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Abstract Analyzing the spectral and spatial characteristics of Hyperspectral Imaging (HSI) in a three-dimensional space is
a challenging task. Recently, there have been developments in 3D feature extraction methods based on tensor decomposition,
which allow for the effective utilization of both global and local information in HSI. These methods also explore the
inherent low-rank properties of HSI through tensor decomposition. In this paper, we propose a new approach called variable
randomized T-product decomposition (Vrt-SVD), which is a variation of Tensor Singular Spectral Analysis. The goal of this
approach is to improve the efficiency of tensor methods for feature extraction and reduce artifacts of image processing. By
using a randomized algorithm based on the variable t-SVD, we are able to capture both global and local spatial and spectral
information in HSI efficiently, which enables us to explore its low-rank characteristics. To evaluate the effectiveness of the
extracted features, we use a Support Vector Machine (SVM) classifier to assess the accuracy of image classification. By
conducting numerous numerical experiments, we provide strong evidence to show that the proposed method outperforms
several advanced feature extraction techniques.
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1. Introduction

Hyperspectral images offer comprehensive spectral information across numerous spectral channels (also referred
to as dimensions or bands). This augmented dimensionality enables a substantial enhancement in the data’s
information content[15][10]. Consequently, it becomes feasible to distinguish between various classes of interest
that possess slightly varied spectral characteristics. Conventional analytical techniques commonly used for
grayscale images frequently prove inadequate when applied to hyperspectral images. HSI data are often affected by
uncontrollable external factors such as environmental noise, as well as the redundancy and overlap of information
in hyperspectral data due to the strong correlation of neighboring bands, or the difficulty of obtaining sufficient
training samples, which will lead to unsatisfactory classification performance. Therefore, it becomes crucial to
identify an effective feature extraction method that can enhance the distinguishability between various categories
in HSI classification[24][5]. In the classification of HSI, the methods for extracting features mainly consist of
spectral feature extraction[15], spatial feature extraction[1][17], 3D spatial-spectral feature extraction[11][8][5],
and feature extraction based on image segmentation[29][30][12]. Spectral feature extraction methods are based on
the spectral data of each pixel, and they effectively extract the relevant data based on certain rules. Spatial feature
extraction primarily focuses on the spatial characteristics of HSI and is typically used in conjunction with spectral
feature extraction. 3D spatial-spectral feature extraction involves directly extracting the three-dimensional data
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of HSI to maximize the preservation of the original data’s information. Image segmentation theory is applied to
segment HSI based on the similarity between pixels, and then categorize them.

Scholars have proposed various feature extraction techniques in recent years. These techniques include Principal
Component Analysis (PCA)[16], which focuses solely on spectral information and disregards the potential
contribution of spatial data. PCA has advantages such as model determinism, simple algorithms, and ease of
understanding and processing. However, it neglects the spatial distribution information of hyperspectral data and
fails to reveal the internal structure of the data. Additionally, it is prone to overlooking important information
when characterizing fine substances by disregarding the latter principal components. As a result, there has been
significant attention given to the concept of integrating spatial and spectral information for feature extraction in
order to enhance classification performance. However, these methods often process spatial and spectral information
independently, overlooking the interdependence of spectral continuity and spatial similarity within HSI data. To
overcome this limitation, approaches for extracting the spatial characteristics of three-dimensional spectral data
have also been introduced.

In 2015, a two-dimensional extension of generalized spectral analysis (2DSSA) was proposed by Zabalza et
al. [28] to effectively extract spatial information. The application of 2DSSA to HSI involved decomposing each
band image into different trends, oscillations, and noises. By using trends and selected oscillations as features,
the reconstructed signal demonstrated strong noise suppression ability and robustness, making it effective for data
classification. However, when applying SSA for feature extraction in HSI, the conventional pixel-based 1DSSA
failed to produce satisfactory results. Similarly, the two-dimensional SSA based on band images was not feasible.
To address this issue, Fu et al. [4] proposed a novel method called 1.5DSSA in 2020 for spectral spatial feature
extraction in HSI. This method utilized pixels from small windows as spatial information. For each sequentially
acquired pixel, similar pixels were located within the pixel-centered window to form an extended trajectory matrix
for feature extraction. In HSI, most feature extraction and data classification methods rely on calibration data sets.
However, using calibration data sets not only requires additional work but also leads to information loss of deleted
bands. To overcome these challenges, Ma et al. [19] proposed a new framework in 2021 for spatial spectral feature
extraction, known as multiscale two-dimensional singular spectrum analysis and principal component analysis.
This framework aimed to achieve robust feature extraction and data classification for HSI. Firstly, multiscale
2DSSA was applied to the multi-scale spatial features of each spectral band of HSI to extract and determine the
changing trend within the window. Then, the extracted trend signals of various scales were used as input features
for principal component analysis in the spectral domain. This step aimed to reduce dimensionality and extract
spatial spectral features. The spatial spectral features of each scale were classified separately and then fused at the
decision-making level to improve efficiency.

The traditional approaches to singular spectral analysis in the spectral domain and spatial domain suffer from
certain drawbacks, including being affected by window size, requiring significant computational resources for large
windows, and not being able to capture spatial features of joint spectral analysis. To address these limitations, a
new method called super-pixel adaptive SSA was introduced by Sun et al. [25]. This method utilizes local spatial
information from HSI to perform adaptive SSA on super-pixels. By extracting local features, especially in HSI, the
method improves the ability to characterize objects in the image.

