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Abstract In the realm of Big Data analysis, the pivotal question of data clustering takes center stage. This study delves into
optimizing this analysis by adopting a hybrid approach that integrates the Fuzzy C-Means (FCM) methodology, Encoder-
Decoder Convolutional Neural Networks (CNN), Genetic Algorithms (GAs), and an optimal classification strategy for data
clustering and categorization. FCM provides a flexible clustering foundation with its fuzzy logic, while the Encoder-Decoder
CNN contributes to extracting complex features and refining the model. Genetic Algorithms finely adjust the parameters of
the hybrid model. The optimal classification strategy complements this approach by ensuring precise data categorization.
This hybrid strategy leverages the specific strengths of each component, thereby overcoming inherent limitations in each
technique. FCM ensures robust cluster formation the Encoder-Decoder CNN improves feature representation, Genetic
Algorithms optimize the hyper-parameters of the hybrid model, and optimal classification reinforces the accuracy of
data categorization. Experiments conducted on various Big Data sets reveal a significant enhancement in clustering and
classification accuracy, as well as overall analysis efficiency. This research represents a substantial contribution to the
evolution of Big Data analysis by proposing an integrated solution harnessing the power of FCM, Encoder-Decoder CNN,
Genetic Algorithms, and optimal classification The results suggest that this hybrid approach not only increases clustering and
classification accuracy but also provides a versatile and adaptable solution to address challenges in large-scale data analysis.
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1. Introduction

The exponential growth in data volume within the Big Data ecosystem has presented significant challenges,
fundamentally reshaping our approach to extracting information from these vast data reservoirs. This rapid growth
underscores the need to rethink our analysis methods to extract relevant information from this ocean of data. At
the core of these challenges, data clustering and classification emerge as a central concern, emphasizing the need
to develop innovative methodologies to address these challenges. This urgency is highlighted by various scholars
who have emphasized the transformed impact of Big Data on data analysis paradigms [3]. Data classification,
defined as the process of organizing and grouping similar elements based on certain common features or attributes,
is crucial in simplifying the complexity of data, making it easier to interpret and use in the future [3, 58].
This perspective aligns with the works of [31], who emphasize the importance of effective data classification
for information organization and retrieval [3, 31]. Similarly, data clustering, or clustering, stands out as a key
methodology in the landscape of massive data analysis. This fundamental approach seeks to organize the elements
of a dataset into groups or clusters based on their similarity or intrinsic relationships. Its primary goal is to identify
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subsets of elements sharing common characteristics, paving the way for a profound understanding of the data and
valuable insights. This aligns with the observations of [6]., who emphasize the importance of clustering in revealing
hidden patterns within datasets, especially in fields like market analysis and medicine [6, 32]. However, despite
the undeniable importance of data clustering and classification, traditional techniques face significant challenges
when applied to the context of Big Data. The complexity arising from the diversity of data, its massive volume,
and the variety of formats pose substantial obstacles. Classical algorithms may prove inefficient in processing
these vast datasets, resulting in reduced performance in terms of precision, execution speed, and the ability to
extract relevant information. It is precisely in this dynamic and demanding context that this study is situated. It
focuses on the urgent need to optimize Big Data analysis by adopting an innovative approach to data clustering.
The primary goal is to transcend conventional methods by synergistic-ally integrating different approaches to
overcome specific challenges related to the variety, volume, and velocity of Big Data. Our hybridization relies on
a systematic and informed approach, divided into various phases to develop, implement, and evaluate our hybrid
Big Data analysis model. We initiated our process with an in-depth review of the literature in the field of Big Data
analysis and clustering methods. This step was crucial to understand current advancements, identify gaps in existing
approaches, and pinpoint opportunities for improvements. This is consistent with the methodology employed by
[7]., who advocate for a thorough literature review to inform the development of innovative solutions in Big Data
analysis [7]. Consequently, we conducted a thorough analysis of traditional clustering methods such as K-means
and hierarchical clustering. This allowed us to identify the strengths and weaknesses of these approaches in the
context of Big Data, laying the foundation for our innovative approach. Our examination of traditional methods
aligns with the works of [1]., who stress the importance of assessing the performance of conventional clustering
algorithms in the context of Big Data [1, 32].

Subsequently, our methodology shifted towards the exploration of current hybrid approaches. We closely
examined how different techniques, including fuzzy logic, convolutional neural networks (CNN) of the Encoder-
Decoder type, and genetic algorithms, are combined to overcome individual limitations. This exploration was
essential to identify best practices and potential synergies. This aligns with the findings of [8]., who highlight
the effectiveness of hybrid approaches in addressing the challenges of Big Data analysis [9]. Our innovative
approach hinges on the skillful integration of three specific techniques: Fuzzy C-Means (FCM) for its flexibility,
Convolutional Neural Networks (CNN) of the Encoder-Decoder type for their ability to capture complex features,
and Genetic Algorithms (GA) [17] for the meticulous adjustment of parameters. Once these components were
carefully selected, we embarked on the meticulous design of our hybrid model, detailing how each element interacts
and the key parameters governing our model. At the core of this approach lies the recognition of the crucial
importance of extracting relevant information from these vast datasets. This information not only fuels crucial
insights for businesses and organizations but also paves the way for a better understanding of the inherent trends,
patterns, and complex relationships within Big Data. The proposed approach relies on a strategic and harmonious
fusion of the strengths of three distinct techniques: Fuzzy C-Means (FCM), Convolutional Neural Networks (CNN)
with an Encoder-Decoder architecture, and Genetic Algorithms (GA)[17]. This deliberate combination aims to
overcome the individual limitations of each method, capitalizing on the specific advantages of each, resulting in an
overall improvement in the efficiency of Big Data analysis.
Firstly, Fuzzy C-Means (FCM) is selected for its ability to integrate fuzzy logic into the clustering process. This
flexible clustering approach is well-suited for addressing the inherent uncertainty in massive data. FCM contributes
to the creation of more robust clusters by considering the possibility that an element may belong to multiple groups
with different membership degrees, particularly relevant in complex environments. This choice is influenced by the
works of Bezdek et al, who pioneered the application of fuzzy logic in clustering for handling uncertainty in data
[5]. In parallel, Convolutional Neural Networks (CNN) with an Encoder-Decoder architecture are incorporated
due to their ability to capture and represent complex features in the data. Originally developed for computer
vision, these networks prove effective in detecting subtle patterns and relationships, essential for in-depth Big
Data analysis. This integration aligns with the findings of [9], who highlight the effectiveness of CNNs in feature
extraction and pattern recognition [9].

