̂FPTK estimators. The best efficient estimator is the one
with the largest MRE.

4.2. Simulation Results

The results of the Monte Carlo simulation for the small, moderate, and large samples have been provided in Tables
1 to 4. Specifically, Tables 1, 2, 3, and 4 presented the total MSE and the total MAE values of all estimators (non-
robust and robust) when the number of explanatory variables equal 3 and 6, with the variation in cross-section sizes
to be 20, 50, 100, and 200, and the time-series periods to be 5, 10, and 20.

According to the results of these tables, the values of MSE and MAE are increasing when both the number of
explanatory variables and the percentage of outliers increase. When the proportion of outliers increases from 5% to
20%, the MSE and MAE values are inflated. But, this increase is somehow large for the FPML estimator and small
for the FPHR, FPHM, and FPTK estimators. In the case of count panel data that do not contain outliers (τ = 0%),
the non-robust estimator (FPML) performs better than robust estimators (FPHR, FPHM, and FPTK) for all values
of N and T.

On the other hand, in general, the MSE and MAE values of estimators decrease when the cross-section and
time-series increase. Where robust estimators (FPHR, FPHM, and FPTK) are better than the non-robust estimator
(FPML) when the count panel data contain outliers for all different values of N and T . The rate of decrease for
MSE and MAE values of robust estimators is greater compared to the non-robust estimator.

Figures 1 and 2 show the MRE for robust estimators (FPHR, FPHM, and FPTK) clustered by time-series (from
5 to 20) and percentages of outliers (from 5% to 20%) for each cross-section separately, when the number of
parameters (k = 3 and 6).

Figure 1. The MRE of the Robust Estimators when k = 3. Figure 2. The MRE of the Robust Estimators when k = 6.

These figures indicate that the MRE values of the FPTK estimator are larger than the MRE values of FPHR and
FPHM estimators for each cross-section value, this means that the FPTK estimator is more efficient than the FPHR
and FPHM estimators in different N , T , and τ values. When N increases for each T and τ , the efficiency of FPTK
increases. In Figure 2, the efficiency of the FPHM increases, but the FPTK estimator is still more efficient than the
FPHM estimator. Efficiency increases when N = 200, T = 20, and τ = 20%.
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Table 1. MSE and MAE Values of Estimators when N = 20.

k = 3 k = 6

T FPML FPHM FPHR FPTK FPML FPHM FPHR FPTK
τ = 0%

5 MSE 0.5798 0.7753 0.8177 0.9552 1.2305 1.6470 1.6948 1.9952
MAE 1.0413 1.1975 1.2259 1.3186 2.1466 2.4806 2.5137 2.7278

10 MSE 0.2299 0.2980 0.3447 0.3904 0.5349 0.6492 0.6918 0.8117
MAE 0.6597 0.7496 0.8029 0.8496 1.4208 1.5696 1.6148 1.7476

20 MSE 0.0997 0.1242 0.1554 0.1705 0.2508 0.2891 0.3295 0.3817
MAE 0.4333 0.4882 0.5411 0.5658 0.9671 1.0467 1.1158 1.2009

τ = 5%

5 MSE 0.8103 0.7057 0.7243 0.7816 2.2280 1.6471 1.7231 1.7798
MAE 1.2647 1.1411 1.1625 1.2054 2.9434 2.4810 2.5403 2.5809

10 MSE 0.4415 0.2815 0.2934 0.3072 1.0587 0.6090 0.6393 0.6474
MAE 0.9418 0.7369 0.7513 0.7690 2.0923 1.5223 1.5608 1.5719

20 MSE 0.3335 0.1285 0.1315 0.1388 0.8037 0.2855 0.3091 0.3092
MAE 0.8616 0.4955 0.5012 0.5165 1.8877 1.0444 1.0796 1.0854

τ = 10%

5 MSE 1.1827 0.7768 0.8191 0.7873 2.9585 1.8420 1.9511 1.7877
MAE 1.5414 1.2108 1.2428 1.2245 3.5191 2.6222 2.7224 2.5887

10 MSE 0.7683 0.3286 0.3502 0.3221 1.8812 0.7623 0.8845 0.7382
MAE 1.3312 0.7915 0.8173 0.7815 2.9313 1.7016 1.8544 1.6808

