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considered (h, φ)-subdifferentiable multiobjective programming problem and we prove several duality theorems for the
aforesaid (h, φ)-subdifferentiable vector optimization problems also under (h, φ)-G-type I hypotheses.
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1. Introduction

The concept of convexity is of utmost significance in multi-objective programming since it allows proving
optimality conditions and duality results for various classes of vector optimization problems in which the functions
involved are convex. Nevertheless, there are many real-world problems in various areas of human activity which
cannot be modeled by using convex vector optimization problems since the functions constituting them are not
convex. Therefore, many concepts of generalized convexity have been derived to optimization theory to overcome
limitations in using convexity notion to such vector optimization problems in which the functions involved are
nonconvex (see, for example [3], [5], [7], [17], [18], [19], [24], [26], [29], [31], [32], [33], [34], and others).

In economics, we often seek to maximize efficiency in economic systems, which involves solving optimization
problems with ratio objective functions. The benefit of second-order duality is preferred over first-order duality
because it provides closer bounds. Here are some recent advancements and practical applications in the field
of convexity generalizations, particularly focusing on higher-order and second-order duality concepts within
nondifferentiable symmetric mathematical programming problems; [9, 10, 11, 13, 15, 27]

In 1977, Ben-Tal [7] introduced a set of generalized addition and multiplication operations. Avriel [5] made a
remarkable contribution to the theory of convex functions by introducing a more general class of functions called
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(h, φ)-convex functions, using the concept of Ben-Tal’s [7] generalized addition and multiplication operations.
Moreover, he defined the concept of (h, φ)-differentiability and then the definition of (h, φ)-differentiable
(h, φ)-convex functions.

Recently, Xu and Liu [29] have made a significant advancement in the field of generalized (h, φ)-convex
functions by presenting a generalized necessary optimality condition based on the Kuhn-Tucker theorem. This
contribution pertains to a class of mathematical programming problems and provides a fresh perspective on the
theory of generalized (h, φ)-convex functions. This class of mathematical programming problems includes both
single-objective and multi-objective optimization problems and assumes a general form of (h, φ)-differentiability.
The research done by Xu and Liu [29] showcases the ongoing pursuit of understanding generalized (h, φ)-convex
functions and their role in optimization theory. In [34], Zhang also made a valuable contribution to this area
by exploring the sufficiency and duality of solutions in the context of a particular optimization problem which
is a nonsmooth (h, φ)-semi-infinite optimization problem. The aforesaid works demonstrate the significance of
continued further study in this field. Very recently, using generalized algebraic operations introduced by Ben-Tal
[7], Antczak et al. [4] defined classes of (h, φ)-(b, F, ρ)-convex functions and established optimality conditions
and duality results for (h, φ)-nondifferentiable multiobjective programming problems with aforesaid generalized
convex functions.

In 1981, Hanson [18] introduced into optimization theory the notion of invexity for differentiable scalar
optimization problems, which was considered a significant contribution to optimization theory as it presented an
important extension of differentiable convex functions. Hanson utilized this concept to prove the sufficiency of
Kuhn-Tucker optimality conditions and weak duality theorem in the Wolfe sense for such nonconvex extremum
problems. Later, Hanson and Mond [19] generalized invexity notion derived for smooth optimization problems
with inequality constraints to the more general concept which can be used for a larger class for nonconvex
extremum problems. Namely, they proposed the notion of type I as well as type II functions, which is recognized
as a significant breakthrough in this area of study.

In [6], Avriel et al. introduced the concept of G-convexity, in which G is a continuous and strictly increasing
real-valued function. Based on the aforesaid Avriel’s concept of generalized convexity, Antczak [1] generalized the
aforesaid definition by introducing the notion of G-invexity for scalar optimization problems. Later, Antczak [2]
extended the concept of G-invexity to the differentiable vectorial case. Then Antczak [2] used the aforesaid concept
of generalized convexity in proving optimality conditions for a new class of differentiable vector optimization
problems with G-invex functions (not necessarily with respect to the same G) and also he studied duality results [3]
for such nonconvex multiobjective optimization problems. Later the concept of G-invexity has been defined also
for nondifferentiable vector optimization problems with locally Lipschitz functions by Kang et al. [20]. Recently,
in 2019, Dubey et al. [14] introduced a generalization of convexity termed (F,Gf )-convexity. This novel concept
finds application in non-linear multiobjective programming problems, particularly when the functions involved in
vector optimization problems are differentiable. The same year, Dubey et al. [12] introduced various definitions
of (C,Gf )-invexity/(F,Gf )-invexity and constructed nontrivial numerical examples to illustrate the existence of
such functions.