In 2022, Fu et.al.[6] proposed a method for extracting features and classifying spectral-spatial hyperspectral
images. The method combines multiscale two-dimensional singular spectral analysis fusion with Principal
Component Analysis and Segmented-PCA(SPCA). This approach involves separately reducing the spectral
dimension using PCA and SPCA. Then, multiscale two-dimensional SSA is used to extract spatial features
at different scales from the images after dimension reduction by SPCA. PCA is further applied to reduce the
dimensions, and the resulting multiscale spatial features are combined with the global spectral features obtained
through PCA to form multiscale spectral-spatial features. In 2022, Fu et.al.[7] also proposed an enhanced
two-dimensional singular spectrum analysis (E2DSSA) method for extracting spatial background and structural
information from selected frequency bands. This method aims to mitigate the impact of intra-class variability and
spatial domain noise . In 2023, Fu et.al.[5] introduced a Tensor Singular Spectrum Analysis (TensorSSA) method
for extracting global and low-rank features from HSI. TensorSSA utilizes an adaptive embedding operation to
construct the trajectory tensor, which includes the entire HSI. This operation takes advantage of spatial similarity
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while preserving and enhancing the low rank of the original tensor. The trajectory tensor captures both global
and local spatial and spectral information, but significantly increases the size compared to the original HSI. The
increase in size depends on the adaptive embedding parameter, which affects the computational time for subsequent
t-SVD decomposition [13, 14]. Inspired by TensorSSA, our work aims to address this challenge by introducing
randomized algorithms and zero padding techniques to reduce computation time and improve accuracy.

The use of adaptive embedding in t-SVD leads to a larger tensor, which increases the computational time
required for decomposition. Additionally, TensorSSA, a t-SVD-based tensor decomposition method, may require
zero padding to achieve accurate results in signal and image processing. In our approach, we also employ zero
padding to ensure accuracy, but this results in an expansion of the trajectory tensor size. As a result, additional time
and resources are needed for t-SVD, making deterministic t-SVD less practical for large-scale datasets. To mitigate
these challenges, we introduce randomized methods[3, 9, 23, 26, 27] to reduce time costs, taking into account the
low-rank nature of the trajectory tensor. However, simple randomized methods may not strike the optimal balance
between time and accuracy. So we use the rt-SVD algorithm with Krylov subspace iteration to enhance feature
extraction accuracy. In this paper, we present a novel method called variable T-product randomized algorithm(Vrt-
SVD), which is a variation of Tensor Singular Spectral Analysis. This method is designed to extract global and
low-rank features from Hyperspectral Images (HSI) efficiently. Specifically, we first create the trajectory tensor
that spans the entire HSI using an adaptive embedding operation. Then, we employ Vrt-SVD to obtain global and
local spatial and spectral information, enabling the exploration of low-rank features. We evaluate the effectiveness
of feature extraction by measuring image classification accuracy using a Support Vector Machine (SVM) classifier.
The experimental results validate the effectiveness of our proposed algorithm.

To summarize, this paper presents two main contributions. Firstly, we propose Vrt-SVD, a novel method for
extracting 3D features from hyperspectral images (HSI) using TensorSSA. This method aims to capture the overall
spectral-spatial correlation in HSI. Through experiments on four publicly available datasets, we demonstrate the
superiority of Vrt-SVD, even when dealing with limited training samples. Secondly, we develop a technique that
combines Vrt-SVD with a trajectory tensor. This is achieved by utilizing variable T-product and Krylov subspace
iteration. This approach allows for the joint characterization of global low-rank features within the HSI. The
proposed algorithm efficiently solves singular values in the variable Fourier domain and provides the best low-
rank approximation of the trajectory tensor through truncation.

2. Preliminary

2.1. Variable T-product

Definition 1 (Variable product of two p-dimensional vectors )[21] For any a,b ∈ Rp or Cp, then

(a ⊙v b)(k) =
∑

a(i)b(j) : i+ j − k − 1 = 0 mod(v), i, j = 1, · · · , p,

where k = 1, · · · , p. We call a ⊙v b the variable product of a and b.
Definition 2 (Variable T-product of two third-order tensors in the real number field)[21]

The variable T-product of A = (ail) ∈ Rm×q×p,B = (blj) ∈ Rq×n×p is defined as C = A ∗v B, and

cij =
q∑

l=1

ail ⊙v blj .

If v = p, then the variable T-product ∗v degenerates to the T-product ∗.
Definition 3 (Zero-Padding Discrete Fourier Transform )[21]

Let T be a Zero-Padding Discrete Fourier Transform matrix (ZDFT), and
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where wv = e−
2πi
v , and i =

√
−1 is the imaginary part unit, then T consists of the first p columns of the v × v

discrete Fourier transform DFT matrix Fv, hence T is column full rank p, and THT = vIp, where Ip is the p× p
identity matrix. For any a ∈ Cp, Zero-Padding the vector a yields ã = (a; 0) ∈ Cv, then Ta = Fvã. As a result, T
is said to be a ZDFT matrix and the variable T-product can be interpreted by a ZDFT matrix.
Theorem 1[21] Assume A = (ail) ∈ Rm×q×p,B = (blj) ∈ Rq×n×p, Let A0 = (ail) ∈ Rm×q×v,B0 = (blj) ∈
Rq×n×v be the Zero-Padding correspondence tensor of A and B. For any k = p+ 1, · · · , v, there are zero-positive
slices ofA0(:, :, k) and B0(:, :, k) and

