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Abstract 3D-Skeleton-based action recognition has been widely adopted due to its efficiency and robustness to complex
backgrounds. While it is capable of conveying a significant amount of information regarding the dynamics of human poses,
we argue that its performance is curtailed when confronted with actions involving interactions between humans and objects
due to the absence of the study of the surrounding objects. It is of great importance to delve deeper into the study of human-
object interactions for skeleton-based action recognition. This paper proposes a novel approach to represent the spatial-
temporal skeleton features, along with the present nearby objects and their dynamics. To accomplish this, a new formulation
named object knowledge is presented, which entails the categorization of object characteristics, based on whether or not the
object necessitates a motion analysis. With a piece of prior knowledge, in cases where it is required, the motion is calculated,
while for those where it is not necessary, only the category of object is considered. This object knowledge is then early-fusion
along with the skeleton representation, in such a way that it fits into the self-attention model. The experimental results on
different popular action recognition datasets (NTU RGB+D 60, NTU RGB+ D 120) illustrate that the proposed approach
outperforms the current state-of-the-art methods.
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1. Introduction

Computer Vision entails teaching computers to interpret and comprehend visual information from images and
videos, in different domains of applications such as medical [1], industrial [2], and material [3]. Action recognition
has undergone significant advancements to meet the needs of a diverse array of industrial applications, such as
video surveillance [4], autonomous driving [5], and robotics [6]. In numerous industrial contexts, the ability
to recognize human actions holds the potential to yield significantly valuable information, enabling the early
detection of dangerous situations [7], analysis of work behaviors [8], and evaluation of labor productivity [9].
Therefore, there has been a shift in focus among computer vision (CV) researchers towards Skeleton-based action
recognition, which entails the organization of actions based on the spatial relationship of body joints as a set of 3D
joint coordinates, and the temporal movement of human posture; However, the primary challenge lies in acquiring
discriminative and robust spatiotemporal characteristics that can accurately depict different actions. To address this
challenge, researchers have applied deep learning models, such as Convolutional Neural Networks (CNNs) [10],
Recurrent Neural Networks (RNNs)[11], Graph Convolutional Neural Networks (GCNs)[12], and more recently,
Self-attention mechanisms (Self-Att) or vision transformers (ViT) [13].

Skeleton data offers a high-level semantic representation of human action sequences that is more resilient
to variations in appearance, viewpoints, and surrounding environments with a low-dimensional representation
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compared to RGB data [14]. However, the skeleton representation provides a more abstract representation of the
human body, which may result in the loss of some fine-grained details and many actions may be challenging to
represent using only skeleton data. The aforementioned observations evolve a motivation for proposing a fusion
of Skeleton and RGB data, which capitalizes on the unique advantages of each modality and addresses their
respective limitations. Therefore, RGB data can serve as a complementary cue for analyzing the surrounding
environment. Nevertheless, the dense features of RGB lie in the object details. Hence, it is clever to disregard
extraneous information such as the background and focus solely on studying the objects surrounding the human
subject. Particularly, in the presence of proficient pre-trained RGB object detection models and pioneering datasets
that encompass most of the requisite objects while skeleton data remain focused on human behavior, ultimately
discerning potential actions. Certainly, there exist studies upon the same principle; however, this remains an
unsettled and relatively unexplored issue, and in general cases, researchers handle the operation through several
different training times, leading to amplified parameter numbers and heightened computational expenses [15], [16].

Figure 1. The figure highlights the significance of object knowledge and especially motion in accurately recognizing actions.
”Open bottle”, ”bounce ball” and ”put a bag” are three examples that showcase this importance. More than that, the existence
of an object in the scene is not enough to distinguish between actions? nature. For instance, in scenario a), the bag is present
in the scene, but the subject does not interact with it, rendering it irrelevant to the action. On the other hand, in scenario
c), the subject is putting on the bag, and the object’s motion is directly related to the subject’s movement, thus making it
crucial to identify the action of putting on the bag. This illustrates the critical role of considering an object’s motion in action
recognition

The present paper introduces an effective approach for action recognition, through skeleton-based analysis,
augmented by object-level knowledge obtained from pre-trained RGB data, in which a novel encoding technique
is proposed to handle both skeleton features and object knowledge as a unified input for the training network.
Object knowledge encompasses both the position and dynamic features of detected objects. The former pertains to
non-movable, interactive objects, while the latter refers to movable interactive objects within a given scene. This
partition proved to be a more precise identification of interactive objects with the subject as illustrated in Figure 1.