In this paper, we use the generalized algebraic operations introduced by Ben-Tal [7] to define the concept of
(h, φ)-subdifferentiable G-type I functions and several concepts of (h, φ)-subdifferentiable generalized G-type
I functions. However, the main aim of this paper is to establish optimality conditions and duality results for
a new class of (h, φ)-nondifferentiable multiobjective programming problems with locally Lipschitz functions.
Namely, we prove sufficient optimality conditions for a feasible solution to be a weak Pareto solution (a
Pareto solution) in the considered (h, φ)-nondifferentiable vector optimization problems in which the functions
constituting them are (h, φ)-subdifferentiable G-type I functions and/or (h, φ)-subdifferentiable generalized G-type
I functions. The aforesaid sufficient optimality conditions are illustrated by an example of (h, φ)-nondifferentiable
multiobjective programming problem with (h, φ)-subdifferentiable G-type I functions. Further, for the considered
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(h, φ)-nondifferentiable multiobjective programming problem, we formulate its (h, φ)-nondifferentiable vector
Mond-Weir dual problem and we establish several duality theorems also under assumptions that the functions
involved are (h, φ)-nondifferentiable type I functions and/or (h, φ)-nondifferentiable generalized type I functions.
The results established in the paper extend the concept of differentiable G-invexity introduced by Antczak [1, 2],
nondifferentiable G-invexity defined by Kang et al. [20] and the concept of type I functions defined for (h, φ)-
differentiable multiobjective programming problems by Yu and Liu [32]. Thus, the optimality and duality results
established in the paper generalize similar results proved in the optimization literature by using generalized Ben-
Tal’s algebraic operations to a new class of nonconvex (h, φ)-subdifferentiable vector optimization problems.

2. Preliminaries

In this section, we provide some definitions and results that we shall use in the sequel. Throughout this paper,
R denotes the set of all real numbers and Rn the set of n-dimensional real vectors. Then, for any vectors
x = (x1, . . . , xn)

T , y = (y1, . . . , yn)
T ∈ Rn, we define:

(i)x = y if and only if xi = yi for all i = 1, . . . , n

(ii)x < y if and only if xi < yi for all i = 1, . . . , n

(iii)x ≦ y if and only if xi ≦ yi for all i = 1, . . . , n

(iv)x ≤ y if and only if x ≦ y and x ̸= y.

Now, we recall the generalized notions of addition as well as multiplication, which were first introduced by
Ben-Tal [7].

1) Assume that h is a continuous function that maps vectors in Rn to vector values which has an inverse function
h−1. Thus, for x ∈ Rn and y ∈ Rn, we define h-vector addition by

x⊕ y = h−1(h(x) + h(y)), (1)

where α ∈ R, x ∈ Rn and, moreover, h-scalar multiplication by

α⊗ x = h−1(αh(x)). (2)

2) Let φ be a continuous function with real values defined on R and let φ−1 denote its inverse function. Then the
φ-scalar addition is defined by the relation:

α[+]β = φ−1(φ(α) + φ(β)), (3)

is satisfied for any α, β ∈ R. Further, the φ-scalar multiplication is defined by the relation which

β[·]α = φ−1(βφ(α)) (4)

is satisfied for any α, β ∈ R.