Finally, Genetic Algorithms (GA)[4] are integrated to achieve fine optimization of the parameters of the hybrid
model. Inspired by biological processes such as natural selection and genetic recombination, GA dynamically
adjusts the model’s parameters to achieve optimal performance. This integration is informed by the works of [10],
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who introduced the concept of genetic algorithms for optimization problems [10].
This synergistic fusion of FCM, CNN Encoder-Decoder, and GA offers significant advantages. It promises an
improved representation of data features, enabling a deeper understanding of the underlying structures. Moreover,
it facilitates the formation of more robust clusters by leveraging the flexibility of FCM and the representation
capacity of CNN. Lastly, fine-tuning of parameters by GA contributes to refining the overall performance of the
hybrid model, paving the way for a more precise and efficient Big Data analysis. This innovative approach aspires
to overcome specific challenges related to the complexity and variety of Big Data, providing an integrated solution
for a more in-depth and precise exploration of extensive datasets.
The rest of the essay is structured as follows: a discussion of related works in the next section, a presentation of
our methodology in section 3, our model in Section 3.2, an illustration of the results proposed, and a summary in
Section 4, and finally a conclusion in Section 5.

2. Related works

In this section, we explore various existing strategies for data clustering and classification, adapting them to
our innovative method. Firstly, a clustering method based on a dissimilarity matrix has been proposed [48]. This
approach transforms the dissimilarity matrix to highlight distinct groups by representing them as dark blocks along
the diagonal. Although initially designed to detect halo-like structures in dark matter data, it proves to be adaptable
to our context. Another perspective [29] focuses on anomaly detection within the clustering context. This method
uses dendrograms to provide a visual representation of clusters, an approach that we can integrate to enhance the
visualization of our results in various application contexts. Data classification is a dynamic research field exploring
various approaches to assign labels to datasets. Supervised learning remains a dominant approach, where models
are trained on labeled data [23]. In parallel, unsupervised learning, particularly clustering, is extensively studied
to uncover intrinsic structures within data [21]. The growing prominence of neural networks, especially in deep
learning, has significantly enhanced model performance. Convolutional Neural Networks (CNNs) have become
indispensable for image classification [9], while Recurrent Neural Networks (RNNs) are employed for processing
temporal sequences [23]. Ensemble methods, such as Random Forests [24] and boosting [25] are commonly used
to enhance model robustness. Semi-supervised learning, applied in contexts where only partially labeled data is
available [26] and active learning, where the model actively selects examples to label, represent promising research
directions. In the field of natural language processing, text classification remains a major subject. Models based on
techniques like word embeddings [28] and transformers [?] have made significant advances. Managing imbalanced
data, interpreting complex models, and holistic evaluations considering various metrics are crucial aspects [30].
Specific applications, whether in the medical, financial [32], or object recognition [31] domains, pose particular
challenges that are extensively researched. An alternative approach introduces a clustering method based on a single
linkage specifically designed for segmenting time series data, especially in the field of patient medical monitoring
[15]. Although initially conceived for time series, we can explore its potential for adaptation to our method to
handle complex datasets.

Deep learning has become a leading research area in data clustering over the years. Supervised learning methods
have shown promising results for clustering large datasets [18, 20]. However, our innovative approach, based on
the fusion of specific techniques such as Fuzzy C-Means (FCM), Convolutional Neural Networks (CNN), and
Genetic Algorithms (GA), provides an alternative that can overcome the limitations of supervised learning methods,
especially when dealing with raw data. Approaches based on roughness or non-determinism have been developed
to address uncertainty in the clustering process. A hierarchical approach combining a neural network with fuzzy
logic has been proposed [18]. In the literature [20], a Convolutional Neural Network (CNN) model based on
non-determinism has been developed for classification and clustering. Although promising, this approach relies
primarily on supervised learning. Our hybrid methodology aims to incorporate these non-deterministic concepts
while offering a more flexible and adaptive approach. Semi-supervised clustering has also been explored as a
solution to simultaneously manage clustering and classification [16], [9], [23]. A pseudo-labeling technique has
been used to create limited labeled data. This approach can inspire our methodology to leverage learning from
partially labeled data. Beyond these works, other studies have focused on the advantages of the Fuzzy C-Means
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(FCM) algorithm compared to other clustering techniques [27, 28]. However, despite these existing research efforts,
many clustering mechanisms still face challenges related to computation time, absolute clustering, and performance
metrics. Our innovative approach, based on the fusion of specific techniques and the design of a hybrid model, aims
to overcome these challenges by offering a more precise, flexible, and performant method for Big Data analysis.

3. Material and methods

This section details the sequential process employed to attain the presented results. To commence, we present
the methodology, delve into The Proposed Model, and conduct a thorough exploration of the Proposed Model.

3.1. methodology

In this section, we elaborate on our innovative approach aimed at optimizing Big Data analysis through a hybrid
methodology that integrates Fuzzy C-Means (FCM), a Convolutional Neural Network (CNN) encoder-decoder,
and genetic algorithms into the clustering and classification process. This section is subdivided into three phases:
In the first phase, we introduce our approach using the Fuzzy C-Means (FCM) algorithm as the foundation for
both clustering and classification. FCM is deployed to create meaningful clusters within the dataset based on
the structural similarities between data points. Utilizing the concept of ”fuzziness,” each data point can belong
to multiple clusters with varying degrees of membership, allowing for a flexible representation of relationships
between the data. This iterative process gradually converges towards a configuration where stabilized cluster centers
and membership degrees optimally reflect the intrinsic structure of the data. The FCM approach, with its ability
to model nuanced relationships between data points, forms a robust foundation for simultaneous classification
and clustering. By combining the flexibility of FCM with other innovative techniques, our goal is to create an
integrated approach globally optimized for the complex challenges posed by Big Data analysis. In the second
phase of our CNN Encoder-Decoder model, the encoder plays a crucial role. It consists of several convolutional
layers. Convolutional layers are essential as they allow for the analysis of incoming data to extract relevant features
or patterns. Convolutional filters detect various patterns based on their configuration, ranging from simple edges
to more complex structures as we progress through the network. In parallel, pooling layers are used to reduce the
dimensionality of the processed data. This reduction is strategic: it decreases the volume of data, simplifying the
network’s processing while preserving the most salient information. Pooling also facilitates a certain invariance
to the position and scale of the features detected in the image. At the output of the encoder, we obtain what is
called the latent space. This is a compressed representation of the initial data, capturing the essential elements
necessary for reconstruction or other forms of processing such as classification. In this context, the latent space
can already be used to perform a preliminary classification based on the extracted features. The role of the decoder
is to take this condensed representation and reconstruct the original image or input data. For this purpose, it uses
deconvolution and upsampling layers, which gradually restore the original dimensions of the data. Deconvolution
layers work to reverse the convolution process, while upsampling increases the resolution of the image step by
step. The final output is a representation that attempts a faithful reconstruction of the original data, using the
condensed information contained in the latent space. This process demonstrates the model’s effectiveness in
capturing and reconstructing data from essential features, despite the dimensionality reduction carried out by the
encoder. The third phase integrates genetic algorithms In the third phase, the parameters of the classification and
clustering models can be adjusted through the use of genetic algorithms. These algorithms begin by creating a
range of basic model configurations, drawing inspiration from the ideas of natural evolution. Each configuration,
or ”individual,” is assessed according to how well it can carry out the tasks of clustering and classification. The
most advantageous configurations are then chosen for reproduction, in which they trade some of their parameters
to produce new configurations that incorporate the best features of the original ones. This process of selection,
crossover, and mutation repeats over several generations, gradually refining the model parameters. The iterative
adjustment through these genetic algorithms not only improves the accuracy of classifications and clusterings but
also dynamically adapts the models to changes in data or new analytical requirements. This strategic approach
ensures continual improvement in precision and efficiency, which is crucial in handling large volumes of data in
Big Data contexts.
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3.2. The Proposed Model