20 MSE 0.6750 0.1750 0.2244 0.1783 1.5953 0.3520 0.5108 0.3724
MAE 1.3043 0.5755 0.6588 0.5826 2.8619 1.1587 1.4255 1.1985

τ = 15%

5 MSE 1.4485 0.9745 0.9839 0.8952 3.5728 2.4803 2.5432 2.2121
MAE 1.7916 1.3607 1.3775 1.3042 3.9985 3.0688 3.1420 2.8937

10 MSE 0.9887 0.4339 0.4678 0.3624 2.7666 0.9209 1.2691 0.7943
MAE 1.5611 0.9221 0.9653 0.8365 3.7459 1.8762 2.2699 1.7491

20 MSE 1.0594 0.2518 0.3585 0.2040 1.7995 0.5361 0.7058 0.4398
MAE 1.7048 0.7016 0.8742 0.6280 3.1093 1.4665 1.7447 1.3132

τ = 20%

5 MSE 1.6245 1.1568 1.1520 1.0321 3.9201 3.0191 3.0351 2.7369
MAE 1.9318 1.4879 1.4865 1.3865 4.2840 3.4117 3.4608 3.2206

10 MSE 1.4559 0.6799 0.7482 0.5142 2.8165 1.3773 1.5721 1.0837
MAE 1.9660 1.1775 1.2624 1.0000 3.8420 2.3360 2.5729 2.0283

20 MSE 1.3470 0.4721 0.5659 0.3025 2.9461 0.8807 1.3284 0.6138
MAE 1.9484 1.0084 1.1457 0.7727 4.0820 1.9286 2.5241 1.5691

Stat., Optim. Inf. Comput. Vol. 12, September 2024



A. H. YOUSSEF, M. R. ABONAZEL AND E. G. AHMED 1299

Table 2. MSE and MAE Values of Estimators when N = 50.

k = 3 k = 6

T FPML FPHM FPHR FPTK FPML FPHM FPHR FPTK
τ = 0%

5 MSE 0.1984 0.2418 0.2854 0.3133 0.4499 0.5615 0.6172 0.7037
MAE 0.6139 0.6784 0.7369 0.7676 1.3009 1.4528 1.5186 1.6247

10 MSE 0.0879 0.1074 0.1374 0.1499 0.2212 0.2417 0.2827 0.3225
MAE 0.4094 0.4520 0.5130 0.5344 0.9166 0.9617 1.0372 1.1041

20 MSE 0.0427 0.0522 0.0765 0.0785 0.1028 0.1142 0.1463 0.1667
MAE 0.2846 0.3158 0.3825 0.3850 0.6254 0.6606 0.7484 0.7971

τ = 5%

5 MSE 0.4196 0.2476 0.2568 0.2740 1.0666 0.5375 0.5682 0.5868
MAE 0.9281 0.6830 0.6973 0.7164 2.0973 1.4289 1.4683 1.4963

10 MSE 0.3209 0.1188 0.1184 0.1251 0.6133 0.2553 0.2621 0.2680
MAE 0.8483 0.4765 0.4760 0.4900 1.6344 0.9925 1.0019 1.0132

20 MSE 0.2535 0.0611 0.0572 0.0601 0.6704 0.1363 0.1483 0.1422
MAE 0.7970 0.3445 0.3314 0.3404 1.8501 0.7270 0.7588 0.7410

τ = 10%

5 MSE 0.7926 0.3101 0.3412 0.3024 1.8817 0.6374 0.7916 0.6506
MAE 1.3603 0.7651 0.8043 0.7545 2.9716 1.5556 1.7457 1.5750

10 MSE 0.6778 0.1437 0.1907 0.1453 1.5688 0.2977 0.4560 0.3195
MAE 1.3291 0.5272 0.6180 0.5318 2.8781 1.0663 1.3557 1.1078

20 MSE 0.6298 0.0852 0.1284 0.0855 1.1855 0.1892 0.2989 0.1903
MAE 1.3290 0.4090 0.5196 0.4095 2.5512 0.8678 1.1372 0.8718

τ = 15%

5 MSE 1.1143 0.4260 0.4699 0.3462 2.5503 0.8296 1.1151 0.7214
MAE 1.6840 0.9152 0.9718 0.8132 3.6239 1.7791 2.1316 1.6645