3) For the given vectors x ∈ Rn, y ∈ Rn, the (h, φ)-inner product is defined

(xT y)(h,φ) = φ−1(h(x)Th(y)). (5)

Putting xi ∈ Rn, where i = 1, ..., n, one writes

⊕n
i=1x

i = x1 ⊕ x2 ⊕ ...⊕ xn, (6)
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and also, for αi ∈ R, i = 1, ..., n, one writes[
n∑

i=1

αi

]
= α1[+]α2[+]...[+]αn. (7)

Moreover, for any α, β ∈ R and x, y ∈ Rn, the operations of subtraction are given by;

xΘy = x⊕ ((−1)⊗ y), (8)

and
α[−]β = α[+]((−1)[·]β), (9)

Remark 2.1. Note that the generalized algebraic operations defined above the following properties:
a) It is worth noting ψ[·]χ may not be equal to χ[·]ψ, where χ, ψ ∈ R.
b) 1 ⊗ x = x for any x ∈ Rn and 1[·]ω = ω for any ω ∈ R.
c) φ(χ[·]ψ) = χφ(ψ) for any χ, ψ ∈ R.
d) h(ω ⊗ x) = ωh(x) for any ω ∈ R and x ∈ Rn.
e) χ[−]ψ = φ−1(φ(χ)− φ(ψ)) for any χ, ψ ∈ R.

Now, we give the lemma which, for the generalized algebraic operations, presents their further properties
introduced by Ben-Tal [7].

Lemma 2.1. Let f : Rn → R be a (h, φ)-nondifferentiable function at the given point x̄ ∈ Rn. Then, the following
statements are true:

a) Let ωi ∈ R, xi ∈ Rn, where i = 1, ..., n. Then

⊗n
i=1(ωi ⊗ xi) = h−1

(
n∑

i=1

ωih(x
i)

)
,

⊗n
i=1x

i = h−1

(
n∑

i=1

h(xi)

)
.

b) Let χi, ψi ∈ R, i=1,...,n. Then [
n∑

i=1

]
(χi[·]ψi) = φ−1

(
n∑

i=1

χiφ(ψi)

)
,[

n∑
i=1

]
ψi = φ−1

(
n∑

i=1

φ(ψi)

)
.

The following properties of generalized algebraic operations were established by Ben-Tal [7].

Lemma 2.2. The following statements are true:

a) χ[·](ψ[·]ω) = ψ[·](χ[·]ω) = (χψ)[·]ω, where χ, ψ, ω ∈ R,

b)
[∑m

i=1

]
(χi[+]ψi) =

[∑m
i=1

]
(χi)[+]

[∑m
i=1

]
(ψi), where χi, ψi ∈ R, i = 1, ...,m,

c)
[∑m

i=1

]
(χi[−]ψi) =

[∑m
i=1

]
(χi)[−]

[∑m
i=1

]
(ψi), where χi, ψi ∈ R, i = 1, ...,m,
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d) ψ[·]
[∑m

i=1

]
(χi) =

[∑m
i=1

]
(ψ[·]χi), where χi, ψ,∈ R and i = 1, ...,m.

e) ω[·](χ[−]ψ) = (ω[·]χ)[−](ω[·]ψ), where χ, ψ, ω ∈ R.

Lemma 2.3. [7] Let φ be a strictly monotone function such that φ(0) = 0. Then, the following statements are
true:

a) Let χ, ψ, ω ∈ R, ω ≧ 0. If χ ≦ ψ, then ω[·]χ ≦ ω[·]ψ.

b) Let χ, ψ, ω ∈ R, ω ≧ 0. If χ < ψ, then ω[·]χ < ω[·]ψ.

c) Let χ, ψ, ω ∈ R, ω > 0. If χ < ψ, then ω[·]χ < ω[·]ψ.

d) Let χ, ψ, ω ∈ R, ω < 0. If χ ≧ ψ, then ω[·]χ ≦ ω[·]ψ.

e) Let χi, ψi ∈ R. If χi ≦ ψi, then
[∑m

i=1

]
χi ≦

[∑m
i=1

]
ψi, for all i = 1, 2, 3, ...,m

f) Let χi, ψi ∈ R, i = 1, ...,m, such that χi ≦ ψi and there exists at least one i∗ ∈ {1, ...,m} such that χi∗ < ψi∗ ,
then

[∑m
i=1

]
χi <

[∑m
i=1

]
ψi.

If φ a strictly monotone function is extra assume to be an one-to-one continuous function, then next properties
of generalized algebraic operations can be derived.