At the core of our research endeavor, focused on optimizing Big Data analysis through a hybrid approach
integrating Fuzzy C-Means, Encoder-Decoder CNN, and genetic algorithms in clustering, we embark on our
exploration by conceptualizing the principle of normality tailored to our specific context. The primary objective
is to define a tailored solution to enhance Big Data analysis by effectively detecting abnormal patterns within the
network. Normality takes shape through the creation of a formal model that elucidates the relationships between
key variables associated with the dynamics of the system. Our methodological approach centers on improving
efficiency from the clustering phase onward, strategically reducing the number of features. To achieve this, we
employ feature selection algorithms, particularly favoring subset consistency and genetic search approaches. This
selection phase explicitly aims to eliminate irrelevant features before undertaking clustering and categorization
operations, followed by the Fuzzy C-Means clustering formulation process. The crucial importance of this step
lies in reducing processing time, dataset training requirements, and the overall complexity of the model. As for
the classification process, it relies on our novel hybridization method, thereby reinforcing the quality of detection
within our hybrid approach. Figure 1 visually depicts the model schema, illustrating the flow of our methodology
applied to optimizing Big Data analysis.

Figure 1. The Proposed Model
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3.3. Comprehensive Exploration of the Proposed Model

Our new method consists of two phases. Data preprocessing is an important phase in both data analysis and
the machine learning process. Data preparation is a critical step, involving a variety of methods and tasks applied
to raw data to make them suitable for subsequent analysis, modeling, and interpretation. Data normalization is a
process of scaling data to a common range, making it more suitable for machine learning algorithms. In the context
of the Fashion-MNIST dataset. Given a dataset X = {x1, x2, x3, . . . , xn}consisting of n data points, where each xi
represents an image in the dataset, and the pixel values of the images typically range from 0 to 255. The normalize
the pixel values to a common scale, you can perform the following mathematical transformation:

x′
i =

xi

max pixel value
(1)

where:

• x′
i represents the normalized pixel value of the i-th image

• xi is the original pixel value of the i-th image,
• max pixel value is the maximum pixel value in the dataset, which is 255 for the Fashion-MNIST dataset.

This normalization process scales the pixel values to the range [0, 1]. After normalization, the pixel values
of the images are within this common range, which is often preferred for machine learning models. This step
can enhance the model’s convergence and performance, especially when using deep learning [3] models like
Optimized Encoder-Decoder CNN.

3.3.1. Fuzzy C-Means (FCM) We have implemented a novel strategy by combining Fuzzy C-Means (FCM), a
fuzzy clustering algorithm, with the Euclidean distance to form a hybridization method. FCM is widely used for
grouping data based on their similarity, and its integration with the Euclidean distance is a popular approach for
assessing the similarity between data points. This hybrid method employs standard Euclidean geometry to calculate
the distance between two points. The Fuzzy C-Means (FCM) algorithm determines membership values for each
cluster based on the distances between each data point and the cluster centroids. One of the notable advantages
of FCM is its robustness in producing reliable results, especially when dealing with overlapping data. Moreover,
FCM has the flexibility to assign a data point to multiple clusters if necessary. Despite these strengths, there are
certain limitations to be mindful of, such as computational time, precision, and the substantial number of iterations
required for convergence. It is worth noting that FCM often relies on the Euclidean distance metric, which has
implications for the weight assigned to different data points. This choice can influence the algorithm’s behavior
and outcomes. Therefore, careful consideration of these factors is essential when applying FCM with the Euclidean
distance for clustering analysis. Consider the dataset

X = {x1, x2, x3, . . . , xq}

with the cluster set
Y = {y1, y2, y3, . . . , yp}

and the membership
W = {wkl | 1 ≤ k ≤ q, 1 ≤ l ≤ p}

. This means that the membership set W is composed of all elements wkl where k ranges from 1 to q and l ranges
from 1 to p. Thesewklwkl elements represent the membership degrees of each data point k to each cluster l; FCM
can be formulated.