10 MSE 1.0054 0.2553 0.3254 0.1868 2.1158 0.4491 0.7415 0.3948
MAE 1.6685 0.7219 0.8428 0.6046 3.4212 1.3273 1.8085 1.2417

20 MSE 0.9242 0.1617 0.2512 0.1150 1.8667 0.3138 0.5841 0.2653
MAE 1.6328 0.5886 0.7791 0.4825 3.2731 1.1515 1.6896 1.0488

τ = 20%

5 MSE 1.4183 0.6922 0.6959 0.4832 3.0953 1.2952 1.6005 0.9734
MAE 1.9507 1.2131 1.2239 0.9732 4.0716 2.2542 2.6155 1.9223

10 MSE 1.1909 0.4749 0.4795 0.2772 2.6454 0.8391 1.1711 0.5713
MAE 1.8418 1.0637 1.0766 0.7620 3.8688 1.9107 2.3732 1.5222

20 MSE 1.2558 0.3867 0.4577 0.1994 2.7385 0.5518 1.1003 0.3710
MAE 1.9170 0.9905 1.1016 0.6663 4.0013 1.5869 2.4231 1.2672
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Table 3. MSE and MAE Values of Estimators when N = 100.

k = 3 k = 6

T FPML FPHM FPHR FPTK FPML FPHM FPHR FPTK
τ = 0%

5 MSE 0.1014 0.1306 0.1599 0.1756 0.2350 0.2759 0.3242 0.3690
MAE 0.4367 0.4960 0.5499 0.5750 0.9431 1.0229 1.1096 1.1790

10 MSE 0.0400 0.0510 0.0735 0.0767 0.1120 0.1241 0.1568 0.1789
MAE 0.2773 0.3107 0.3737 0.3804 0.6514 0.6878 0.7745 0.8271

20 MSE 0.0194 0.0245 0.0450 0.0436 0.0541 0.0584 0.0865 0.1018
MAE 0.1943 0.2170 0.2984 0.2901 0.4532 0.4726 0.5792 0.6281

τ = 5%

5 MSE 0.2971 0.1357 0.1343 0.1445 0.7666 0.2704 0.2916 0.2909
MAE 0.8077 0.5147 0.5114 0.5278 1.8468 1.0135 1.0540 1.0538

10 MSE 0.2449 0.0622 0.0586 0.0629 0.6147 0.1411 0.1537 0.1494
MAE 0.7787 0.3458 0.3346 0.3466 1.7363 0.7404 0.7718 0.7596

20 MSE 0.2447 0.0352 0.0317 0.0336 0.5631 0.0851 0.0910 0.0824
MAE 0.8175 0.2615 0.2450 0.2531 1.7506 0.5823 0.6018 0.5684

τ = 10%

5 MSE 0.6102 0.1754 0.1920 0.1614 1.5098 0.3355 0.4737 0.3501
MAE 1.2414 0.5823 0.6118 0.5550 2.7865 1.1357 1.3710 1.1614

10 MSE 0.6168 0.0932 0.1297 0.0883 1.2821 0.1935 0.3136 0.2008
MAE 1.3130 0.4322 0.5206 0.4173 2.6617 0.8755 1.1629 0.8953

20 MSE 0.5714 0.0648 0.0973 0.0585 1.3364 0.1286 0.2716 0.1485
MAE 1.2871 0.3726 0.4749 0.3487 2.7788 0.7348 1.1463 0.7999

τ = 15%

5 MSE 0.8902 0.2764 0.2992 0.1996 2.2230 0.5100 0.8110 0.4425
MAE 1.5572 0.7546 0.7962 0.6243 3.4894 1.4140 1.8840 1.3187

10 MSE 1.0005 0.1725 0.2715 0.1220 2.1219 0.3083 0.6454 0.2781
MAE 1.6991 0.6068 0.8095 0.4971 3.4965 1.1300 1.7838 1.0726

20 MSE 0.9287 0.1465 0.2342 0.0952 1.9320 0.2388 0.5557 0.2098
MAE 1.6531 0.5948 0.7890 0.4612 3.3688 1.0493 1.7307 0.9802