A ∗v B = (A0 ∗ B0)(:, :, [1 : p]),

where ∗ is T-product.
Definition 4 (Conjugate transpose of tensor)[13] Given a tensorA ∈ Rm×q×p, make conjugate transpositions of
all the forward slices of A. Then reverse the order of the forward slices from the 2nd to the pth transposition to
obtain its conjugate transposition A⊤ ∈ Rq×m×p.
Definition 5 (Identity tensor [13])

The tensor J ∈ Ri×i×p where the first frontal slice is a Identity matrix of i× i and the other forward slices are
all zero matrices is called the Identity tensor.
Definition 6 (f-diagonal tensor [13])

A tensor is said to be f-diagonal if all its frontal slices are diagonal matrices.
Definition 7 (orthogonal tensor [13])

A tensorA ∈ Rm×q×p is an orthogonal tensor if

A⊤ ∗v A = A ∗v A⊤ = J ,

Definition 8 t-SVD based on variable T-product[21]
the tensor A =∈ Rm×q×p whose t-SVD based on variable T-product is

A = U ∗v S ∗v V⊤,

where S ∈ Rm×q×p is f-diagonal tensor, U ∈ Rm×m×p and V ∈ Rn×n×p is orthogonal tensor, ∗v is variable
T-product.
Definition 9 (Variable Tensor tuble Rank [21])

Let Ĉ = fftp2v(C, [], 3) denote the tensor C ∈ Rm×n×p as ZDFT along mode 3, and C = ifftv2p(Ĉ, [], 3) denote
the tensor Ĉ as inverse zero-additive Discrete Fourier Transform (IZDFT) along mode 3, and write

Ĉ = diag(Ĉ(1), Ĉ(2), · · · , Ĉ(v)) ∈ Cmv×mv,

denotes the block diagonal array, then the variable tubel rank of the tensor C is defined as

Rankv(C) = max{Rank(Ĉ(1)), Rank(Ĉ(2)), · · · , Rank(Ĉ(v))},

clearly, when v = p, Rankv(C) degenerates to a tuble rank Rankt(C).
The main symbols used in this paper are shown in Table 1.

Stat., Optim. Inf. Comput. Vol. 12, March 2024



534 AN EFFECTIVE RANDOMIZED ALGORITHM FOR HSI FEATURE EXTRACTION

Table 1. Main notations.

Symbols Notation
x scalar
x vector
X matrix
X tensor
X⊤ transpose of X
X† pseudo-inverse of X
⊙v variable product.
∗v variable T-product

2.2. Randomized block Krylov Iteration

In situations where achieving the highest level of accuracy is crucial, simple randomized methods can be
insufficient, despite their ability to reduce computational time for singular value decomposition in low-rank data. In
order to address this issue, subspace iteration methods have been developed to improve accuracy. One such method
is the block Krylov iteration technique, introduced by Musco et al.[20], which is particularly effective for data
with small singular value gaps. This method has been shown to be robust to noise and outperforms standard power
iteration techniques in experimental. Qiu et al.[22] applied the block Krylov iteration to the Tucker decomposition
and confirmed its resilience to noise, highlighting its advantages in enhancing the accuracy of data analysis .

Algorithm 1 Randomized block Krylov Iteration(rBKI)[20]

Input: matrix A ∈ Rm×n, target rank r, oversampling parameter p.
Output: U, S, V

1: Create random Gaussian matrix Ω ∈ Rn×(r+p).
2: Construct Krylov space K = [A⊤AΩ, (A⊤A)2Ω, · · · , (A⊤A)qΩ].
3: Calculate [Q,∼] = qr(K, 0).
4: Calculate Y = AQ.
5: Set (U, S, V ) = svd(Y, 0).
6: U = U(:, 1 : r).S = S(1 : r, 1 : r), V = QV (:, 1 : r).

2.3. TensorSSA

In order to improve the effectiveness of HSI 3D feature extraction and reduce computational cost, Fu et.al.[5]
designed a new 3D feature extraction framework based on the T-product, called TensorSSA. It includes four steps:
(1) adaptive embedding; (2) t-SVD decomposition; (3) low rank representation; (4) reprojection. In TensorSSA,
the input HSI data is represented by a 3D tensor X , where t, h and b represent the width, height, and band number,
respectively. The overall architecture of the TensorSSA method is shown in Figure 1.

In order to construct the TensorSSA model, it is essential to effectively integrate both spatial and spectral
information. The utilization of spatial information plays a crucial role in this process. Many spatial methods, such
as 2DSSA, typically use fixed rectangular windows for extracting features. However, this approach may not be
suitable for all objects in hyperspectral images, especially those with irregular shapes and varying sizes. Spatial
self-similarity is a common characteristic in hyperspectral imagery. In response to this, Fu et.al.[5] proposes the
use of an adaptive embedding window that aligns with spatial self-similarity, which is in line with the principles
of TensorSSA. The adaptive window enables the extraction of features that can accommodate the irregular shapes
and varying sizes of objects in hyperspectral data. The comparison between 2DSSA and TensorSSA is illustrated
in Figure 2.

Utilizing an adaptive embedding window is evidently more versatile compared to the fixed window approach
employed by 2DSSA, which makes it better suited to adapt to the various spatial structures found in HSI.
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Figure 1. Overall framework of TensorSSA method[5]

Figure 2. Embedding comparison of 2DSSA(a) and TensorSSA(b)[5]

Specifically, for a specific pixel xi ∈ Rb×1(i = 1, 2, · · · , t× h) to be processed, a search area of w × w is set as
the center, and l − 1 pixels with a high similarity to it are found in the search area (l is set to any size smaller than
w × w), where similarity is measured by the normalized Euclidean distance, so the matrix Ni ∈ Rl×b is obtained,
which is taken as the lateral slice of the trajectory matrix J ∈ Rl×th×b, and the obtained matrix has the following
characteristics: (1) It contains the spectral and spatial information of the entire HSI; (2) The forward slice is a
quasi-Hankel matrix; (3) Because of the high correlation between the pixel similarity in mode 1 and the spectrum
in mode 3, the trajectory tensor J has the property of low rank.