The main contribution of this work can be briefly summarized as follows: (i) A designed set of object knowledge
of interactive non-movable objects and interactive movable objects that aligns with the representation of 3D
skeleton data to enhance recognition accuracy. (ii) The proposition of a novel fusion technique that processes 3D
skeleton data in conjunction with object knowledge. (iii) Based on this, the design of a spatiotemporal network
achieves state-of-the-art performance. The approach is evaluated on three extensively utilized datasets, NTU
RGB+D 60 [17], NTU RGB+D 120 [18], and PKU-MMD dataset [19] for skeleton-based action recognition.

The subsequent sections of this paper are organized as follows: Section II provides a review of the relevant
literature pertaining to the proposed method. Section III presents a detailed description of how the action
recognition task is improved through the integration of object knowledge with the self-attention mechanism. The
experimental results and their interpretations are discussed in Section IV. Lastly, the conclusion is presented in
Section V.

2. Related work

In this section, we succinctly examine relevant literature that is closely related to the method proposed.
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2.1. 3D Skeleton-based Action Recognition

The Microsoft Kinect sensor is the source of 3D skeleton data, which captures the human skeleton from depth
images and tracks 25 joints of up to 6 individuals in real-time. Each skeleton’s joints are represented as (x, y, z)
and are connected to form a matrix. The processing of this data is categorized into two main categories: traditional
and deep learning methods. Traditional methods manually extract skeletal features using a series of 3D operations,
such as rotation angle, translation, and velocity of skeletal joints [20]. Deep learning methods are classified as RNN-
based, CNN-based, or GCN-based. RNN methods consist of a recurrent layer that extracts temporal information
between joints as a sequence of vectors [11]. CNN methods convert skeleton data into pseudo-image and then use
CNN to learn skeleton features [21], [22]. However, neither CNN nor RNN has been able to accurately represent
the structure of the skeleton data, as it is a non-Euclidean space and is therefore naturally embedded as a graph,
rather than as a sequence of vectors or a 2D grid. This has motivated researchers to develop a more appropriate type
of skeleton modeling - a GCN that specifically captures skeleton data as a graph structure [12, 23, 24, 25, 26, 27].
In recent times, Self-Attention (Self-Att) has gained attention among researchers for its performance in capturing
long-range dependencies and relationships within spatiotemporal data [28, 29, 30, 30, 31]. Typically, Self-Att is
incorporated into the architecture of GCNs or CNNs as a complementary mechanism [32], [33]. However, it should
be noted that these methods solely focus on skeleton representation and do not consider additional information
from the surrounding environment as a potential source of data. In our paper, we aim to leverage the contextual
information provided by action-related objects to enhance the understanding of actions in videos.

2.2. Skeleton-based Human-Object-Interaction

The main goal of Human-Object Interaction (HOI) detection in videos is to identify and extract ”human, object, and
interaction” triplets. However, existing approaches mainly rely on RGB-based methods, overlooking the potential
of skeleton-based modality. As a result, only a limited number of researchers have explored this modality for fine-
grained analysis of human-centric videos through HOI analysis [16], [15]. Previous studies have explored the use
of RGB modality for object position and skeleton modality for human position analysis. However, the challenge
of effectively handling double modality persists. To tackle this issue, we propose a novel method that optimally
leverages both modalities through early fusion. Specifically, we combine RGB-dense features with the skeleton
modality to form the input representation of the self-attention model. Notably, some prior works, such as Xu et al.
[16], did not account for the temporal dynamics of objects in human-object interactions and treated all detected
objects equally. Wang et al. [15] introduced a multi-stream network with three streams, which were later fused
by averaging the classification scores of each stream and not trained together. Our approach distinguishes itself
by employing a one-stream network that solely focuses on object features alongside skeleton modality features.
This design choice enables us to better address the challenges associated with double modality while maintaining
a simpler and more effective architecture.

2.3. Self-Attention Mechanism

Deriving Inspiration from the way humans selectively focus on specific aspects of a visual scene to better
comprehend information [34], attention mechanisms automatically identify and highlight prominent regions
or features within input images or feature maps. Self-attention, a type of attention mechanism, emphasizes
interdependencies within data [35]. This is achieved through the computation of three trainable weight matrices -
query (Q), key (K), and value (V ), each with a dimension of d. Subsequently, the dot product of the query and key
is normalized by

√
d to stabilize the gradients, and the resultant product is multiplied by the value to produce the

output. In essence, the entire process can be succinctly represented as follows in Equation (1):