τ = 20%

5 MSE 1.2038 0.5302 0.5045 0.3218 2.7721 0.8529 1.2223 0.5951
MAE 1.8399 1.1151 1.0856 0.8109 3.9532 1.8924 2.4035 1.5462

10 MSE 1.1400 0.4200 0.4278 0.2214 2.6668 0.6182 1.0568 0.3933
MAE 1.8225 1.0439 1.0599 0.7100 3.9449 1.7004 2.3656 1.3033

20 MSE 1.2459 0.3702 0.4323 0.1736 2.7922 0.4737 1.0498 0.2973
MAE 1.9211 1.0086 1.1022 0.6552 4.0677 1.5466 2.4357 1.1857
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Table 4. MSE and MAE Values of Estimators when N = 200.

k = 3 k = 6

T FPML FPHM FPHR FPTK FPML FPHM FPHR FPTK
τ = 0%

5 MSE 0.0507 0.0604 0.0886 0.0905 0.1177 0.1273 0.1623 0.1837
MAE 0.3112 0.3390 0.4124 0.4149 0.6683 0.6966 0.7890 0.8390

10 MSE 0.0220 0.0259 0.0493 0.0479 0.0547 0.0608 0.0949 0.1073
MAE 0.2030 0.2224 0.3132 0.3049 0.4564 0.4848 0.6084 0.6472

20 MSE 0.0106 0.0128 0.0344 0.0307 0.0284 0.0298 0.0604 0.0698
MAE 0.1424 0.1574 0.2703 0.2494 0.3284 0.3385 0.4953 0.5324

τ = 5%

5 MSE 0.2222 0.0712 0.0642 0.0690 0.5754 0.1490 0.1546 0.1539
MAE 0.7290 0.3721 0.3510 0.3642 1.6680 0.7622 0.7748 0.7739

10 MSE 0.2217 0.0361 0.0303 0.0322 0.5665 0.0828 0.0887 0.0828
MAE 0.7748 0.2657 0.2401 0.2473 1.7535 0.5755 0.5941 0.5721

20 MSE 0.2336 0.0254 0.0202 0.0218 0.5870 0.0599 0.0672 0.0590
MAE 0.8167 0.2264 0.1980 0.2058 1.8304 0.5005 0.5313 0.4923

τ = 10%

5 MSE 0.5153 0.1101 0.1209 0.0920 1.2956 0.1994 0.3205 0.2107
MAE 1.1858 0.4695 0.4965 0.4238 2.6723 0.8884 1.1729 0.9168

10 MSE 0.5240 0.0748 0.0918 0.0581 1.1483 0.1326 0.2397 0.1348
MAE 1.2294 0.4028 0.4559 0.3448 2.5697 0.7465 1.0669 0.7519

20 MSE 0.5683 0.0479 0.0842 0.0450 1.2984 0.0972 0.2401 0.1184
MAE 1.2942 0.3337 0.4645 0.3206 2.7670 0.6681 1.1326 0.7525

τ = 15%

5 MSE 0.8257 0.2319 0.2414 0.1382 1.9741 0.3291 0.6105 0.2827
MAE 1.5344 0.7299 0.7501 0.5330 3.3638 1.1680 1.7191 1.0767

10 MSE 0.9035 0.1627 0.2306 0.0980 1.9786 0.2302 0.5518 0.2029
MAE 1.6292 0.6331 0.7804 0.4703 3.4087 1.0242 1.7205 0.9590

20 MSE 0.9356 0.1283 0.2212 0.0791 2.0499 0.1853 0.5544 0.1788
MAE 1.6668 0.5823 0.7886 0.4430 3.4903 0.9649 1.7767 0.9525

τ = 20%

5 MSE 1.1101 0.4742 0.4261 0.2516 2.5673 0.6716 1.0323 0.4262
MAE 1.7955 1.1161 1.0511 0.7567 3.8645 1.7785 2.3232 1.3572

10 MSE 1.2217 0.3803 0.4250 0.1779 2.5312 0.5357 0.9705 0.3279
MAE 1.9014 1.0234 1.0911 0.6645 3.8686 1.6621 2.3336 1.2544