After obtaining the trajectory tensor by adaptive embedding, TensorSSA adopts a deterministic SVD
decomposition in the DFT domain as follows.

Algorithm 2 Truncated t-SVD

Input: tensor J ∈ Rl×th×b, truncation parameter Rankk.
Output: U ′,S ′,V ′

1: J̄ = fft(J , [], 3).
2: for i = 1, 2, · · · , b do
3: [Ū(:, :, i), S̄(:, :, i), V̄(:, :, i)] = svd(J̄(:, :, i),′ econ′).
4: end for
5: S = ifft(S̄, [], 3),V = ifft(V̄, [], 3),U = ifft(Ū , [], 3).
6: S ′ = S(1 : Rankk, 1 : Rankk, :),V ′ = V(:, 1 : Rankk, :),U ′ = U(:, 1 : Rankk, :).

The t-SVD Algorithm 2 adopted by TensorSSA is a tensor decomposition method based on discrete Fourier
transform (DFT), and it may not be enough to directly apply DFT in signal processing and image processing.
Therefore, zero padding [18] and [2] is needed to obtain accurate results, otherwise artifacts may occur. In our
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method, to obtain more accurate results, we need to add zero to the trajectory tensor, which will lead to a larger
size of the third module. The algorithm is summarized in Algorithm 3:

Algorithm 3 Variable truncated t-SVD (Vt-SVD)

Input: tensor J ∈ Rl×th×b, zero padding parameter v, truncation parameter Rankv.
Output: U ′,S ′,V ′

1: J̄ = fftp2v(J , [], 3).
2: for i = 1, 2, · · · , v do
3: [Ū(:, :, i), S̄(:, :, i), V̄(:, :, i)] = svd(J̄(:, :, i),′ econ′).
4: end for
5: S = ifftv2p(S̄, [], 3),V = ifftv2p(V̄, [], 3),U = ifftv2p(Ū , [], 3).
6: S ′ = S(1 : Rankv, 1 : Rankv, :),V ′ = V(:, 1 : Rankv, :),U ′ = U(:, 1 : Rankv, :).

To compare the zero-padding transformations, we give the randomized Algorithm 4 for the T-product in the DFT
domain, the algorithm will be given in the next section.

Algorithm 4 t-SVD with Randomized block krylov iteration(rBKI-SVD)

Input: tensor J ∈ Rl×th×b, iteration q, oversampling parameter p, rank r, k = r + p.
Output: U ′,S ′,V ′

1: J̄ = fft(J , [], 3).
2: create random Gaussian tensor Ω = zeros(th, k, n3),Ω(:, :, 1) = randn(th, k),ΩV = fft(Ω, [], 3) .
3: for i = 1, 2, · · · , b do
4: Ki = [J̄ (:, :, i)′J̄ (:, :, i)ΩV (:, :, i), . . . , (J̄ (:, :, i)′J̄ (:, :, i))qΩV (:, :, i)] ∈ Rth×k.
5: (Qi,∼) = qr(Ki, 0) ∈ Rth×k.
6: Mi = J̄ (:, :, i)Qi ∈ Rl×k.
7: [Ū(:, :, i), S̄(:, :, i), V̄(:, :, i)] = svd(Mi, 0), Ū ∈ Rl×k, S̄ ∈ Rk×k, V̄ ∈ Rk×k.
8: V̄(:, :, i) = QiV̄(:, :, i).
9: end for

10: S = ifft(S̄, [], 3),V = ifft(V̄, [], 3),U = ifft(Ū , [], 3).
11: S ′ = S(1 : Rankv, 1 : Rankv, :),V ′ = V(:, 1 : Rankv, :),U ′ = U(:, 1 : Rankv, :).

3. Proposed algorithm

3.1. T-SVD decomposition based on variable T-product randomized algorithm

The trajectory tensor J derived by adaptive embedding maintains and enhances the low-rank nature of the original
tensor. However, due to the expansion of the third mode and the l-fold increase in the size of the trajectory tensor in
comparison to the original HSI, it becomes necessary to decompose the trajectory tensor using randomized t-SVD
based on a variable T-product. This is performed to extract the intrinsic characteristics of the HSI. The key steps in
this process are as follows. Let J̄ = fftp2v(J , [], 3) be the transformation tensor of J , where fftp2v(J , [], 3)
represents the ZDFT along the third dimension of the tensor. The generated random Gaussian tensor is also
subjected to ZDFT along the third dimension. Second, in the variable discrete Fourier domain, similar to the matrix
situation, a Krylov subspace K is constructed corresponding to the forward slice of each transformed tensor, and
the K is subjected to economical QR decomposition to obtain Q, then the row information of each forward slice is
extracted after the trajectory tensor transformation, which is recorded as Mi, that is,

Mi = J̄ (:, :, i)Qi ∈ Rl×k.
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SVD is then performed,

[Ū(:, :, i), S̄(:, :, i), V̄(:, :, i)] = svd(Mi, 0), Ū ∈ Rl×k, S̄ ∈ Rk×k, V̄ ∈ Rk×k.