Attention(Q,K, V ) = Z = softmax(
QKT

√
d

)V (1)
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Figure 2. The proposed approach comprises two primary components: position encoding and dynamics encoding. Initially,
RGB data is fed into a pre-trained model to detect objects. Subsequently, prior knowledge is utilized to determine if the
detected object requires motion analysis. If not, the Object-position encoding is followed by combining the object-position
features (c) with the skeleton position. Conversely, if the object necessitates a motion study, the dynamics encoding is applied
which is based on including the object category and its motion (d) as Object Dynamic features with the dynamic features of
the spatiotemporal representation of the skeleton

3. Our method

3.1. Overall Architecture

Most approaches in the state of the art represent the skeleton data, i.e., the joints, as matrix P ∈ RC×V×T where
C denotes the channel number, V and T denote the number of joints and frames. Authors previously enriched
the skeleton representation with bone information and joint type as a semantic guide for the neural network [36].
The bone information indicates the direction of joints and joint type mentions the type of joint (head, feet...).
Accordingly, as presented in Figure 2, our goal is to further lead and assist the 3D skeleton representation
to lessen action recognition misconstrue, by incorporating the elements from the milieu. For this purpose, we
commence with the establishment of an object knowledge aggregate that accumulates the position and dynamic
information separately of encountered skeleton-related objects. position information provides insights into non-
movable objects, while dynamic information investigates also the rate of objects’ motion of movable objects. This
information is embedded within the 3D skeleton representation as an input of a self-attention architecture as an
early fusion.

3.2. A formulation of Object Knowledge data

To collect and focus selectively on the surrounding elements that are relevant for the task of action recognition, this
section proposes an aggregate, which we named Object Knowledge, which contains two levels: Object-position
Features and Object-dynamic Features.

3.2.1. Object-position Features
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Given an RGB video X with T frames, we employed an object detector model on the T frames to identify and
detect present elements. The model is named End-to-End Object Detection with Transformers (DE-TR) [37] since
it outperforms other existing methods in different terms such as accuracy, and speed, and is known to perform well
in detecting small objects. It returns a set of bounding box coordinates, typically represented as a tuple of four
values Bbox = (xmin, ymin, xmax, ymax) indicating the coordinates of the top-left and bottom-right corners of the
bounding box, and class labels for each object detected in each T frames, represented as integers, with each integer
corresponding to a specific class (e.g. person, car, dog, etc.). The model may also output a confidence score for
each bounding box. We used the Object356 dataset [38] to train the DE-TR model. Although it is well known that
the COCO dataset [39] is the one that is most frequently used for object detection tasks, Object365 covers a larger
number of richer interactive objects about 365 as opposed to the 80 in COCO. We select the Np first interactive
non-movable objects candidates by detection scores. To avoid size inconsistencies, we put Np = V and for less than
Np we fill with a placeholder of zero. For X , the bounding box of each object forms a matrix in Bbox ∈ R4×Np×T .
However, our concern is the c ∈ RNp×T represents the categories of objects.

3.2.2. Object-dynamic Features

Because standalone position information does not provide all the knowledge required to determine which object
is interacting with the human in a scenario with several objects, what results in, objects with a significant movement
deserve more attention than others. To this end, we exploit the motion of each movable object in each frame. Firstly,
we filtered the interacted-movable objects Nd (The same thing as the position representation: we put Np = V = Nd

to avoid dimensional size inconsistencies), and we performed the calculation of motion as a Euclidean distance task
of each object Nd between adjacent frames (t) and (t+ 1) as follows (Equation (2)):

V t+1 =∥ c(x, y)t+1 − c(x, y)t ∥ (2)

where ct refers to the centroid of the object at frame t, as seen in Figure 3. c(x)t = xt
min +

xt
max

2 , and

c(y)t = ytmin +
yt
max

2 .

Figure 3. Extraction of the Object-dynamic features of a moving object

At this point, we put d as the dynamics representation of interactive movable objects, it covers the temporal
aspect of the objects in addition to its positional representation, distributed in R2Nd×T .

3.3. Object knowledge along with the 3D skeleton representation

3.3.1. 3D Skeleton features encoding
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The original skeleton data of position is P ∈ RC×V×T . P is enriched with the bone representation. Every joint
is converted to a vector that points from the previous joint to the present one, with the root joint’s vector remaining
at zero, a Wjj identity matrix is initially provided, and some elements with the same directed connection joints’
column indices are set to be set to -1 to facilitate computation. E = P ·W is the information extracted from bones.
E and P are then concatenated as: S = [P P.W ], where S ∈ R2C×V×T .