γ =

e∑
k=1

p∑
l=1

wo
kl∥xl − yk∥2 (2)

e∑
l=1

wKL = 1, wKL ≥ 0 (3)
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Therefore, optimizing the equation helps in updating the membership matrix as well as cluster centers, as shown
below:

yk =

∑p
l=1 w

o
klxl∑p

l=1 wkl
(4)

Membership matrix:

wkl =

(
1 +

(
ekl
γk

)− 1
o−1

)−1

(5)

Table 1. Description of the Algorithm Steps

Step Description

1 Initialization: Set the number of clusters and the cluster
centers to random.

2 For each 3 to 6 until convergence or a maximum number
of iterations is reached.

3

Update Cluster Centers: Recalculate cluster centers
using the updated membership degrees:

yk =

∑p
l=1 w

o
klxl∑p

l=1 wkl
(6)

4

For k = 1; k < e; k:
do{

γ =

e∑
k=1

p∑
l=1

wo
kl||xl − yk||2 (7)

while(l < p)}

5

For k = 1; k < p; k:

For(l = 1; l < p; l ++){

wkl =

(
1 +

(
ekl
γk

)− 1
o−1

)−1

(8)

End of for

End of for

6 End of for
7 End of for

3.3.2. Optimized Encoder-Decoder CNN In our research, a pivotal innovation lies in the incorporation of a
key element an encoder-decoder based on an optimized Convolutional Neural Network (CNN). This renowned
deep learning architecture, widely applied in tasks like image segmentation and classification, comprises two
integral segments: an encoder network compressing input data into a latent representation and a decoder network
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reconstructing output from this representation. The model unfolds in three phases: Encoder Phase: Within the
optimized CNN encoder-decoder, the Encoder Phase manipulates input data to extract crucial features, generating
a condensed latent representation. This phase abstains from specific details, concentrating on the fundamental
transformation of data for further processing. Decoder Phase: In an optimized CNN encoder-decoder, the Decoder
Phase reconstructs the output from the condensed latent representation, avoiding a detailed focus on specific
aspects. Optimization Phase: The Optimization Phase involves a tailored set of procedures and techniques to
enhance network performance and efficiency. These methods encompass adjusting hyperparameters, applying
regularization techniques, utilizing optimization algorithms, and overall network architecture design, collectively
aimed at improving efficiency. The Fuzzy C-Means (FCM) module serves a crucial role as the initial step in the
model, generating fuzzy membership degrees for each clothing class in the Fashion-MNIST dataset. This fuzzy
approach offers a nuanced representation of membership relations among images and different classes, reflecting
the complexity of shared features among clothing categories. The fuzzy membership degrees from the FCM module
are then seamlessly integrated into the optimized CNN encoder-decoder. The Encoder, employing convolutional
layers, extracts significant features from input images while effectively reducing dimensionality. The synergy
of convolution and pooling optimizes feature extraction, capturing intricate patterns and reducing redundant
information. The Encoder’s layer compresses extracted features, creating a dense and informative representation—a
pivotal transition point between feature extraction and the reconstruction phase. The Decoder, consisting of
deconvolution layers, takes the representation at the layer and reconstructs it into an image, preserving essential
features. Deconvolutions enable the restoration of dimensionality while retaining crucial details. Illustrated in
Figure 2, our optimized CNN encoder-decoder model comprises two CNN layers, showcasing the intricate interplay
between feature extraction and reconstruction.

Figure 2 presents the conceptual architecture of our meticulously designed optimized neural network model,
featuring a CNN encoder-decoder tailored explicitly for the classification task. in algorithm 1 the encoder
commences with two convolutional layers (CNN), the first equipped with 64 filters and the second with 128 filters.
Subsequent max-pooling layers facilitate the reduction of spatial dimensions, enabling the gradual extraction of
pivotal features from the input data. The pivotal link between the encoder and decoder is forged by a dense
layer housing 256 neurons and an activation function. This intermediary layer plays a crucial role in connecting
the features extracted by the encoder to the subsequent decoding process. On the decoder side, two additional
convolutional layers come into play. The initial layer, boasting 128 filters, implements an operation to augment
spatial dimensions, followed by another layer with 64 filters and a distinct operation . These decoding operations
are strategically designed to reconstruct spatial information from the features extracted by the encoder. At the
model’s output, the layer of fuzzy membership degrees, constituting a dense layer, accommodates several neurons
equivalent to the number of classes in the classification task. This layer employs an activation function to generate
normalized membership degrees, ranging from 0 to 1, for each class. Crucial model parameters, including the
loss function, optimizer with a learning rate of 0.001, batch size of 32, and an iteration over several epochs
(specifically 50 in this instance), are meticulously chosen to facilitate effective model learning while mitigating
the risk of overfitting. It is imperative to highlight that these parameters remain adjustable, contingent upon the
unique characteristics of the dataset and the specific requirements of the classification task.
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Figure 2. The Proposed Model
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Algorithm 1 Optimized Encoder-Decoder CNN Algorithm

Step 0: FCM Clustering with Euclidean Distance Calculate centroids Y = {y1, y2, . . . , yK} using the objective
function:

γ =

e∑
k=1

p∑
l=1

wo
kl∥xl − yk∥2 (9)

Step 1: Encoder Training Loop Initialize cluster assignments for all images xi Initialize the CNN architecture
for each training iteration t do

for each input image xi do
Select xi for the current iteration t Calculate CNN features using the encoder part of CNN Update cluster
assignment E(xi) based on FCM-like update rules Perform backpropagation and update CNN weights
using the assigned cluster as the target

Move to the next training iteration t+ 1

Repeat the training loop for a specified number of iterations or until convergence criteria are met

Step 2: Decoder Network for Image Reconstruction Input:

H = enc(Z)

M1...MT∑
l(0..lp)

d2k1...k0 + Y
(1)
βk1...ko

 (10)

Utilizing Transposed Convolutional Layers Training Neural Networks:

Y = Y − ϕ

(
1

o

o∑
k=1

ϕY + δdk

)
(11)

Understanding Backpropagation:

∆d = d− ϕ

(
1

o

o∑
k=1

δdk

)
(12)

Forward propagation computes input and output values:

ρ
(4)
k =

(
k1...ko∑
i=1

ikl(z
(3)
k − ak)

)
· h′(b

(4)
k ) (13)

ρ
(3)
m1...mT =

(
k1...ko∑
i=1

ikl
(
Y

(3)
kl1...mT − ρ

(4)
k

))
· h′(b

(4)
k ) (14)

Compute output using Equation (11)

∆d = d− ϕ

(
1

o

o∑
k=1

δdk

)
(12)

Update parameters the Y
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3.3.3. Training and Optimization In this research, we conduct a comprehensive exploration aimed at enhancing
the efficiency of our Convolutional Neural Network (CNN) model. Specifically, we introduce a novel strategy
for optimizing the Fashion-MNIST dataset’s performance through the application of Deep Convolutional Neural
Networks. Our approach involves the implementation of an Encoder-Decoder Convolutional Neural Network
(CNN) architecture. The utilized CNN architecture encompasses several layers, incorporating two Convolutional
layers with ReLU activation functions and max-pooling layers for effective feature extraction. Subsequently, a
flattened layer is employed to preprocess the data for subsequent fully connected layers. The network expansion
involves the integration of an Encoder, comprising two fully connected dense layers characterized by the use of
ReLU activation functions, as well as a Decoder with a similar structure. This evolution results in the creation of
an output layer activated by the softmax function. A detailed summary of the recommended architectural design is
presented comprehensively in Table 2 and Figure 3, providing an in-depth insight into the network structure and its
various components.

