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Abstract The orthogonal moments giving relevant results of these last years within the framework of object detection,
pattern recognition and image reconstruction, this work based on orthogonal functions called Orthogonal Jacobi Polynomials
(OJPs), and we introduce a new set of moments called Generalized Jacobi Fourier Moments (GJFMs), these polynomials
are characterized by parameters α,β and λ. However, it was very important to optimize these parameters in order to obtain
a good result, in this context; this study used a new approach to optimized Jacobi Fourier parameters α,β and λ using the
artificial bee colony algorithm (ABC) in order to improves the quality of reconstruction of images of large sizes. On the one
hand, to validate this technique which offers a high image reconstruction quality. On other hand, the comparison carried out
with other algorithms clearly indicates the advantage of the proposed method.
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1. Introduction

For image recognition and representation images one applies one of the techniques which transform an image
into a vector by requiring a decision to be made based on the class specific to that image. clearly, the extracted
feature vector which gives the quality of the image representation. For this, in recent years, applications on image
analysis and pattern recognition known very important developments. The importance of orthogonal moments
(OMs) in geometric transformations which are introduced by Teague [1] in 1980, Orthogonal moments are more
powerful when representing im-ages with low information redundancy and good noise resistance [2], than non-
orthogonal moments, and in variety of image processing applications, including, reconstruction [3], classification
[4], resolution [5][6], image detection [7], video encoding [8], image representation [9][13] and compression [14].

The Jacobi Fourier moments (JFMs) introduced by Ping et al. [15] are orthogonal moments defined by
multiplying two radial and angular kernel functions, shift function and other angular Fourier function, this Jacobi
polynomials depending on three control parameters α , β and Λ. Hoang and Tabone [16] take into consideration
the points presented in the definition of the radial kernels as defined in [15]. Zernik moments (ZMs) [17], pseudo
Zernik moments (PZMs) [18], Mellin Fourier moments (MFMs) [19], Chebyshev Fourier moments (CHFMs) [20]
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pseudo Jacobi Fourier moments (PJFMs) [21], and Legendre Fourier moments (LFMs) [22] are some particular
examples of JFMs based on control parameters [15].

In this article, we present an optimal and coherent method for optimizing Jacobi Fourier parameters α , β and Λ.
To evaluate these applications concerning the quality of the reconstructed images, we have to use the mean square
error (MSE). For a better quality of reconstructed images, we must find optimal values of these Local parameters
(α , β and Λ), the problems of the selection of the parameters of the functions depend on the processing situation
that we need, in our work, we propose a powerful method for selection of the parameters of the Orthogonal Jacobi
Polynomials (OJPs), we rely on the optimization instruction method called Artificial Bee Colony (ABC) [23]. the
latter is used to select the good values of the OJPs function parameters which give a better reconstruction of the
images thanks to the minimization of the MSE.

The performance of the ABC algorithm for the optimization of the parameters of the OJPs functions provides the
motivation to present an optimal method for the reconstruction of large images based on generalized Jacobi Fourier
moments (GJFMs) and ABC algorithm. However, the rest of this work is organized as follows: In the 2nd section,
we present generalities on the calculation of OJPs. In the 3rd section, we present the accurate computational method
of the moments GJFMs. The 4th section the optimal reconstruction of images by moments GJFMs using the ABC
algorithm are presented. In the 5th section, we present the proposed model’s architecture based on the support
vector machines (SVM) [24] and moments GJFMs optimized for classification. The robustness of the proposed
reconstruction method in the last section.

2. Generalized orthogonal Jacobi Fourier moments

The Generalized orthogonal Jacobi Fourier moments GJFMs are defined as follows:

GJFM (α,β,λ)
pq =

1

2πAp(α, β, λ)

∫ 2π

0

∫ 1

0

f(r, θ) · Jp(α, β, λ, r) · e−iqθ ·B(α, β, λ, r) · rdrdθ (1)

Where p and q are the order and repetition; p = |q| = 0; 1; 2; . . .∞
The normalization constant Ap(α, β, λ), the weight function B(α, β, λ, r) and the Jacobi polynomials

Jp(α, β, λ, r) are defined as follows:

Ap(α, β, λ) =
p!((β − 1)!)2(α− β + p)!

λ(α− 1 + p)!(β − 1 + p)!(α+ 2p)!
(2)

B(α, β, λ, r) =
(
1− rλ

)α−β (
rλ
)β−1

;α− β > −1 and β − 1 > −1 (3)

Jp(α, β, λ, r) =
p!(β − 1)!