The temporal information of the skeleton is divided into two elements: Same-Joint velocity and Joint-to-Joint
velocity. The same-joint velocity is the velocity of the same joint between adjacent frames. The joint-to-joint
velocity is the velocity of the bone made up of the joint j and j + 1. Given a Skeleton P consisting of T frames.
Let ptj and pt−1

j be the 3D coordinates of the jth joint of the skeleton P at the frame t and t− 1 respectively. The
same-joint velocity of ptj is calculated in the form:
On the plane z = 0:

dt,z=0
pj

=∥ p(x, y)tj − p(x, y)t−1
j ∥, (3)

On the plane x = 0:
dt,x=0
pj

=∥ p(y, z)tj − p(y, z)t−1
j ∥, (4)

On the plane y = 0:
dt,y=0
pj

=∥ p(z, x)tj − p(z, x)t−1
j ∥ . (5)

The same-joint velocity of ptj is formed from (Equation (3), Equation(4), and Equation(5)) as vtj =

[dt,z=0
pj

, dt,x=0
pj

, dt,y=0
pj

] ∈ RC .
Let etij = pti − ptj with i and j are two adjacent joints be the bone representation at the frame t. Similar to the

same-joint velocity vti , The joint-to-joint velocity is vetij = [dt,z=0
ij , dt,x=0

ij , dt,y=0
ij ] with vetij ∈ RC .

all velocity features of each joint of each skeleton are extracted, either regarding the joint or about the bone. The
two types of velocities are concatenated at every moment and I represents their concatenation, with I ∈ R2C×V×T .

3.3.2. Early fusion of Object knowledge & 3D Skeleton features

At this stage, S represents the position features of the skeleton data, I denotes the temporal features. For object
knowledge, c is the position part, while d is the dynamic element. Two separated early fusions are made, Sc is the
spatial early fusion by concatenating S and c, while I is concatenated with d as a temporal early fusion.

Sc = [S c] (6)

Id = [I d] (7)

While Sc ∈ RC1×V×T , Id ∈ RC2×V×T , with C1 = Np + 1 and C2 = Nd + 2.
As the position representation Sc brings one information, while the temporal information Id brings two (i.e. The

class and the motion). To prevent any dimensional conflict, and since the motion of unmovable objects is always
regarded as zero regardless of the scenario, another row is added to Sc, in turn, sc ∈ RC2×V×T .

After that, Sc and Id are embedded separately into high dimensional space by two 1× 1 convolution layers as
follows (Equation (8) and Equation (9)):

S̃c = Relu(w2(Relu(w1Sc))) (8)

Ĩd = Relu(w4(Rely(w3Id))) (9)

Where W1,W3 ∈ RC3×C2 and W2,W4 ∈ RC3×C2 , Relu is the Relu activation function.
Thereafter, a summation joins Equation (8) and Equation (9) together:

Z = S̃c + Ĩd (10)
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At this stage of the proceedings, Z in Equation (10) is on standby to be the input of the vision transformer
network. To make the paper well-contained, we go through in detail in the following section the steps of the vision
transformer to model this Z.

3.3.3. Training with Self-attention

Figure 4. The Spatio-temporal self-attention block [13]

In our approach, the action recognition task is a supervised learning classification task. The objective is to acquire
a robust representation of Z that leads to improved prediction accuracy for action classes. The incorporation of
Object Knowledge into the skeleton representation resulted correspondingly, a bigger picture, which augmented
the long-distance global dependency. On account of this, the spatial-temporal self-attention mechanism was the
chosen model for this task to dynamically optimize the proposed structure (Figure 4), avoiding several times of
parameters. Let x be the input of the network and y its corresponding output. The self-attention block is described
as follows (Equation (11)):

y(x) = Relu(h(f(x).g(x))) + x (11)

As f(x) represents the similarity matrix (Equation (12)):

f(x) = softmax((wθx)
T (wϕx) (12)

g(x) = wgx, h(x) = whx , θ(x) = wθx, ϕ(x) = wϕx and wh, wθ, wϕ and wg are learnable:1× 1 convolution
operation) and +x represents a residual connection. The self-attention block produces feature maps in RC×T×V

(Figure 4 represents the spatiotemporal self-attention block). Following the general architecture of the self-attention
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architecture, a global pooling layer is applied, producing features in RC×1×1. And finally, to generate the classes
of actions, a linear layer is put in.

4. Experiments and Analysis

The proposed approach was extensively evaluated on different significant benchmark datasets, namely NTU
RGB+D 60 [17], NTU RGB+D 120 [18] and PKU-MMD [19]. The analysis of variant models was performed
to validate the contribution of each component, and a comparison with the state-of-the-art method was visualized
to demonstrate the efficiency of the proposed solution.