Lemma 2.4. [7] Let φ be a strictly monotone function such that φ(0) = 0. Then, the following statements are
true:

a) χ < ψ ⇐⇒ χ[−]ψ < 0, where χ ∈ R, ψ ∈ R.

b) χ ≦ ψ ⇐⇒ χ[−]ψ ≦ 0, where χ ∈ R, ψ ∈ R.

c) χ[+]ψ < 0 =⇒ χ < (−1)[·]ψ, where χ ∈ R, ψ ∈ R.

d) χ[+]ψ ≦ 0 =⇒ χ ≦ (−1)[·]ψ, where χ ∈ R, ψ ∈ R.

In the following lemma, we will outline several crucial properties of generalized algebraic operations introduced
by Ben-Tal, that will have significant importance in proving the main results in the paper. Namely, these properties
given by Yu and Liu [32] will be fundamental tools in the construction of various mathematical formulations and
solutions.

Lemma 2.5. [32] The following statements are true:
a) χ[·](ψ[·]ω) = ψ[·](χ[·]ω) = χψ[·]ω, where χ, ψ, ω ∈ R.

b) χ[·]
[∑m

i=1

]
ψi =

[∑m
i=1

]
χ[·]ψi, where ψi, χ ∈ R.

c) χ[·](ψ[−]ω) = χ[·]ψ[−]χ[·]ω, where χ, ψ, ω ∈ R.

d)
[∑m

i=1

]
(ψi[−]ωi) =

[∑m
i=1

]
ψi[−]

[∑m
i=1

]
ωi, where ψi, ωi ∈ R, i = 1, ...,m.
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e)
(
(⊕m

i=1ai)
T
b
)
(h,φ)

=
[∑m

i=1

]
(aTi b)(h,φ), where ai, b ∈ Rn, i = 1, ...,m.

f)
(
(ω ⊗ a)T b

)
(h,φ)

= ω[·]
(
aT b
)
(h,φ)

, where a, b ∈ Rn, ω ∈ R.

g)
(
(⊕m

i=1ωi ⊗ ai)
T
b
)
(h,φ)

=
[∑m

i=1

]
ωi[·]

(
aTi b
)
(h,φ)

, where ai, b ∈ Rn, ωi ∈ R, i = 1, ...,m.

Definition 2.1. [16] We say that G : R → R is a strictly increasing if and ony if

∀ζ, ψ ∈ R, ζ < ψ ⇒ G(ζ) < G(ψ).

Definition 2.2. A function f : Rn ⊇ X → R is said to be locally Lipschitz at z ∈ X on X if there exists a constant
Kz > 0 and δ > 0 such that the inequality

|f(x)− f(y)| ≤ Kz∥x− y∥

holds for all x, y ∈ Nδ(z), where Nδ(z) := {y ∈ Rn : ∥y − z∥ < δ}.

Now, we re-call the definition of a Clarke generalized directional (h, φ)-derivative and the definition of a
(h, φ)-Clarke generalized gradient introduced by Yuan et al. [33].

Definition 2.3. [33] The Clarke generalized directional (h, φ)-derivative of a locally Lipschitz function f : Rn →
R at x̄ ∈ Rn in the direction d ∈ Rn is defined by:

f∗(x̄; d) := lim
y→x̄
t↓0

1

t
[·] (f(y ⊕ (t⊗ d))[−]f(y))

Definition 2.4. [33] The Clarke generalized (h, φ)-subgradient of a locally Lipschitz function f : Rn → R at
x̄ ∈ Rn is defined by:

∂∗f(x̄) :=
{
ξ∗ ∈ Rn : f∗(x̄; d) ≧ ((ξ∗)T d)(h,φ), ∀d ∈ Rn

}
Now, we extend the aforesaid definitions of (h, φ)-Clarke generalized directional derivative and Clarke generalized
(h, φ)-subdifferential for a locally Lipschitz vector-valued function f = (f1, . . . , fk) : Rn → Rk.

Definition 2.5. The (h, φ)-Clarke generalized directional derivative of a locally Lipschitz vector-valued function
f = (f1, ..., fk) : Rn → Rk at x̄ ∈ Rn in the direction d ∈ Rn is defined by:

f∗(x̄; d) := (f∗1 (x̄; d), ..., f
∗
k (x̄; d))

Definition 2.6. The Clarke generalized (h, φ)-subgradient of a locally Lipschitz vector-valued function f : Rn →
Rk at x̄ ∈ Rn is defined by:

∂∗f(x̄) := ∂∗f1(x̄)⊗ . . .⊗ ∂∗fk(x̄)

where ∂∗fi(x̄) for i = 1, . . . , k is the Clarke’s generalized (h, φ)-subdifferential of fi at x̄.