(α+ β − 1)!

p∑
k=0

(−1)k
(α+ β + k − 1)!rλk

(p− k)!(k)!(β + k − 1)!
;λ ∈ R+ (4)

The radial functions Jp(α, β, λ, r) are orthogonal in the interval 0 ≤ r ≤ 1 and the Fourier exponential e−iqθ as
angular function. The image function f(r, θ) could be reconstructed as follows:

f(r, θ) =

∞∑
p=0

∞∑
q=−∞

GJFMpqJp(α, β, λ, r)e
iqθ (5)

With pre-defined, pmax and qmax equation (5) becomes:

f̂(r, θ) ∼
pmax∑
p=0

qmax∑
q=−qmax

GJFMpqJp(α, β, λ, r)e
iqθ (6)
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3. Accurate Computational Method of the GJFMs

The Generalized orthogonal Jacobi Fourier moments GJFMs of order pq of any function f(r, θ) defined on
θ ∈ [0, 2π] and r ∈ [0, 1]. We must adopt the cartesian image pixels to the polar image pixels technique to calculate
the moments GJFMs on images of size 2N × 2N with concentric circles. We use the ri direction to divide the
disk into N rings, we limit each ring by two circles of

{
ri =

i
N and ri+1 = i+1

N ; i = 0, 1, 2 . . . , N − 1
}

, and each
number i of ring contains num 4 + 8i equals parts determined by the angles θix.

Therefore, we calculate the GJFMpq moments using the zeroth-order approximation mer (ZOA) [25] for a
digital image intensity function f(r, θ) of size 2N × 2N :

GJFM (α,β,λ)
pq =

1

2πAp(α, β, λ)

N∑
i=0

3+8i∑
x=0

f (ri, θix) Jp (α, β, λ, ri) e
−jqθix∇ri∇θix (7)

Jp (α, β, λ, ri) are the pth orthogonal polynomials of Jacobi

θix =
2
(
x+ 1

2

)
π

4 + 8i
, x = 0, . . . , 3 + 8i (8)

∇ri = ri+1 − ri =
i+ 1

N
− i

N
=

1

N
(9)

∇θix = θi,x+1 − θi,x =
2π(x+ 1 + 0.5)

4 + 8i
− 2π(x+ 0.5)

4 + 8i
=

2π

4 + 8i
(10)

An approximation f̃(r, θ) of the original image can be reconstructed by:

f̃(r, θ) =

pmax∑
p=0

qmax∑
q=−mmax

GJFM (α,β,λ)
pq Jp(α, β, λ, r)e

jqθ (11)

From the processing we have done we can say that this approach is limited by two problems: the quality of
the processed images influenced by approximation errors and large orders requiring very high calculation time.
to solve these problems, we calculate 2D GJFMs moments in two cascaded steps by successive calculation of the
corresponding 1D GJFMs for each line. This precise and rapid method for calculating generalized Jacobi Fourier
moments.

4. Optimal reconstruction of images by GJFMs and the ABC algorithm

The optimal reconstruction of images by GJFMs using the ABC algorithm are presented in Figure 2.
ABC optimization algorithm for image reconstruction is based on the following steps:
The first step: The parameters of the algorithm ABC will be initialized
The initial values used in our algorithm are:
Number of variables, N = 2
The number of iterations, R = 20
The food source size, F = 4
The repeat condition, limit = (F ×N ×N)÷ 2
The condition of parameters: between Smin = 0 and Smax = 100 :
The 2nd step: The initial population must be generated randomly, using the following equation (12)

Fi = Smin + rand(0, 1)× (Smax − Smin) (12)

Where Fi the solution found, the space of games made between Smin, Smax (the range of rx and ry ) and rand
(0, 1) random function of continuous distribution on [0; 1].
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Using the MSE function (13) to evaluate each generated solution Fi

MSE =
1

(max+1) (max′ +1)

max∑
p=0

max∑
q=0

(f(r, θ)− f̃(r, θ))2 (13)

The values that must be modified for each iteration are organized as follows;

Figure 1. The organization of initial variables

Trace (Ti) in the first step takes the value 0 , this is the number of iterations which does not minimize the MSEi

The 3nd step: Employed bees phase, six instructions in this step
We will improve the values of the parameters rx and ry in all Fi

i = 0
We choose a random number from among rx,i Or ry,i in Fi : Either the value is rx,i
We choose a partner number rx,n from among Fn with n ̸= i
New solution generated using the following equation:

rx,iNew = rx,i + rand(0, 1)× (rx,i − rx,n) (14)

We calculate MSEivew by new parameter rxi ivew , and ryi
We compare MSEivew with MSEi

if MSEiNew < MSEi then

MSEi = MSEiNew

rxiii = rx, iNew

else

Ti = Ti + 1

t = i+ 1

Step 3 must be repeated

The 4nd step: Onlooker bees phase
Using the following equation to calculate the probability value of each solution MSE,

Pi =
MSEi∑F
1 MSEi

(15)

Letr = rand(0, 0.5)

if Pi > r then

Step 3 must be repeated

else
Step 4 must be repeated
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The 5nd step: Scout bees phase
if Ti > limit
then

using Eq. 12

end
The 6nd step: Steps 3,4 and 5 repeated, we stop at the R (Repetition numbers)
The 7nd step: Recording of the parameters rx and ry obtained and the image reconstructed in order n.