4.1. Datasets and Protocols

4.1.1. NTU RGB+D 60 Dataset [17]

The NTU60 RGB+D dataset is an extensive and intricate compilation of 56,880 video clips that document
60 different human actions performed by 40 individuals, each with 25 joints represented in 3D coordinates and
captured from 80 different perspectives using three Kinect cameras. The actions are categorized into three groups,
namely daily, mutual, and health-related actions. The model evaluation was conducted following the experimental
settings outlined in [36]. For the cross-subject (cs) evaluation, 20 of the 40 subjects were used for training, resulting
in 40,320 videos for training and 16,560 videos for testing. The Cross View (cv) evaluation employed sequences
captured by two cameras for training, while the remaining sequences captured by a third camera were reserved for
testing. This resulted in 37,920 videos for training and 18,960 videos for testing.

4.1.2. NTU RGB+D 120 Dataset [18]

The NTU RGB+D 120 dataset is a continuation of the NTU RGB+D 60 dataset and consists of 114,480 skeleton
sequences that represent 120 distinct action classes performed by 106 individuals. It is currently the most extensive
dataset for recognizing human actions based on skeletons. Our evaluation methods are based on the standard
protocols, including Cross-subject (cs) and Cross-view (cv). Under the CS protocol, we used videos from 53
human subjects for training and the remaining subjects for testing. For CV, we employed video clips captured by
cameras with collection setup IDs for training and those captured by cameras with odd setup IDs for testing.

4.1.3. PKU-MMD Dataset [19]

The PKU-MMD dataset is a skeleton-based action recognition dataset featuring 51 actions. It contains 5,312,580
frames distributed across 3,000 minutes, with over 20,000 temporally localized actions. The dataset is categorized
into two sections: 43 daily actions (e.g., drinking, waving hands, putting on glasses) and 8 interaction actions
(e.g., hugging, shaking hands). The evaluation methods employed are Cross-subject (cs) and Cross-view (cv). For
Cross-subject evaluation, 57 subjects are used for training and 9 for testing, with 944 and 132 long video samples
in the respective sets. In Cross-view evaluation, the training and testing sets include 717 and 359 video samples,
respectively.

4.1.4. Data Analysis

Table 2 and Table 3 illustrate the correlation between existing actions in NTU RGB+D and PKU-MMD
respectively with the existing objects of the object 365 dataset [38]. For the NTU RGB+D dataset, 42.5% involve
interactions with objects. However, when considering the availability of object detection datasets, the percentage of
actions involving object interactions becomes 26.27%. For example, considering the action ”Put on jacket”, when
looking at the Object 365 dataset, the ”Jacket is not included. This ratio indicates the portion of the data where
the model incorporates object knowledge. For the PKU-MMD dataset, 30% of actions involve interactions with
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Table 1. The various actions that involve interactions with objects are classified based on whether the objects are stationary
or in motion, which determines the need for a study on the movement of objects of the NTU RGB+D 120 dataset

Number of the class Actions Possible associated objects Moving objects

A1 Drink water Cup Yes

A2 Eat meal Plate Yes

A3 Brush teeth Toothbrush Yes

A11 Reading Book Yes

A12 Writing Notepaper No

A13 Tear up paper Notepaper Yes

A15 Shoot at basket Basket No

A16 Put on a shoe Shoes Yes

A17 Take off a shoe Shoes Yes

A18 Put on glasses Glasses Yes

A19 Take off glasses Glasses Yes

A20 Put on a hat/cap Hat Yes

A21 Take off a hat/cap Hat Yes

A28 Phone call Telephone Yes

A29 Play with phone/tablet Tablet Yes

A30 Type on a keyboard Keyboard No

A33 Check time Watch Yes

A61 Put on headphone head Phone Yes

A62 Take off headphone headphone Yes

A64 Bounce ball Soccer Yes

A65 Tennis bat swing Tennis Yes

A66 Juggle table tennis ball Table tennis No

A73 Staple book Stapler Yes

A76 Cutting paper Scissors Yes

A78 Open bottle Bottle Yes

A82 Fold paper Notepaper Yes

A83 Ball up paper Notepaper Yes

A87 Put on bag Backpack Yes

A88 Take off bag Backpack Yes

A90 Take object out of bag Backpack Yes

A94 Throw up cap/hat Hat Yes

A107 Wield knife Knife Yes

A113 Cheers and drink Cup Yes
A115 Take a photo Camera No
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Table 2. The various actions that involve interactions with objects are classified based on whether the objects are stationary
or in motion which determines the need for a study on the movement of objects of the PKU-MMD dataset