Figure 3. The architecture of the proposed method

We undertake the crucial task of optimizing model hyperparameters, focusing on parameters such as filter size,
kernel dimensions, pool size, and the number of densely connected units. This step is designed to pinpoint the most
effective configuration for our Encoder-Decoder Convolutional Neural Network (CNN), to improve the model’s
convergence during training and subsequently enhance its accuracy in classifying Fashion-MNIST.

To achieve robust classification, we introduce an innovative hybrid approach that combines Convolutional
Neural Networks (CNNs) with Genetic Algorithms (GAs). In this pioneering methodology, GAs, drawing
inspiration from natural selection principles, play a central role in systematically exploring and refining
hyperparameter configurations within the existing CNN architecture. Across multiple generations, the genetic
algorithm meticulously identifies and evolves the most promising hyperparameter combinations, effectively
preparing the model for superior performance.
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Table 2. Hyperparameters and Layer Descriptions

Layer Output Shape (D × R × C) Kernel/Pooling Size Nº of Parameters
Input Image 28×28 - 0
Convolutional Layer 1 32 × 12× 1 2 × 2 (2× 2× 16× 32) + 32 = 2048
MaxPooling Layer 1 16 × 14 × 1 2 × 2 0
Convolutional Layer 2 32 × 12 × 1 3 × 1 (3× 16× 32) + 32 = 1568
MaxPooling Layer 2 32 × 6 × 1 2 0
Flatten Layer 192 - 0
Dense Layer 3 (Hidden) 8 - (192× 8) + 8 = 1544
Dense Layer 4 (Output) 10 - (8× 10) + 10 = 90

Our research endeavors to offer valuable insights into the design and optimization of Deep Convolutional Neural
Networks. The employed standard Genetic Algorithm 2, for optimizing the hyperparameters of the CNN neural
network is outlined as follows:

3.1.3.1 Chromosome Representation The Genetic Algorithm (GA) was employed to address hyperparameters,
encompassing filter size, kernel dimensions, pool size, and the number of densely connected units. In our
methodology, each potential solution is symbolized by an individual chromosome within the Genetic Algorithm
population. These chromosomes encode hyperparameter values as genes, enabling our algorithm to methodically
explore and assess diverse architectural configurations. Refer to Figure 4 for a visual representation, illustrating how
our genetic encoding captures hyperparameter values and facilitates comprehensive hyperparameter optimization.
Following the establishment of the initial population, each individual undergoes evaluation and is assigned a fitness
value determined by the fitness function.

Algorithm 2 Genetic Algorithm for Optimizing autoEncodeCNN Hyperparameters
Data: P [0]: Initial population of hyperparameter configurations generated randomly
Data: pautoEncodeCNN : Original autoEncodeCNN architecture
Data: Number of generations
Data: Termination condition
Result: Optimized autoEncodeCNN with tuned hyperparameters, Final trained autoEncodeCNN model with the

best hyperparameters, Performance metrics (e.g., accuracy, precision, recall, F1-score, ROC curves) on
testing data

1 Initialization:
Initialize P [0] with random hyperparameter configurations Initialize new autoEncodeCNN with
pautoEncodeCNN Initialize Generation i = 1

2 Main Loop:
repeat

3 for i = 1 to the number of generations do
4 Update the autoEncodeCNN model in P [i] with the architecture of pautoEncodeCNN and random initial

hyperparameters Train and evaluate the autoEncodeCNN model in P [i] Calculate Fitness[i] based on
mean accuracy Perform Selection, Crossover, and Mutation to generate NewP Increment Generation i
by 1 Set P [i] = NewP

5 until termination condition is satisfied;
6 Final Step:

Choose the best-performing autoEncodeCNN hyperparameters from the final population based on the
fitness values Initialize a new autoEncodeCNN model with the selected hyperparameters Train the final
autoEncodeCNN model using the training data Evaluate the performance of the trained model on the testing
data to obtain metrics Output the optimized autoEncodeCNN with tuned hyperparameters
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3.1.3.2 Selection and Fitness function An individual’s level of external adaptation can be assessed through
a statistical metric generated by the fitness function. This metric is designed to focus on identifying traits that
enhance an individual’s adaptability or effectiveness in performing a given role. Our approach derives the fitness
function from the average accuracy achieved through a 3-fold cross-validation process. The tournament selection

Figure 4. Chromosome representation of hyperparameters optimization

method is employed for both encoding and decoding tasks in our approach. This method is utilized to assess a
population of Convolutional Neural Networks (autoEncodeCNNs) comprising both encoders and decoders. The
evaluation of this population is contingent on their respective performances on the training data.

The tournament selection process involves creating ”tournaments” among randomly chosen individuals within
the population. In each tournament, two individuals are selected, and their performances are compared. The
individual demonstrating superior performance is designated as the ”winner” of the tournament. This process
iterates until a sufficient number of individuals are chosen to constitute the next generation. The autoEncodeCNN
encoders and decoders are subsequently ranked based on their performances. The top-ranked individuals, those
attaining the highest performances, are selected to form the succeeding generation. This strategy ensures that
the most high-performing individuals have an increased likelihood of being chosen for reproduction, thereby
facilitating the transmission of genetic traits associated with their superior performances.

3.1.3.3 Reproduction Operators Following the selection phase, individuals from the reproduction pool are once
again brought together, or crossed, to produce improved offspring. In this study, we have chosen the one-point
crossover method. This process involves randomly selecting a crossover site along the genetic chain and exchanging
alleles on one side of this site between the selected individuals.