Figure 2. Bee Colony (ABC) Algorithm Flowchart

5. The proposed model’s architecture

After pre-processing, we obtain a characteristic vector which allows SVM to do the learning. Figure 3 clearly
clarifies the proposed method. To do the test, we take a test image, we calculate the GLPMIs moments to obtain
the final characteristic vector for the test image, so to get the decision about the target value we compare with the
data space of the SVM decision limit.

Stat., Optim. Inf. Comput. Vol. 12, May 2024



834

Figure 3. Classification method process

6. Experimental results and discussions

The performance and efficiency of the proposed optimization technique for image reconstruc-tion is tested by the
results obtained in this section. This experiment contains two parts: The 1st test part we show the power of the
ABC algorithm with GJFMs in the image color recon-structed. In the 2nd part we offer the recognition Rates using
GJFMs.

6.1. Images reconstructed by ABC algorithm and GJFMs moments

Using two color images: Figue 4 of sizes 128 × 128 to test the proposed method for image reconstruction. Using the
ABC algorithm optimization for GJFMs moments for orders from 10 to 63 concerning the reconstructed images.
We present in Figure 5 the images reconstructed in the different orders by the GJFM moments which are optimized
by the ABC algorithm and also present the values of local parameters α, β and λ , we observe that the reconstructed
image quality increases proportionally with the order moments GJFMs, and the values of the local parameters do
not follow any rule which shows the strength of the selection of parameters by the ABC algorithm, we see that the
proposed method is reliable for the optimal reconstruction of color images.

We must evaluate the quality of the proposed method on color images by two tests, 1st assessment is compared
with the classical method without optimizing the polynomial parameters while 2nd assessment the ABC algorithm

Stat., Optim. Inf. Comput. Vol. 12, May 2024
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Figure 4. Originals images (a) and (b)

Figure 5. Reconstructed color images ‘ 128×128 ‘ using the proposed moments GJFMs optimized by ABC

Stat., Optim. Inf. Comput. Vol. 12, May 2024
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has been compared by some algorithms of optimization; Fir fly Algorithm (FA)[26], Ant Colony Optimization
(ACO)[27], Differential Evolution (DE) [28], Learning Teaching Based Optimization (TLBO)[29], and Particle
Swarm Optimization (PSO)[30],

1st test, the proposed method based on GJFMs moments optimized by ABC algorithm is compared by the
classical method which is based only on GJFMs moments. From Figure 6, we notice that the MSE curves for
image reconstruction “Figure 4 (a)” decreases when the reconstruction order increases and approaches zero, which
implies that the quality of the reconstruction increases when we increase the order value of moments GJFMs.
Furthermore, it is clearly appreciated that the ABC algorithm allows to reach a minimal MSE compared to the
conventional method, which justifies the robustness of the optimization method based on the ABC algorithm for
image color reconstruction.

Figure 6. Reconstructed images errors MSE with different maximum order of moments used classical method and proposed
method optimized

2nd test, we use another method to validate our GJFMs moments optimized by ABC algorithm proposed for the
reconstruction, to do so we compare errors obtained by the ABC algorithm errors obtained by some optimization
algorithms (ACO, PSO, DE and TLBO) during the reconstruction. Mean Square Error (MSE) of the ” Figure 4
(b) ” image reconstructed based on GJFMs optimized by ABC and other optimization algorithms are displayed in
figure 7. Through this figure we can observe that the reconstruction errors based on our optimization method is
much more optimal than that obtained by the other algorithms.

6.2. Recognition rates using GJFMs

In this subsection, we must use the technique to evaluate the effectiveness of proposed method GJFMs, is the
GJFMs-SVM architecture used the SVM classifier. Two databases were used; the ETHZ-70Obj database [31]
contains 270 objects classified in 70 categories where the image sizes are 320×240 and the COIL-100 database
[32] contains 7202 color images classified in 100 categories with a size unified image of 128×128 to make several
experiments and tests. We selected from the data illustrated in figures 8 and 9 at random examples of images to
test our technique in a way to make several transformations, rotation, translation, scaling and mixed, in order to
generate the objects from the COIL database and the objects from the ETHZ database, so we created two additional
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Figure 7. Reconstructed images errors MSE with different maximum order of moments used proposed method by ABC
algorithm and the optimization algorithms: ACO, PSO, DE and TLBO

databases by adding different speckle noise densities, to see the performance of proposed GJFMs optimized by
ABC algorithm moments about the accuracy of the classification, we compare the accuracy obtained during the
classification using the GJFMs and SVM optimized by ABC algorithm with the other accuracy obtained by the
optimization algorithms: ACO, PSO, DE and TLBO.