The corresponding U(:, :, i),S(:, :, i),V(:, :, i) is taken as each frontal slice of Ū , S̄, V̄ , and finally, the IZDFT is
proceed,

S = ifftv2p(S̄, [], 3),V = ifftv2p(V̄, [], 3),U = ifftv2p(Ū , [], 3).

3.2. Low rank representation

In order to characterize the low rank of the tensor more effectively, the characteristic tensors U ,S,V obtained by
t-SVD based on variable T-product randomized algorithm are truncated to obtain the best low rank approximation
of the original trajectory tensor, and thus the ideal tensor variable tubal rank is defined:

Rankv(J) ≤ min{th, l};
S ′ = S(1 : Rankv, 1 : Rankv, :);

V ′ = V(:, 1 : Rankv, :);

U ′ = U(:, 1 : Rankv, :);

Thus a new trajectory tensor is obtained:

JRankv
= U ′ ∗v S ′ ∗v V ′⊤ ∈ Rl×th×b,

where ∗v is a variable T-product, and tensor JRankv
is a low rank tensor, which can be regarded as the rank

Rankv approximation of the original trajectory tensor J , and Rankv determines the amount of information used
for tensor reconstruction. The proposed algorithm is summarized in Algorithm 5, and the computational complexity
is summarized in Table 2.

Algorithm 5 Variable t-SVD with Randomized block krylov iteration(Vrt-SVD)

Input: tensor J ∈ Rl×th×b, iteration q, oversampling parameter p, rank r, k = r + p, zero padding parameter v.
Output: U ′,S ′,V ′

1: J̄ = fftp2v(J , [], 3).
2: Create random Gaussian tensor Ω = zeros(th, k, n3),Ω(:, :, 1) = randn(th, k),ΩV = fftp2v(Ω, [], 3) .
3: for i = 1, 2, · · · , v do
4: Ki = [J̄ (:, :, i)′J̄ (:, :, i)ΩV (:, :, i), . . . , (J̄ (:, :, i)′J̄ (:, :, i))qΩV (:, :, i)] ∈ Rth×k.
5: (Qi,∼) = qr(Ki, 0) ∈ Rth×k.
6: Mi = J̄ (:, :, i)Qi ∈ Rl×k.
7: [Ū(:, :, i), S̄(:, :, i), V̄(:, :, i)] = svd(Mi, 0), Ū ∈ Rl×k, S̄ ∈ Rk×k, V̄ ∈ Rk×k.
8: V̄(:, :, i) = QiV̄(:, :, i).
9: end for

10: S = ifftv2p(S̄, [], 3),V = ifftv2p(V̄, [], 3),U = ifftv2p(Ū , [], 3).
11: S ′ = S ′(1 : Rankv, 1 : Rankv, :),V ′ = V(:, 1 : Rankv, :),U ′ = U(:, 1 : Rankv, :).

Table 2. Computational complexity of methods t-SVD, Vt-SVD, rBKI-SVD and Vrt-SVD.

Method Computational Complexity
t-SVD O(l2 × th× b)

Vt-SVD O(l2 × th× v)
rBKI-SVD O(q2 × k2 × th× b)
Vrt-SVD O(q2 × k2 × th× v)
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4. Numerical experiment

In this section, we evaluate the effectiveness of the proposed method on four public datasets†: the Indian Pines(IP),
Pavia University(PU), and MUUFL Gulfport(MG), Salinas-A(SA). Their dimensions are 145× 145× 200, 610×
340× 103, 325× 337× 64, and 86× 86× 224, respectively. The parameters were set as follows. For the IP and
SA datasets, we used a search area w of 11× 11 and l taken as 49. For the PU dataset, we took 5× 5 for w and 9
for l. For the MG dataset, we used two different sets of parameter values - one with w = 7× 7 and l = 25, and the
other with w = 5× 5 and l = 9.

The implementation of the experiment was carried out using Matlab R2016a on a laptop running Windows 10.
The laptop was equipped with an AMD Ryzen 7 5800H 3.2GHz CPU and 16GB of RAM.
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Figure 3. These figures show the overall accuracy obtained for TensorSSA and Vt-SVD and Vrt-SVD with progressively
increasing zero-padding parameter v. Figure (a) shows the overall precision with a sampling rate of 2% in the IP data set,
Figure (b) shows the overall precision with a sampling rate of 1% in the MG data set, Figure (c) shows the overall precision
with a sampling rate of 1% in the PU data set, and Figure (d) shows the overall accuracy with a sampling rate of 0.01% in
the SA data set.

4.1. Find the best zero-padding parameter

In order to determine the optimal value of the zero-padding parameter v for the ZDFT transform, various values
of v are tested at different sampling rates. The goal is to identify the value of v that results in the highest
precision for each sampling rate. The sampling rates for the IP and MG datasets are {1%, 2%, 3%, 4%, 5%},

†https : //www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes.
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the sampling rates for the PU dataset are {0.5%, 1%, 2%, 3%, 4%, 5%}, the sampling rates for the SA dataset are
{0.01%, 0.1%, 0.5%, 1%, 2%}, and the rest of the samples were used for testing. Explanation of why the SA data
set takes such a low sampling rate: because the SA data set is very small, each piece is 86× 86, with few features
and few categories, the accuracy increases very slowly when the sampling rate higher than 1%, which is almost
completely classified. Figure 3 demonstrates the variability in precision in various datasets when different values of
v are used. This experiment aims to evaluate the overall classification accuracy discrepancies between Vt-SVD and
Vrt-SVD. The training set employs a constant sampling rate, while the zero-padding parameters are adjusted. The
ultimate goal is to determine the most suitable parameter v by comparing it with the baseline method, TensorSSA.