Lemma 2.6. Let f : Rn → R, and ω ∈ R, x̄ ∈ Rn be such that ω[·]f is a (h, φ)-nondifferentiable function at x̄.
Then, ∂∗(ω[·]f(x̄)) = ω ⊗ ∂∗f(x̄).
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Now, by using generalized algebraic operations introduced by Ben-Tal [7] and the Clarke generalized directional
(h, φ)-derivative of a locally Lipschitz vector-valued function defined in Definition 2.5, we extend the notion of a
locally Lipschitz vector-valued G-invex function defined by Kang et al. [20].

Definition 2.7. Let X be a nonempty open subset of Rn and f : X → Rk be a locally Lipschitz function on X .
If there exists Gf = (Gf1 , . . . , Gfk) : R → Rk is a differentiable vector-valued function with strictly increasing
component functions Gfi : Ifi(X) → R, i = 1, . . . , k, and η : X ×X → Rn such that the inequalities

Gfi(fi(x))[−]Gfi(fi(x̄)) ≧ G′
fi(fi(x̄))[·]Ai[·]η(x, x̄) (>)

hold for all x ∈ X , (x ̸= x̄), and any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, then f is said to be a nondifferentiable vector-
valued (h, φ)-Gf -invex function at x̄ on X with respect to η. If the inequalities above are fulfilled for all x̄ ∈ X ,
then f is said to be a nondifferentiable vector-valued (h, φ)-Gf -invex function on X with respect to η.

Based on the results established by Antczak [2] and using the concept of a generalized (h, φ)-convex function
introduced by Ben-Tal [7], we prove the next result.

Proposition 2.1. 1. Let X be a nonempty open subset of Rn and f : X → Rk be a locally Lipschitz function on
X . Further, we assume that the function f∗(u, ·) : Rn → Rk is surjective at each point u ∈ X , and each function
Gfi : Ifi(X) → R, i = 1, . . . , k, is differentiable on R and strictly increasing and convex on Ifi(X). Then there
exists a vector-valued function η : X ×X → Rn such that f is a (h, φ)-Gf -invex function with respect to η on X .

Proof
Assume that X is a nonempty open subset of Rn, and x, u ∈ X . Let w = f(x) and v = f(u). Then, w =
(w1, . . . , wk) and v = (v1, . . . , vk) are k-dimensional vectors. Since f∗(u, ·) is surjective for every u ∈ X , it follows
that w − v ∈ Rk can be expressed as a linear combination of the partial derivatives of f∗(u, ·) evaluated at some
point η(x, u) ∈ Rn, where η : X ×X → Rn. Thus,

w[−]v = f∗(u, η(x, u)) ⇒ wi[−]vi = f∗i (u, η(x, u)), i = 1, . . . , k. (10)

Now, by convexity of Gfi : Ifi(X) → R, i = 1, . . . , k, we have

Gfi(fi(x))[−]Gfi(fi(u)) = Gfi(wi)[−]Gfi(vi) ≧ G′
fi(vi)[·](wi[−]vi), i = 1, . . . , k.

Using (10) in the above inequalities, we obtain

Gfi(fi(x))[−]Gfi(fi(u)) ≧ G′
fi(fi(u))[·]f

∗
i (u; η(x, u)), i = 1, . . . , k.

Thus, by the definition of the (h, φ)-Clarke’s generalized subdifferential, we obtain that the inequalities

Gfi(fi(x))[−]Gfi(fi(u)) ≧ G′
fi(fi(u))[·]Ai[·]η(x, u), i = 1, . . . , k

are fulfilled for any Ai ∈ ∂∗fi(u), i = 1, . . . , k. Then, by Definition 2.7, we conclude that f is (h, φ)-Gf -invex
with respect to η on X .