20 MSE 1.2124 0.3488 0.4134 0.1583 2.6468 0.4293 0.9816 0.2675
MAE 1.9012 1.0010 1.0957 0.6550 3.9713 1.5311 2.3880 1.1833
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5. Empirical Application

In this application, we analyzed the patent applications for 18 high-income countries in Europe over the period
from 2005 to 2020, these countries investing substantial amounts in research and development (R&D). The count
panel data was obtained from the World Bank website. In our study, the response variable (yit) is the number of
patent applications (count panel), while the independent variables include: The number of researchers in R&D per
1000 people (X1,it), the logarithm of the R&D expenditures (X2,it), the logarithm of the gross domestic product
per capita (X3,it), the logarithm of the information and communication technology goods imports (X4,it), the
logarithm of the information and communication technology goods exports (X5,it), and unemployment rate (X6,it)
which is a percentage of the total labor force.

5.1. Application Results

Table 5 presents some descriptive statistics of the variables selected in our study. In this application, we will use
the algorithm described in Section 3 to obtain the results of the estimators.

Table 5. Descriptive Statistics of the Variables

Variables Mean Median Min. Max. Std. Dev.

yit 1748.35 786.00 15.00 14748.00 3189.38
X1,it 4.05 3.74 1.31 7.93 1.73
X2,it 26.51 26.91 22.92 29.50 1.67
X3,it 10.35 10.47 8.94 11.73 0.67
X4,it 27.18 27.42 24.57 29.55 1.26
X5,it 26.69 26.89 22.96 29.54 1.48
X6,it 0.08 0.07 0.02 0.26 0.04

Figure 3 shows a box plot of patents for countries under study. This figure shows that the count panel data for
the response variable contains outlier values.

Figure 3. The Box plot of the Number of Patents.
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Table 6 presents the results of non-robust and robust estimates for the FEP model. It can be seen that all the
explanatory variables for FPHM, FPHR, and FPTK estimators have statistically significant effects on the response
variable, so the estimated coefficients are suitable for the robust FEP model. In the non-robust FEP model, it can
be noted that all the explanatory variables are statistically significant except X4,it.

Table 6. Estimates of Fixed Effects Poisson Panel Data Model

FPML FPHM FPHR FPTK

Variables Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

Intercept -18.425* 0.115 -9.184* 0.139 -11.035* 0.137 -8.962* 0.145
X1,it -0.979* 0.006 -0.570* 0.008 -0.664* 0.008 -0.524* 0.009
X2,it 1.075* 0.005 0.660* 0.005 0.733* 0.005 0.651* 0.005
X3,it -0.243* 0.006 -0.085* 0.007 -0.109* 0.006 -0.072* 0.007
X4,it -0.004 0.003 -0.022* 0.004 -0.008** 0.004 -0.026* 0.004
X5,it 0.032* 0.002 0.040* 0.003 0.035* 0.003 0.040* 0.003
X6,it 1.994* 0.166 10.467* 0.292 6.426* 0.272 12.746* 0.314

Note: *, ** indicate that the level of significance is at 1% and 5%, respectively.

Based on the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) presented in
Figure 4, we concluded that the robust estimators FPHM, FPHR, and FPTK performed better than the non-robust
estimator FPML, where the best estimator is the estimator that has a minimum value of AIC or BIC.

Figure 4. The AIC and BIC Values for Estimators

6. Conclusions

This paper presented a robust estimation method for the FEP model for analyzing count panel data with outliers.
We have introduced robust estimators based on the M estimation method, including FPHM, FPHR, and FPTK, and
compared these with the non-robust FPML estimator.

To examine the performance of the estimators, we conducted a Monte Carlo simulation study and a practical
empirical application to patent data from high-income European countries. The simulation result shows that, in
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case there are no outliers, the FPML estimator is better, while the robust estimators have lower performance. In the
presence of outliers, the weighted ML estimators (FPHM, FPHR, and FPTK) are more effective compared to the
ML estimator. The result of the application shows that robust estimators are better than non-robust estimators with
outliers. In addition, FPTK is more efficient than FPHM and FPHR.

This study is expected to provide useful information for both researchers and policy makers involved in scientific
research and development. Furthermore, it improves the statistical methods used to analyze the count panel data,
particularly when dealing with outliers.
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