The results of the experiments show that the classification accuracy of the four datasets improves after applying
Zero-padding Discrete Fourier Transform (ZDFT), surpassing the accuracy achieved by TensorSSA. This indicates
that zero-padding is effective. Specifically, within the SA dataset, most of the zero-padding parameters improve
the overall classification accuracy. However, it should be noted that the impact of these parameters varies across
datasets. In some cases, certain parameters may even decrease the overall classification accuracy. Furthermore,
we observed that at extremely low sampling rates (for example, PU with a sampling rate of 0.1% and MG with
a sampling rate of 0.5%), the zero-padding parameter tends to have a more pronounced impact on improving
the overall classification accuracy when using the relatively larger adaptive embedding parameter l, as shown in
Figure 4. This trend holds for various sampling rates. In summary, properly selecting zero-padding parameters can
effectively enhance accuracy. Simultaneously, when comparing the performance of Vt-SVD and Vrt-SVD across
the four datasets, it is noteworthy that Vrt-SVD consistently attains the highest overall classification accuracy in
three of the datasets: MG, PU and SA, while IP is superior in the case of Vt-SVD, yielding better results.
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Figure 4. These figures represent the overall accuracy of PU and MG for different zero padding parameters in extremely low
sample rate.

At different sampling rates, the optimal value of v is taken differently, and the optimal value of v at each sampling
rate under each data set is shown in the following Table 3, 4 .

IP MG
Sample rate(%) 1 2 3 4 5 1 2 3 4 5
Vt-SVD 233 231 310 306 270 126 80 74 94 94
Vrt-SVD 271 229 323 326 326 89 124 89 124 124

Table 3. The best zero padding parameter v of IP and MG at different sample rate

4.2. Classification results

From Table 3, 4, we can know the optimal value of the zero-padding parameter v corresponding to different data
sets and different training percentages. Therefore, in the second experiment, the overall accuracy and CPU time
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PU SA
Sample rate(%) 0.1 1 2 3 4 5 0.01 0.1 0.5 1 2
Vt-SVD 167 193 106 134 206 206 248 237 255 251 252
Vrt-SVD 177 175 156 172 197 172 273 232 234 234 276

Table 4. The best zero-padding parameter v of PU and SA at different sample rate

of the proposed two algorithms (Vrt-SVD, Vt-SVD) in the classification task are obtained by using the optimal
value of the corresponding variable v, and compared with spectral spatial feature extraction method 1.5DSSA,
enhanced two-dimensional singular spectrum analysis method (E2DSSA), traditional singular spectral analysis
method TRPCA, 3D feature extraction method TensorSSA, and TensorSSA with rBKI-SVD. To ensure a fair
comparison of algorithm, we averaged the results from five experiments for each algorithm.
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Figure 5. These figures represent the overall accuracy of each dataset for different methods and different sample rates.

The results shown in Figure 5 clearly demonstrate that increasing the number of training samples leads to
improved accuracy for all comparison methods. It is worth noting that the Vrt-SVD and Vt-SVD methods proposed
in this study outperform the other three methods in situations where the sample rates are low, such as 1% of
PU and IP, as well as 0.01% of SA. Additionally, the performance of the other methods varies across different
datasets, whereas our method consistently achieves the excellent performance across all datasets when the training
percentage is extremely low.

The accuracy rankings in the IP dataset for all sampling rates are as follows: Vt-SVD, Vrt-SVD, rBKI-SVD,
TensorSSA, E2DSSA, 1.5DSSA, TRPCA. Vt-SVD consistently achieves the highest accuracy in this dataset. For
the MG dataset, 1.5DSSA achieves the highest accuracy, followed by Vrt-SVD, Vt-SVD, with TRPCA yielding
the lowest accuracy. In the PU dataset, the accuracy is most prominent at the 0.1% sampling rate, with Vrt-SVD
delivering the highest accuracy, followed by Vt-SVD. However, at other sampling rates, E2DSSA performs better

Stat., Optim. Inf. Comput. Vol. 12, March 2024



J. FENG, R. YAN, G. YU, Z. CHEN 541

than both Vrt-SVD and Vt-SVD. Except for TRPCA, the accuracy of other methods becomes quite similar after the
1% sampling rate. In the SA dataset, at the 0.01% sampling rate, Vrt-SVD achieves the highest accuracy, followed
by Vt-SVD. However, when the sampling rates increase, the accuracy results are not as impressive as those of
E2DSSA and TRPCA. In some cases, our method falls behind other methods, especially at high sampling rates.
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Figure 6. These figures represent the CPU time(s) of each dataset for TensorSSA, rBKI-SVD, Vt-SVD and Vrt-SVD in
different sample rates.

Figure 6 presents the CPU time for different methods at various training percentages for the four datasets. From
the figure 6, we can see that the time of TensorSSA is constant at each sample rate because both TensorSSA
and rBKI-SVD are in the DFT domain and the third dimension is constant . The rBKI-SVD has a somewhat
different time because of the randomized method, but it is also almost constant. Vt-SVD and Vrt-SVD both have
optimal Zero-padding parameter v at different sample rates. v will determine the size of the third dimension of
the tensor decomposition, so the time will be different at each sample rate. It is worth noting that due to zero-
padding, both Vt-SVD and Vrt-SVD have longer execution times compared to TensorSSA and TensorSSA-rBKI,
respectively. From Figure 6, it is clear that Vrt-SVD demonstrates significantly faster execution times than Vt-SVD
and TensorSSA in the IP, MG, and SA datasets. In these cases, TensorSSA is faster than Vt-SVD. This difference
can be attributed to the extension of the third dimension after zero-padding, which increases the decomposition time
and improves overall accuracy. However, in the PU dataset, Vrt-SVD requires more time than TensorSSA. This is
due to the use of a smaller parameter l in constructing the trajectory tensor, resulting in a smaller first dimension
for each frontal slice. As a result, there is not a significant time difference between deterministic economic SVD
and randomized SVD. Although this diminishes the time advantage of Vrt-SVD, it still outperforms TensorSSA in
terms of accuracy.