We presented in the tables 1,2, 3, 4, and 5 the following evaluation parameters: Noise-free, speckle noise accuracy
for each database. From these tables, we can observe that the values found by adopting the ABC algorithm
outperform those of the other algorithms. This seems clear when focusing on the value of overall precision:
99.02/100 and 91.60/100 when using ABC algorithm, 88.56/100 and 89.44/100 when using PSO algorithm,
87.51/100 and 88.27/100 when using TLBO algorithm, 86.34/100 and 87.05/100 when using DE algorithm and
.86,49/100 and 84.89/100 when using ACO algorithm.

Figure 8. The selected images from database: ETHZ-70Obj

Stat., Optim. Inf. Comput. Vol. 12, May 2024
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Figure 9. The selected images from database: COIL-100

Table 1. Object recognition accuracy on ETHZ-70Obj [31] and COIL-100 [32] databases, by using proposed technique
GJFMs-SVM optimized by ABC algorithm.

Database Noise
free

Speckele noise Average
0.2% 0.4% 0.6% 0.8% 1%

COIL-100 [32] database 99.89 96.13 92.12 89.60 88.13 86.27 92.0233333

ETHZ-70Obj [31] database 99.91 94.33 91.08 90.04 89.57 84.71 91.6066667

Table 2. Object recognition accuracy on ETHZ-70Obj [31] and COIL-100 [32] databases, by using proposed technique
GJFMs-SVM optimized by PSO algorithm.

Database Noise
free

Speckele noise Average
0.2% 0.4% 0.6% 0.8% 1%

COIL-100 [32] database 99.14 92.23 89.16 86.63 84.16 80.04 88.56

ETHZ-70Obj [31] database 98.94 93.13 90.10 86.85 85.30 82.32 89.44

Table 3. Object recognition accuracy on ETHZ-70Obj [31] and COIL-100 [32] databases, by using proposed technique
GJFMs-SVM optimized by TLBO algorithm.

Database Noise
free

Speckele noise Average
0.2% 0.4% 0.6% 0.8% 1%

COIL-100 [32] database 98.29 91.24 88.20 85.561 83.096 78.69 87.512833

ETHZ-70Obj [31] database 97.97 91.93 89.12 85.66 84.03 80.93 88.273333

Table 4. Object recognition accuracy on ETHZ-70Obj [31] and COIL-100 [32] databases, by using proposed technique
GJFMs-SVM optimized by DE algorithm.

Database Noise
free

Speckele noise Average
0.2% 0.4% 0.6% 0.8% 1%

COIL-100 [32] database 97.32 90.04 87.22 84.37 81.82 77.30 86.345

ETHZ-70Obj [31] database 97.12 90.94 88.16 86.59 82.96 76.58 87.058333

7. Discussions

The choice of local parameters of polynomials remains one of the necessary areas for development and research, for
which we used in this work the ABC algorithm to resolution the local parameters of Orthogonal Jacobi Polynomials
(OJPs). using OJPs polynomials to introduce a new group of moments called Generalized Jacobi-Fourier (GJFMs)
which are used for the images reconstruction, to guarantee the choice of local optimization parameters (α,β and
λ) we used the ABC optimization algorithm during image reconstruction. The simulation results show the power
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Table 5. Object recognition accuracy on ETHZ-70Obj [31] and COIL-100 [32] databases, by using proposed technique
GJFMs-SVM optimized by ACO algorithm.

Database Noise
free

Speckele noise Average
0.2% 0.4% 0.6% 0.8% 1%

COIL-100 [32] database 98.12 91.90 88.10 85.12 80.16 75.57 86.495

ETHZ-70Obj [31] database 97.93 92.56 89.34 81.788 75.89 71.89 84.8996667

in terms of choice of local parameters ( α, β and λ ) of the proposed method compared to classical methods and
in terms of quality of images reconstruction. In addition, the proposed method must be used in the biometric
recognition, biomedical, implementation of innovated smart city applications, such as smart metering, smart
farming, smart logistics, and smart buildings, hybridizing ABC with novel optimization techniques, such as Salp
Swarm Algorithm (SSA) [33], Whale Optimization Algorithm (WOA) [34], Lion Optimization Algorithm (LOA)
[35], Elephant Herding Optimization (EHO) [36],etc . . . fields, which also constitutes one of the axes of our future
work.
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