In the context of a genetic algorithm, the two-point crossover [51] entails the exchange of alleles on both sides
between parents, generating two distinct descendants. This approach facilitates the transmission of advantageous
genetic traits from each parent to their offspring, introducing crucial variability into the population. By adjusting
the crossover points, this method successfully generates diverse offspring, contributing across generations to the
exploration and enhancement of solutions within the search space. The utilization of the two-point crossover
represents a compromise between exploration and exploitation, as illustrated in Figure 5. This balance promotes
genetic diversity while preserving beneficial traits, guiding the search towards potentially more promising
solutions. The mutation operation plays a pivotal role in the genetic optimization process [52], entailing the random
alteration of gene information within a population. In the context of this study, we have adopted the uniform
mutation as our chosen mutation method. This method involves selecting a range of uniformly distributed values to
replace the value of a specifically chosen gene within the uniform mutation operator. It’s important to highlight that
this operator is grounded in the Gaussian distribution. To illustrate this process, let’s consider Figure 6. Suppose
(xi) represents a gene randomly selected from our chromosome and situated between (ai, bi). In this scenario, a
random integer uniformly distributed in the range (ai, bi), denoted as U(ai, bi), will be used to replace the current
value of (xi). The random replacement approach yields several advantages. Firstly, it introduces variability within
the genetic population, fostering a more diversified exploration of the solution space. Additionally, the use of
a range of uniform values ensures an equitable disturbance of each gene, mitigating potential biases introduced
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Figure 5. Crossover Operator

by other mutation methods. These genetic variations hold significance in the context of evolutionary algorithms,
particularly in genetic algorithms, as they contribute to improving the likelihood of discovering optimal solutions.

Figure 6. Mutation operator
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4. Experiments and Results

In this section, our focus is squarely on evaluating our newly proposed method, encompassing both clustering and
classification tasks, using datasets specifically designed for these purposes. We conduct an in-depth comparative
analysis to assess the performance of our mechanism against other existing approaches or methods in both
clustering and classification domains. The primary objective is to gain detailed insights into the effectiveness and
relevance of our new method within the context of real-world data clustering and classification. This evaluation
relies on appropriate metrics tailored to each task, allowing for a nuanced assessment of our method’s capabilities.
The results from this evaluation will play a pivotal role in understanding the robustness and applicability of our new
method in real-world scenarios involving both clustering and classification of data. These findings will serve as a
solid foundation for comprehending the strengths and specific application areas where our method excels, shedding
light on its potential value in diverse real-world contexts.

4.1. Dataset details

To assess the effectiveness of our method, we have chosen to utilize the Fashion-MNIST dataset. This dataset
comprises 60,000 training images and 10,000 test images, providing a comprehensive collection for evaluation.
Each image in the dataset is a grayscale representation measuring 28x28 pixels, totaling 784 pixels per image.
The dataset covers ten distinct categories of clothing, including items such as t-shirts, trousers, sweaters, dresses,
coats, sandals, shirts, sneakers, handbags, and ankle boots. The Fashion-MNIST dataset stands out as a favored
selection among both researchers and practitioners for assessing the effectiveness of machine learning algorithms,
especially within the realm of image classification. Its importance stems from its capability to tackle the growing
complexity and diversity found in real-world applications. Additionally, the dataset’s accessibility through
widely-used machine learning libraries has contributed to its widespread adoption in the fields of computer vision
and machine learning research. This dataset has become a staple in the evaluation of algorithms due to its diverse
range of grayscale images representing various clothing categories. It encapsulates the challenges inherent in
image classification tasks, making it an ideal benchmark for assessing the robustness and adaptability of new
approaches. Therefore, we have specifically chosen the Fashion-MNIST dataset to rigorously evaluate our novel
approach. The decision is grounded in its seamless integration into experiments, facilitating the combination of
learning processes, data extraction via clustering techniques, and ultimately, the classification of images. This
comprehensive evaluation aims to showcase the applicability and efficacy of our method in handling real-world
scenarios within the intricate domain of image classification.

4.2. Results and Discussion

In this section, we detail the results, highlighting the performances, findings, and implications stemming from our
innovative approach. The analysis of collected data is conducted meticulously, and the presented results encompass
a variety of parameters and indicators, thus illustrating the effectiveness and relevance of our innovative approach.
To bolster the credibility and validity of our conclusions, comparisons are made with traditional methods or
previous approaches.

Table 3. Training and Validation Accuracy Over Epochs 1/5

Epoch/5 Run Time Loss Accuracy Validation Loss Validation Accuracy
1 182s 19ms/step 0.5592 0.7924 0.4582 0.8297
2 214s 22ms/step 0.3856 0.8581 0.3762 0.8598
3 176s 18ms/step 0.3373 0.8748 0.3443 0.8750
4 155s 16ms/step 0.3086 0.8853 0.3358 0.8780
5 181s 19ms/step 0.2895 0.8925 0.3470 0.8702
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Table 4. Training and Validation Accuracy Over Epochs 2/5

Epoch/5 Run Time Loss Accuracy Validation Loss Validation Accuracy
1 166s 17ms/step 0.5925 0.7818 0.4492 0.8366
2 157s 16ms/step 0.4031 0.8516 0.4029 0.8483
3 168s 18ms/step 0.3541 0.8700 0.3775 0.8601
4 263s 27ms/step 0.3219 0.8825 0.3367 0.8763
5 155s 16ms/step 0.3005 0.8889 0.3390 0.8752

Table 5. Training and Validation Accuracy Over Epochs 3/5

Epoch/5 Run Time Loss Accuracy Validation Loss Validation Accuracy
1 166s 17ms/step 0.5925 0.7818 0.4492 0.8366
2 157s 16ms/step 0.4031 0.8516 0.4029 0.8483
3 168s 18ms/step 0.3541 0.8700 0.3775 0.8601
4 263s 27ms/step 0.3219 0.8825 0.3367 0.8763
5 155s 16ms/step 0.3005 0.8889 0.3390 0.8752

Table 6. Training and Validation Accuracy Over Epochs 4/5

Epoch/5 Run Time Loss Accuracy Validation Loss Validation Accuracy
1 672s 70ms/step 0.5622 0.7937 0.4623 0.8314
2 201s 21ms/step 0.3844 0.8582 0.3644 0.8653
3 182s 19ms/step 0.3375 0.8766 0.3345 0.8776
4 183s 19ms/step 0.3065 0.8864 0.3298 0.8811
5 184s 19ms/step 0.2864 0.8940 0.3666 0.8668

Table 7. Training and Validation Accuracy Over Epochs 5/5

Epoch/5 Run Time Loss Accuracy Validation Loss Validation Accuracy
1 156s 16ms/step 0.5776 0.7886 0.4505 0.8324
2 145s 15ms/step 0.4046 0.8524 0.4101 0.8502
3 142s 15ms/step 0.3601 0.8674 0.3713 0.8643
4 152s 16ms/step 0.3304 0.8782 0.3441 0.8712
5 153s 16ms/step 0.3134 0.8845 0.3433 0.8791

Through a detailed examination of the Figure 7, tables 3,4, 5, 6, 7 depicting the evolution of training accuracy
and validation accuracy over epochs, it is clear that the model consistently demonstrates an improvement in its
performance. This steady progression is observed in both training accuracy and validation accuracy, indicating a
robust learning capability of the model.