3. (h, φ)-nondifferentiable multiobjective programming and optimality

In the paper, consider an (h, φ)-nondifferentiable multiobjective programming problem defined by{
min f(x) = (f1(x), . . . , fk(x)), (MP )(h,φ)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,
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where each objective function fi : Rn → R, i = 1, ..., k, and each constraint function gj : Rn → R, j = 1, . . . ,m,
are locally Lipschitz on Rn. Further, we shall assume that each of the aforesaid functions constituting
(MP )(h,ϕ) is (h, ϕ)-subdifferentiable on Rn. Let us define the set Ω of all feasible solutions in (MP )(h,ϕ) by
Ω = {x ∈ Rn : gj(x) ≦ 0, j = 1, . . . ,m} and the set of indices of inequality constraints that are active at the given
feasible solution x̄ by J(x̄) = {j ∈ J : gj(x̄) = 0}.

Definition 3.1. It is said that x̄ ∈ Ω is a weak Pareto solution of (MP )(h,φ) if there does not exist other x ∈ Ω
such that f(x) < f(x̄).

Definition 3.2. It is said that x̄ ∈ Ω is a Pareto solution of (MP )(h,φ) if there does not exist other x ∈ Ω such that
f(x) ≦ f(x̄) and there exists at least one i∗ ∈ {1, .., k} such that fi∗(x) < fi∗(x̄).

The concept of nondifferentiable (h, φ)-G-invexity (see Definition 2.6) can be generalized by introducing for a
multiobjective programming problem with inequality constraints the concepts of nondifferentiable (h, φ)-G-type I,
(h, φ)-G-pseudo-type I, (h, φ)-G-quasi-type I and (h, φ)-G-pseudo-quasi-type I functions. The aforesaid concepts
of (h, φ)-generalized convexity allow for a more flexible way of characterizing optimality of optimization
problems and can be useful in developing optimization algorithms that are tailored to specific types of constraints
or problem structures.

In order to provide the definition of (h, φ)-G-type I functions and its various generalizations for the considered
(h, φ)-subdifferentiable multiobjective programming problem (MP )(h,φ), we define a vector-valued function
η : X ×X → Rn, where X is a nonempty subset of Rn. Further, let Gf = (Gf1 , . . . , Gfk) : R → Rk be a
differentiable vector-valued function with strictly increasing component functions Gfi : Ifi(X) → R, i = 1, . . . , k,
andGg = (Gg1 , . . . , Ggm) : R → Rm be a differentiable vector-valued function with strictly increasing component
functions Ggj : Igj (X) → R, j = 1, . . . ,m, where Ifi(X), i = 1, .., k, and Igj (X), j = 1, ...m, denote the range
of fi and the range of gj , respectively, that is, the image of X under fi, and the image of X under gj , respectively.
We also assume that each function fi : Rn → R, i = 1, . . . , k, and each function gj : Rn → R, j = 1, . . . ,m, is
locally Lipschitz (h, φ)-subdifferentiable on Rn.

Definition 3.3. (f, g) is said to be (h, φ)-G-type I at x̄ ∈ Rn on Rn with respect to η if the inequalities

Gfi(fi(x))[−]Gfi(fi(x̄)) ≧ G′
fi(fi(x̄))[·](A

T
i η(x, x̄))(h,φ) (11)

(−1)[·]Ggj (gj(x̄)) ≧ G′gj(gj(x̄))[·](BT
j η(x, x̄))(h,φ) (12)

hold for all x ∈ Rn and any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, Bj ∈ ∂∗gj(x̄), j = 1, . . . ,m, respectively. If inequalities
(11) are strict for all x ∈ Rn, (x ̸= x̄), and any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, then (f, g) is said to be (h, φ)−G-
type I at x̄ ∈ Rn on Rn with respect to η. If (11) and (12) are satisfied at any x̄ ∈ Rn, then (f, g) is said to be
(h, φ)-G-type I on Rn with respect to η. If (11) and (12) are satisfied for all x ∈ X , where X is a nonempty subset
of Rn, then (f, g) is said to be (h, φ)-G-type I at x̄ ∈ X on X with respect to η.