In order to conduct a thorough quantitative evaluation of the proposed method, we utilized five evaluation
metrics: Classification Accuracy (CA), Overall Accuracy (OA), Average Accuracy (AA), Kappa Coefficient
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Ground Truth
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Figure 7. Pseudo-color images of data set MG, from left to right, are GT, classification obtained by methods TensorSSA,
rBKI-SVD, Vt-SVD, Vrt-SVD, E2DSSA, 1.5DSSA, TRPCA.
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Figure 8. Pseudo-color images of data set PU, from left to right, are GT, classification obtained by methods TensorSSA,
rBKI-SVD, Vt-SVD, Vrt-SVD, E2DSSA, 1.5DSSA, TRPCA.
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Ground Truth
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Figure 9. Pseudo-color images of data set SA, from left to right, are GT, classification obtained by methods TensorSSA,
rBKI-SVD, Vt-SVD, Vrt-SVD, E2DSSA, 1.5DSSA, TRPCA.

(kappa), and the execution time(CPU time) for each category. To ensure the precision and dependability of our
findings, we independently performed each experiment five times, and the average execution times are reported in
the experiments. The classification outcomes for different datasets are summarized in Table 5, 6, 7, and 8.

The superior performance of Vrt-SVD and Vt-SVD in terms of accuracy is evident in Table 5, 6, 7, 8. In Table
5, Vt-SVD and Vrt-SVD exhibit the highest OA, AA, and Kappa values, with Vrt-SVD achieving the best OA in
half the time compared to Vt-SVD. Our method, compared to TensorSSA, not only achieves higher accuracy but
also avoids the blocky nature. Moving on to Table 6, 1.5DSSA outperforms other methods in terms of OA, AA,
and Kappa. Vrt-SVD and Vt-SVD follow closely, with only a slight decrease in precision compared to 1.5DSSA.
The difference in precision between Vrt-SVD and 1.5DSSA is small, with OA, AA, and Kappa values being lower
by 0.03%, 0.81%, and 0.04%, respectively. However, Vrt-SVD takes only one-third the time of 1.5SSA. In Table
7, Vrt-SVD was the best in AA, while E2DSSA achieved the best in OA and Kappa. Vrt-SVD is 0.18% and 0.24%
lower than E2DSSA in OA and KAPPA, respectively. Like the Table 6, Vrt-SVD takes only one-half the time of
E2DSSA in PU. In Table 8, Vrt-SVD is best in OA, AA, and Kappa. The following qualitative evaluation of the
proposed methods, classification maps generated by all methods, pseudo-color images and GT on three datasets
are shown in Figure 7, 8, 9, respectively.
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As can be seen in Figure 7, 8, 9 , TensorSSA retains the details of ground objects, such as tiny ground objects
and roads. Through zero-padding and randomization, our method can get a classification map that is closer to
the actual ground object distribution in a shorter time on most data sets, and TensorSSA, 1.5DSSA and E2DSSA
cannot reasonably distinguish the boundaries of features, and ignore some smaller features. Our proposed method
preserves the details of objects well and can obtain a better distribution map and extract features better. In a word,
our method can obtain the classification map that is closest to the actual real distribution.

Table 5. Classification results of data set IP by different methods (2% training percentage)

# Class Samples TensorSAA Vrt-SVD Vt-SVD E2DSSA 1.5DSSA rBKI-SVD TRPCA
1 Alfalfa 46 97.78 97.78 97.78 88.89 73.33 97.78 84.44
2 Corn-notill 1428 85.63 86.70 87.85 90.78 64.83 85.63 73.27
3 Corn-mintill 830 91.27 90.41 89.42 80.20 67.28 91.39 65.19
4 Corn 237 70.69 94.83 93.97 60.34 30.17 70.69 28.02
5 Grass-pasture 483 87.53 94.08 88.79 91.12 79.70 87.53 81.82
6 Grass-trees 730 95.94 90.49 96.78 90.49 97.76 95.94 85.03
7 Grass-pasture-mowed 28 96.30 96.30 96.30 96.30 70.37 96.30 81.48
8 Hay-windrowed 478 92.74 95.73 92.09 90.81 91.24 92.74 98.08
9 Oats 20 100.00 94.74 94.74 100.00 78.95 100.00 52.63
10 Soybean-notill 972 82.25 78.15 77.52 85.40 75.11 82.25 71.95
11 Soybean-mintill 2455 91.19 90.56 92.81 89.15 88.69 91.19 84.24
12 Soybean-clean 593 81.93 81.41 85.89 84.85 43.89 81.93 41.65
13 Wheat 205 96.50 98.00 97.00 97.00 99.00 96.50 96.00
14 Woods 1265 97.66 98.22 97.82 95.72 95.24 97.66 93.95
15 Buildings-Grass-Trees-Drives 386 79.89 97.88 95.24 85.19 48.94 80.42 52.38
16 Stone-Steel-Towers 93 98.90 98.90 98.90 100.00 57.14 98.90 29.67