Actions Possible associated objects Moving objects

Taking a selfie Telephone Yes

Writing Notepaper No

Tear up paper Notepaper Yes

Make a phone call/answer phone Telephone Yes

Check time (from watch) Watch Yes

Playing with phone/tablet Tablet Yes

Reading Book No

Typing on a keyboard Keyboard No

Take off glasses Glasses Yes

Wear on glasses Glasses Yes

Take off a hat/cap Hat Yes

Put on a hat/cap Hat Yes

Drink water Cup Yes

Eat meal/snack Cup Yes

Brushing teeth Toothbrush Yes

objects. For the rest of the actions, the model relies on the skeleton features to predict the non-interacted actions
or actions, or actions where objects don’t exist in the objects detection dataset. This partitioning helps the model
become less prone to overfitting.

4.2. Implementation Details

4.2.1. Data processing

For the Object knowledge task, Object365 [38] has been selected as the reference dataset for the object detection
model due to its inclusion of approximately 365 objects, with around 50 such interactive objects. A pre-trained
model is adapted for the object detection model without fine-tuning while 34 is exactly the number of considered
objects. We select the highest detection scores of 25 objects, for both interactive movable objects and interactive
non-movable objects (Nd = Np = V = 25), if the number of detected objects in a sequence is less than 25, we
increase its length to 25 by padding it with the existing objects in the sequence. For object-dynamic features, The
Robust Scaling technique is used to normalize the motion of objects, ensuring that any outliers do not hurt the
data. The resulting range of values after normalization is not constrained to a specific range but rather has a mean
of zero and a standard deviation of one, making it suitable for the application. For 3D Skeleton data, To ensure
a fair comparison with the standard method, the paper’s processing steps are applied [36]. Specifically, to make
the skeleton data invariant to initial positions based on the first frame, we translate the data for each video clip.
During the training phase, we down-sample the video sequence by dividing it into 20 segments (k = 20)., which is
consistent across both datasets. During testing, 5 down-sampled sequences are randomly generated, following the
same approach described in the referenced paper, and the mean score is calculated as the final action classification
result. To improve the model’s robustness, data augmentation is performed during training by randomly rotating the
skeleton data by some degrees. The incorporation of object knowledge into the skeleton representation was carried
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Table 3. Accuracies obtained on NTU RGB+d 60 dataset by different-level of the proposed method

Components Accuracy

Baseline Position Dynamic Object Knowledge cv % cs %

B0 × × × 96.1 90.5
B1 ✓ × × 96.4 90.6
B2 × ✓ × 96.8 90.9
B3 ✓ ✓ ✓ 97.1 91.8

out before the training phase, using the Numpy and Pandas libraries with thorough consideration taken regarding
the size of matrices.

4.2.2. Experimental setup and parameter settings

The experiments were conducted using the PyTorch framework on a single NVIDIA GeForce GTX 1080 Ti.
The Adam optimizer was employed, with an initial learning rate of 0.001, and the learning rate was decreased by
a factor of 10 at the 60th, 90th, and 110th epoch for both datasets. The models were trained for 120 epochs using
a label smoothing factor of 1.1 and cross-entropy loss for action classification. To prevent any gaps, it’s important
to ensure that the number of frames in the skeleton sequence matches the number of frames in the corresponding
RGB video.

4.3. Ablation Study

We conducted a series of ablation studies on the NTU RGB+D 60 datasets to thoroughly evaluate the proposed
method and examine the efficacy of its components. Specifically, our focus was on verifying the effectiveness of
the object knowledge, position features, and dynamic features, which we assessed through these ablation studies.
As shown in Table 3, we put four different methods, each with a different component of the proposed model. All
baselines are defined as follows,
B0 A spatiotemporal network without the early fusion with objects features [13].
B1 spatial early fusion only: the baseline exclusively incorporates position features while disregarding the
dynamic information.
B2 Temporal early fusion only: To examine the impact of dynamic features, we removed the object-position
features from the object knowledge and kept only the object-dynamic features
B3 Spatial-Temporal Early fusion with object knowledge

The results indicate that the baseline (Efficient SAt) [13] improved in recognition performance when equipped
with distinct components of the proposed methods (B1-B3). Thus, it can be inferred that incorporating object
knowledge as a unified input along with a spatiotemporal one-stream network facilitates the model to acquire more
sophisticated representations, leading to an improvement in performance. The findings reveal that, specifically,
when tested individually, B2 exerts a greater impact on the model’s performance than B1, implying that object
motion is more pivotal than position features in skeleton-based action recognition. Nevertheless, the model attains
its optimal performance when both are incorporated. An illustrative instance that highlights the significance of
Dynamic Encoding is the model’s ability to distinguish between the actions of writing on a notepaper and tearing
it up, both of which involve interaction with the same object. However, the action of tearing up the paper entails a
distinct motion of the paper in contrast to writing.