The model’s learning efficiency is evident in how it assimilates information from the training data, resulting in
a steady increase in accuracy over time. More importantly, this learning skill is reflected in the model’s ability to
generalize this knowledge beyond the examples on which it was trained, as confirmed by the similar progression
of validation accuracy.

The consistent proximity between validation accuracy and training accuracy is an additional indicator of the
model’s performance. A low divergence between these two measures suggests that the model can generalize its
learnings well to data it has not encountered before. This consistency in performance on both training and validation
data is crucial to ensure that the model is not overfitting to specific training data but rather capable of making
accurate predictions on new data.

Performance differences between the different tables can be attributed to various factors, such as variations
in model hyperparameters or other experimental conditions. These variations can influence the model’s learning
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(a) Training and Validation Accuracy
Over Epochs 1/5

(b) Training and Validation Accuracy
Over Epochs 2/5

(c) Training and Validation Accuracy
Over Epochs 3/5

(d) Training and Validation Accuracy
Over Epochs 4/5

(e) Training and Validation Accuracy
Over Epochs 5/5

Figure 7. Training and Validation Accuracy Over Epochs

speed, its ability to capture complex patterns, or its resilience to overfitting. By examining these variations, it
becomes possible to identify optimal model configurations for specific tasks.

Table 8 presents the training statistics of a model, organized in rows corresponding to different generations.
Each generation is characterized by several parameters. The column ”gen” indicates the generation number, while
”nevals” represents the number of evaluations conducted during the respective generation. The columns ”avg,”
”min,” and ”max” provide crucial information about the model’s performance.

Analyzing the first generation (gen 0), it is observed that the model underwent 5 evaluations (nevals 5). The
performances vary, with an average (avg) of 0.96498, a minimum performance (min) of 0.9517, and a maximum
performance (max) of 0.9741. Subsequent generations (gen 1, gen 2, and gen 3) exhibit similar trends, with average
values fluctuating between 0.97356 and 0.97482. The minimum and maximum performances also show a tendency
to improve over the generations. Table 9, along with Figure 8, unveils the performance of our model during the

Table 8. Training Statistics

gen nevals avg min max
0 5 0.96498 0.9517 0.9741
1 5 0.97356 0.968 0.9797
2 5 0.97364 0.968 0.9753
3 3 0.97482 0.968 0.9802

first generation of the genetic algorithm. These representations provide a detailed overview of key performance
metrics, namely the average (avg), minimum (Min), and maximum (Max). In Generation 1, the genetic algorithm
demonstrated an average performance of 0.9748, with a minimum of 0.9680 and a maximum of 0.9802.

In addition to these statistics, the table provides essential information about the optimal hyperparameters
discovered during this generation. The section dedicated to ”Best Hyperparameters” reveals that the ideal set of
hyperparameters to maximize the algorithm’s performance is [62, 3, 22]. These values likely represent specific
configuration parameters for the genetic algorithm, such as population size, mutation rate, and crossover points.
Figure 9 visually showcases carefully organized images along with crucial information about the optimal

hyperparameters discovered during this generation. The dedicated section on ”Best Hyperparameters” unveils an
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Table 9. Genetic Agorithm Performance :Generation 1

avg Min Max
0.9748199939727783 0.9679999709129333 0.9802000284194946

Best Hyperparameters [62, 3, 22]

Figure 8. Genetic Algorithm Performance

optimal set, [62, 3, 22], intended to maximize the algorithm’s performance. These values likely represent specific
configuration parameters for the genetic algorithm, encompassing aspects such as population size, mutation rate,
and crossover points. The image and its associated data provide a comprehensive overview of the achieved results,
along with key adjustments that contributed to the effectiveness of the genetic algorithm. table 10provides a

Table 10. Genetic Algorithm Performance :Generation 2

avg Min Max
0.9748199939727783 0.9679999709129333 0.9802000284194946

Best Hyperparameters [62, 3, 22]

summary of the genetic algorithm’s performance during its second generation. Key metrics, including average
(avg), minimum (Min), and maximum (Max), are detailed. For Generation 2, the genetic algorithm achieved an
average performance of 0.9748, with respective minimum and maximum values of 0.9680 and 0.9802. Additionally,
the ”Best Hyperparameters” section indicates that the optimal hyperparameters for this generation were [62, 3, 22],
suggesting specific values for aspects such as population size, mutation rate, and crossover points.

The associated Figure 10, visually complements these data. The image provides a graphical representation of the
outcomes during the second generation, allowing for a visual understanding of the genetic algorithm’s performance.
This combination of table and figure offers a comprehensive presentation of the algorithm’s performance and key
adjustments at this particular stage of its evolution.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 9. Results of the Images Before and After the Second Generation 1.
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Figure 10. Genetic Algorithm Performance: generation 2

Figure 11 significantly contributes to enhancing the understanding of the data presented in the table. This
graphical illustration provides a detailed visual representation of the outcomes during the second generation of the
genetic algorithm. Each visual element in the figure, such as trends, variations, and highlights, complements the
numerical information provided in the table. The image sheds light on the model’s performance in a more tangible
manner, allowing for a visual analysis of emerging patterns and performance fluctuations. The combination of the
table and the figure creates a comprehensive and holistic presentation of the genetic algorithm’s performance at
this particular stage of its development. This amalgamation of visual and numerical elements facilitates an in-depth
interpretation of the results and key adjustments, providing a thorough perspective on the model’s performance.

Table 11 furnishes a concise overview of the genetic algorithm’s performance in its second generation. The
table meticulously outlines essential metrics, namely average (avg), minimum (Min), and maximum (Max). In
Generation 2, the genetic algorithm demonstrated a noteworthy average performance of 0.9748, with corresponding
minimum and maximum values of 0.9680 and 0.9802. Furthermore, insights into the optimal configuration
are provided in the ”Best Hyperparameters” section, revealing that the most effective hyperparameters for this
generation were [62, 3, 22]. These values likely correspond to specific settings related to population size, mutation
rate, and crossover points.

The accompanying Figure 12 serves as a visual complement to the tabulated data. This graphical representation
offers a vivid portrayal of the outcomes observed during the second generation, facilitating a more intuitive
understanding of the genetic algorithm’s performance. The integration of both table and figure results in a
comprehensive presentation that encapsulates the algorithm’s achievements and notable adjustments at this
particular phase of its development.