OA (%) 89.41 90.31 90.96 88.60 77.83 89.44 76.50
AA(%) 90.39 92.76 92.68 89.14 72.60 90.43 69.99

Kappa*100(%) 87.94 88.96 89.71 87.00 74.53 87.98 73.03
CPU times(s) 48.92 32.61 64.99 12.92 31.07 25.44 41.03

Table 6. Classification results of data set MG by different methods (1% training percentage)

# Class Samples TensorSAA Vrt-SVD Vt-SVD E2DSSA 1.5DSSA rBKI-SVD TRPCA
1 Trees 23246 95.51 96.07 96.46 95.48 95.68 95.50 92.72
2 Grass 4270 76.58 85.71 78.19 77.31 73.60 76.58 59.40
3 MG-surface 6882 79.38 76.96 76.21 81.17 83.44 79.38 73.64
4 Dirt/sand 1826 90.98 84.23 87.55 89.04 83.62 90.98 77.48
5 Road 6687 91.19 90.76 92.67 91.25 89.82 91.19 84.52
6 Water 466 84.60 91.97 84.60 78.52 80.26 84.60 69.85
7 B-shadow 2233 69.46 68.51 71.13 65.97 76.38 69.46 51.40
8 Buildings 6240 85.80 85.28 85.46 84.41 88.38 85.80 75.88
9 Sidewalk 1385 37.78 62.87 64.26 47.63 51.71 37.78 44.86
10 Y-curb 183 12.71 29.28 17.68 1.10 12.15 12.71 17.13
11 Cloth-P 269 81.20 45.49 46.62 83.46 90.98 81.20 46.24

OA 87.09 87.96 87.85 87.18 87.99 87.09 80.48
AA 73.20 74.28 72.80 72.30 75.09 73.20 63.01

Kappa*100 82.91 84.03 83.86 82.99 84.07 82.90 74.04
times(s) 34.21 23.23 52.45 39.18 74.03 21.85 50.45
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Table 7. Classification results of data set PU by different methods (1% training percentage)

# Class Samples TensorSAA Vrt-SVD Vt-SVD E2DSSA 1.5DSSA rBKI-SVD TRPCA
1 Asphalt 6631 96.59 95.55 94.61 99.13 96.36 96.57 88.71
2 Meadows 18649 99.29 99.47 99.37 99.26 98.68 99.29 97.73
3 Gravel 2099 90.47 91.05 91.77 89.75 82.87 90.47 84.65
4 Trees 3064 89.48 90.77 90.01 91.92 88.43 89.48 93.24
5 Painted metal sheets 1345 99.10 99.02 99.10 98.72 99.62 99.10 98.87
6 Bare Soil 5029 90.82 92.53 96.00 92.77 92.15 90.82 88.87
7 Bitumen 1330 94.45 93.69 92.86 93.62 96.88 94.45 78.19
8 Self-Blocking Bricks 3682 87.16 94.10 88.89 91.77 85.35 87.16 77.75
9 Shadows 947 98.51 97.12 97.23 91.68 99.89 98.51 99.68

OA 95.52 96.30 96.03 96.48 94.89 95.52 92.08
AA 93.99 94.81 94.43 94.29 93.36 93.98 89.74

Kappa*100 94.02 95.07 94.72 95.31 93.19 94.02 89.47
times(s) 56.50 65.89 82.98 114.75 266.00 48.54 371.52

Table 8. Classification results of data set SA by different methods (0.01% training percentage)

# Class Samples TensorSAA Vrt-SVD Vt-SVD E2DSSA 1.5DSSA rBKI-SVD TRPCA
1 Brocoli green weeds 1 391 99.49 99.74 99.74 99.23 99.49 99.49 99.49
2 Corn senesced green weeds 1343 53.80 85.92 74.37 50.22 1.34 53.80 53.06
3 Lettuce romaine 4wk 616 87.97 88.46 91.54 61.79 86.34 87.97 88.94
4 Lettuce romaine 5wk 1525 98.29 100.00 100.00 100.00 100.00 98.29 95.41
5 Lettuce romaine 6wk 674 95.10 99.41 99.55 99.55 99.85 95.10 83.95
6 Lettuce romaine 7wk 799 98.50 98.50 99.50 97.74 97.74 98.50 96.49

OA 85.64 94.81 92.44 82.65 73.25 85.64 83.04
AA 88.86 95.34 94.12 84.76 80.79 88.86 86.22

Kappa*100 82.27 93.53 90.60 78.52 67.66 82.27 79.04
times(s) 16.62 10.85 18.52 5.10 13.29 8.44 21.61

5. Conclusion

In this paper, we introduce two novel methods, Vt-SVD and Vrt-SVD, which aim to improve the extraction of
hyperspectral image (HSI) features by considering both spectral and spatial characteristics. The suggested method
employs a randomized block Krylov Iteration algorithm that relies on the variable t-SVD to effectively analyze the
low-rank representation of the spatial and spectral information in the HSI at both global and local levels. Compared
to the truncated SVD, the randomized block Krylov Iteration algorithm requires less time and produces similar
classification outcomes. By employing zero-padding Discrete Fourier Transform, the classification accuracy can
be significantly enhanced. Our proposed Vrt-SVD and Vt-SVD approaches yield superior classification results
compared to the DFT domain-based TensorSSA. The experimental results on four publicly available datasets
demonstrate the effectiveness of the proposed algorithm. Even with a limited number of training samples, this
approach successfully extracts HSI features while preserving irregular boundaries and structural shapes in the
classified images.
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