4.4. Comparison with the State-of-the-Art Approaches

By comparing the proposed method with several contemporary state-of-the-art approaches, it is shown how the
fusion of object knowledge with skeleton representation can contribute to the effectiveness of human recognition
tasks. Four different methods should be noted for evaluating the experiments of the current approach:
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Table 4. Performance comparison with the state of the art on the NTU RGB+D 60 dataset

Type Method Year cs(%) cv (%)

M1 MST (joint) [40] 2021 89.0 95.1
Double-head (joint) [41] 2021 90.3 96.1
Efficient SAt (baseline) [13] 2022 90.5 96.1

M2 Deep LSTMZ+LSTM-AE [42] 2018 80.6 88.56
RotClips+MTCNN [43] 2018 81.09 87.37
AGC-LSTM [44] 2019 89.2 95.0
AS-GCN [45] 2019 86.8 94.2
CA-GCN [46] 2020 86.5 94.1
MS-G3D [47] 2020 91.5 96.2
Shift-GCN [48] 2020 90.7 96.5
SGN [36] 2020 89.0 94.5
MST (2s) [40] 2021 91.5 96.6
Double-head(2s) [41] 2021 91.7 96.5
Ta-CNN [49] 2022 90.7 95.1
Angular-Encoding [50] 2022 91.6 96.3

M3 Multi-stream Interaction [15] 2022 91.5 96.5
M4 A joint learning of HOI and AR [16] 2022 90.0 95.7
(Ours) SAt-Object Integration - 91.8 97.1

Table 5. Performance comparison with the state of the art on the NTU RGB+D 120 dataset on top-1 accuracy. HOI: human
object interaction and AR: Action recognition

Type Method Year cs(%) cv (%)

M1 MST (joint) [40] 2021 82.8 84.5
Js DualHead-Net [41] 2021 84.6 85.9
Efficient SAt [13] (baseline) 2022 85.7 86.8

M2 2s-AGCN [51] 2019 82.50 84.90
Shift-GCN [48] 2020 85.9 87.6
MS-G3D [47] 2020 86.9 88.4
SGN [36] 2020 79.2 81.5
AMCGC-LSTM [52] 2020 79.70 80.00
2s ST-TR [53] 2021 85.10 87.10
MST(2s) [40] 2021 87.5 88.8
4sDualHead-Net [41] 2021 88.2 89.3
4s STF-Net [42] 2022 85.10 87.10
Ta-CNN [49] 2022 85.7 87.3

M3 Multi-stream Interaction [15] 2022 88.18 89.41
M4 A joint learning of HOI and AR [16] 2022 - -
(Ours) SAt-Object Integration - 88.61 90.6

M1: Single-stream approaches without the object information integration.
M2: Multi-stream (spatiotemporal) methods dont́ include the object information.
M3: Multi-stream methods contain the object information.
M4: A joint learning technique of action recognition and human-object interaction.
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Figure 5. Comparison results of different actions that interact with objects with (2s-AGCN) [51] and our method on the NTU
RGB+D dataset. Table 2 contains a list of actions accompanied by their corresponding numbers for reference

While M1 involves processing an entire video using a single input stream, M2 utilizes separate spatial-temporal
models, often convolutional networks, to extract features in multiple ways. Multi-stream architectures are generally
more computationally demanding but can provide higher accuracy compared to single-stream architectures.
However, a recent approach called the Efficient Self-Attention [13], has introduced a novel method for integrating
different types of information, such as joint information, joint motion, bone information, and bone motion, into
a single input for a self-attention mechanism. This approach has shown impressive results while requiring fewer
computational resources. Building on this idea, the present approach fusionned the skeleton representation and
the object knowledge information in early fusion before the training phase providing better. The method is based
on a self-attention mechanism with five stacked self-attention blocks. The results have been obtained on three
well-known datasets, namely NTU RGB+D 60 [17], NTU RGB+D 120 [18], and PKU-MMD [19].