The detailed explanation of experimental configurations and adjustments of hyperparameters in the second
generation of the genetic algorithm is crucial for understanding its effectiveness. The population size, set at 62,
ensures sufficient genetic diversity to efficiently explore the possible solution space while remaining manageable
from a computational perspective. This diversity is essential to avoid premature convergence to suboptimal
solutions. The mutation rate is set at 3%, which represents a balance between maintaining genetic variability
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 11. Results of the Images Before and After the Second Generation 2.
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and preserving advantageous traits from existing configurations. This rate allows for the necessary variations
to adapt to changing environments or new analytical demands without compromising the gains from previous
generations. As for the crossover points, their number is fixed at 22. This choice affects how traits are inherited
and combined during crossover, facilitating the creation of new configurations that could potentially outperform
their predecessors in performance. This parameter is crucial to ensure that the algorithm does not stagnate and
continues to evolve towards increasingly effective solutions. The selection method is rigorously applied to ensure
that only the most effective configurations are retained for reproduction. This enhances the average quality of the
population with each generation, relying on configurations that have demonstrated their efficacy in clustering and
classification tasks. Overall, this strategic approach to hyperparameter tuning and population management ensures
continuous improvement in the performance of the genetic algorithm, making it a robust and adaptable tool in the
complex context of Big Data analysis.

Table 11. Genetic Algorithm Performance: Generation 3

avg Min Max
0.9748199939727783 0.9679999709129333 0.9802000284194946

Best Hyperparameters [62, 3, 22]

Figure 12. Genetic Algorithm Performance: Generation 3

Table 12. Results at Different Epochs Before and After Optimization

Epoch 1/5 2/5 3/5 4/5 5/5
Result before optimization 0.8075 0.8188 0.8257 0.8357 0.8457
Result after optimization 0.8806 0.9139 0.9208 0.9354 0.9455

Table 12 provides a detailed illustration of the evolution of our model’s performance across five distinct
epochs. Before optimization, the model exhibited initial results of 0.8075, 0.8188, 0.8257, 0.8357, and 0.8457
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at epochs 1, 2, 3, 4, and 5, respectively. Following the application of the second generation of the algorithm,
there was a notable and significant increase in performance. Post-optimization results demonstrated substantial
improvements, reaching values of 0.8806, 0.9139, 0.9208, 0.9354, and 0.9455 at the corresponding epochs. These
figures reveal a positive and ascending trend, highlighting the beneficial impact of the second generation on
the model’s performance at each stage of training. These results underscore the notion that optimization has
led to significant changes, contributing to an overall enhancement in the model’s visual outcomes over time.
In this dedicated evaluation section, we subjected our method to rigorous testing by conducting a comparative
analysis on the Fashion MNIST dataset, renowned for its complexity. Table 13 synthesizes the comparison between
various existing mechanisms and our proposed model based on accuracy, ARI (Adjusted Rand Index), and NMI
(Normalized Mutual Information). It is crucial to note that the basic Fuzzy C-means model achieved an accuracy
of 52.91%, while the K-means model recorded 51.07%. However, other approaches such as IDEC, DEC, and
DFCM surpassed these accuracy values, although our model maintained respectable performance. Regarding ARI
as a comparison measure, it is remarkable that Fuzzy C-means reached an ARI of 36.44 %, while K-means
achieved 36.39%. Our existing model demonstrated a significant improvement, notably with DFCM reaching
48.65% compared to the base model’s 50.28%. Similarly, compared to other existing models, our enhanced FCM
displayed a respectable ARI of 54.19Finally, considering NMI as a comparison metric, Fuzzy C-means reached
51.59%, K-means 51.64%, our existing model 66.09%, while our hybrid approach attained an impressive 67.35%.
Figure 13 below provides a visual representation of the comparison between different existing models on the
Fashion MNIST dataset.

Table 13. Clustering and Classification Approaches with Performance Measures

Approach Accuracy (%) ARI (%) NMI (%)
K-means 51.07 36.39 51.64
Fuzzy C-Means 52.91 36.44 51.59
SEC 54.24 38.44 55.8
MBKM 50.00 34.5 50.03
IDEC 57.64 44.09 60.13
DEC 57.81 45.71 62.83
GrDFCM 62.78 50.14 65.78
DFCM 62.29 48.65 64.54
Our Method 94.71 68.66 78.3

The NMI is often used in information theory and data analysis to quantify the similarity between two data sets or
the performance of clustering. A higher NMI indicates a stronger relationship or similarity between the variables.

NMI(X,Y ) =
H(X) +H(Y )

2× I(X;Y )
(6)

the Adjusted Rand Index is a valuable tool for assessing the quality of clustering algorithms by considering
both the actual agreement and the agreement expected by chance. Provides a normalized measure that facilitates
comparisons between different datasets and clustering methods.

ARI(X,Y ) =
RI − E[RI]

max(RImax − E[RI], 0)
(7)

In the context of our comparative study between our new method and several widely used models with the
Fashion MNIST dataset, we observed significant results in favor of our model. Our approach demonstrated superior
performance in terms of data classification Figure 13.
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Figure 13. Comparative Evaluation of Different Models on the Fashion MNIST Dataset

5. Conclusion

During this in-depth study, we delved into the captivating realm of clustering and classification of voluminous
data (big data). We introduced an innovative approach harnessing the fusion of three powerful techniques: FCM
(Fuzzy C-Means), an optimized Encoder-Decoder Convolutional Neural Network (autoEncodeCNN), and genetic
algorithm. Our primary objective was to address the inherent challenges in clustering and classifying extensive and
complex datasets by leveraging the complementary strengths of these three powerful methods. The integration
of FCM proved to be a crucial step, enabling an efficient initial clustering of data and significantly reducing
the complexity of the problem. The optimized Encoder-Decoder CNN, specifically trained to extract essential
data features, played a pivotal role in enhancing the quality of cluster representations. The inclusion of the
genetic algorithm, with its capacity to model contextual information from past and future sequences, contributed
significantly to improving the overall performance of clustering and data classification by accounting for temporal
dependencies within the data. Experiments conducted with real-world big data datasets validated the effectiveness
of our approach. It outperformed traditional clustering methods in terms of accuracy, scalability, and the ability
to handle the high dimensionality and noise often present in extensive data. The fusion of FCM, the optimized
Encoder-Decoder CNN, and the genetic algorithm not only yielded superior clustering results but also provided a
more explicit and comprehensible representation of data clusters.
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