4.4.1. NTU RGB+D 60

The baseline of this work is the Efficient Self-Attention [13], with reported performance in the paper of 90.5%
(CS) and 96.1% (CV). Further integrating object knowledge into this framework improves to 91.8% (CS) and
97.1% (CV), surpassing the current state-of-the-art methods. Table 4 presents the reported comparison results. The
limitations of the current state-of-the-art methods are typically observed in actions that entail interactions with
objects due to the lack of complete information. However, our approach has effectively addressed this issue, as
demonstrated by our experimental results. The proposed method outperforms M4 in accuracy with a margin of
1.8% and 1.4% in the cs metric and the cv metric respectively. Regarding the ”Type on a keyboard” action depicted
in Figure 5, our approach demonstrated a precision rate of 90.1%, outperforming the 2s-AGCN baseline, which
achieved an accuracy rate of 78%. These results illustrate that our method correctly leverages the benefits of object
knowledge by integrating it into a unified network along with the skeleton representation.
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Table 6. Performance comparison with the state of the art on the PKU-MMD dataset on top-1 accuracy. HOI: human object
interaction and AR: Action recognition

Methods Year cs(%) cv (%)

STA-LSTM [54] 2017 61.20 63.30
JCRRNN [55] 2016 64.60 66.90
Skeleton boxes [56] 2017 82.50 84.90
Li et al. [57] 2017 86.80 94.20
HCN [58] 2018 85.90 87.60
TSMF [59] 2021 95.8 97.8
MMNet [60] 2022 97.4 98.6
(Ours) SAt-Object Integration - 98.1 98.9

4.4.2. NTU RGB+D 120

Table 5 contains the numerical results of the proposed method compared to the current state of the art on the
NTU RGB+D 120 dataset. The proposed method outperforms the state-of-the-art. M3 employs three streams to
investigate the movements of human skeletons, objects, and their interactions. Of note, during the training phase,
the three streams are trained independently and subsequently integrated. However, the proposed method was able
to achieve superior performance based on a single training phase, with a slight margin of advantage.

4.4.3. PKU-MMD

Despite the limited utilization of this dataset in previous research, our model showcased remarkable performance
on it. As depicted in Table 6, we compared the accuracy of our model with that of other established models,
revealing our model’s superiority. Specifically, it achieved an impressive accuracy of 98.1% in CS and an even
higher 98.9% in CV, demonstrating its strong capabilities and potential for further applications.

4.4.4. Per-class Accuracy Comparison

Figure 5 compares the per-class accuracy of our approach with the 2S-AGCN method, specifically for categories
that require object interaction, listed on the x-axis concerning the NTU RGB+D 120 dataset. Notably, The proposed
approach has significantly improved the accuracy of each mentioned class in comparison with 2S-AGCN. We have
chosen to make the comparison per class with 2S-AGCN, as the results of this baseline are available on both
NTU RGB+D 60 and NTU RGB+D 120 datasets. This comparison provides a detailed validation of the core
principle of the paper by showcasing the impact of object integration. The proposed method primarily focuses on
improving the accuracy of actions related to objects, while the accuracy of the remaining actions relies on the
skeleton representation. It is notable that improving the accuracy of a composite of actions while keeping the rest
the same leads to enhanced overall accuracy, as is intuitively evident.

4.4.5. Complexity Discussion

The efficiency of the model’s baseline is emphasized by its comparably low number of parameters in comparison
to other models. Notably, 0.98M parameters. Given that, the proposed work is founded on this model, this
lightweight nature has been passed on to our model. Since: The proposed method incorporates five self-attention
layers which leverage its capacity for global feature extraction. This enables the model to achieve good performance
while using fewer stacked layers, unlike GCN models. The number of frames taken is 20 and the number of joints
stays the same at 25 (25*20). keeping the advantage of the low-resolution image mentioned in the baseline. Most
embedding operations are linear and achieved by 1× 1 convolutions, and Despite that: The channel input size
is changed to include the collaborative embedding of object knowledge with the skeleton representation data, the
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impact of this modification on the model’s lightweight nature is minimal. Since the fusion is before the training
phase, the model incorporates RGB data as a pre-trained object detection model. This integration does not increase
complexity.

5. Conclusion

The integration of the existing objects and their dynamic behavior as supplementary indicators for skeletal
characteristics leads to favorable outcomes in terms of accuracy and complexity. This highlights the importance of
examining changes in the surrounding environment complying with the human features for the action recognition
task. Our approach to integrating the environment into skeleton characteristics is novel. We formulated object
knowledge data obtained from a pre-trained object detection model to include the position and dynamic features of
objects. Additionally, we utilized an embedding technique to fuse object knowledge and skeletal features into
a single-stream network. The resulting model was then fitted into a self-attention network model to facilitate
automatic learning of the features of this new representation. Experiments conducted on popular Skeleton datasets
demonstrated the superiority of this method over the current state-of-the-art.
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