Definition 3.4. (f, g) is said to be (h, φ)-G-pseudo type I at x̄ ∈ Rn on Rn with respect to η if there exist
λ̄ = (λ̄1, . . . , λ̄k) ≥ 0 and µ̄ = (µ̄1, . . . , µ̄m) ≥ 0 such that the following relations hold:

[
k∑

i=1

]
λ̄i[·]G′

fi(fi(x̄))[·](A
T
i η(x, x̄)(h,φ) ≧ 0 ⇒[

k∑
i=1

]
λ̄i[·]Gfi(fi(x)) ≧

[
k∑

i=1

]
λ̄i[·]Gfi(fi(x̄))

(13)
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[
m∑
j=1

]
µ̄j [·]G′

gj (gj(x̄))[·](B
T
j η(x, x̄))(h,φ) ≧ 0 ⇒[

m∑
j=1

]
(−1)[·]µ̄j [·]Ggj (gj(x̄)) ≧ 0

(14)

hold for all x ∈ Rn and any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, Bj ∈ ∂∗gj(x̄), j = 1, . . . ,m, respectively. If the second
inequality in (13) are strict for all x ∈ Rn, (x ̸= x̄), and any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, then (f, g) is said to be
(h, φ)−G-pseudo type I at x̄ ∈ Rn on Rn with respect to η. If (13) and (14) are satisfied at any x̄ ∈ Rn, then
(f, g) is said to be (h, φ)-G-pseudo type I on Rn with respect to η. If (13) and (14) are satisfied for all x ∈ X ,
where X is a nonempty subset of Rn, then (f, g) is said to be (h, φ)-G-pseudo type I at x̄ ∈ X on X with respect
to η.

Definition 3.5. (f, g) is said to be (h, φ)-G-quasi type I at x̄ ∈ Rn on Rn with respect to η if there exist
λ̄ = (λ̄1, . . . , λ̄k) ≥ 0 and µ̄ = (µ̄1, . . . , µ̄m) ≥ 0 such that the following relations hold:

[
k∑

i=1

]
λ̄i[·]Gfi(fi(x)) ≦

[
k∑

i=1

]
λ̄i[·]Gfi(fi(x̄)) ⇒[

k∑
i=1

]
λ̄i[·]G′

fi(fi(x̄))[·]
(
AT

i η(x, x̄)
)
(h,φ)

≦ 0,

(15)

[
m∑
j=1

]
(−1)[·]µ̄j [·]Ggj (gj(x̄)) ≦ 0 ⇒[

m∑
j=1

]
µ̄j [·]G′

gj (gj(x̄))[·](B
T
j η(x, x̄))(h,φ) ≦ 0

(16)

hold for all x ∈ Rn and any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, Bj ∈ ∂∗gj(x̄), j = 1, . . . ,m, respectively. If (15) and (16)
are satisfied at any x̄ ∈ Rn, then (f, g) is said to be (h, φ)-G-quasi type I on Rn with respect to η. If (15) and (16)
are satisfied for all x ∈ X , where X is a nonempty subset of Rn, then (f, g) is said to be (h, φ)-G-quasi type I at
x̄ ∈ X on X with respect to η.

Now, we prove the sufficient optimality conditions for a feasible solution of (MP )(h,φ) to be its weak Pareto
solution.

Definition 3.6. (f, g) is said to be (h, φ)-G-pseudo-quasi type I at x̄ ∈ Rn on Rn with respect to η if there exist
λ̄ = (λ̄1, . . . , λ̄k) ≥ 0 and µ̄ = (µ̄1, . . . , µ̄m) ≥ 0 such that the following relations hold:

[
k∑

i=1

]
λ̄i[·]G′

fi(fi(x̄))[·]
(
AT

i η(x, x̄)
)
(h,φ)

≧ 0 ⇒[
k∑

i=1

]
λ̄i[·]Gfi(fi(x)) ≧

[
k∑

i=1

]
λ̄i[·]Gfi(fi(x̄))

(17)
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[
m∑
j=1

]
(−1)[·]µ̄j [·]Ggj (gj(x̄)) ≦ 0 ⇒[

m∑
j=1

]
µ̄j [·]G′

gj (gj(x̄))[·](B
T
j η(x, x̄))(h,φ) ≦ 0

(18)

hold for all x ∈ Rn and any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, Bj ∈ ∂∗gj(x̄), j = 1, . . . ,m, respectively. If the second
inequality in (17) are strict for all x ∈ Rn, (x ̸= x̄), and any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, then (f, g) is said to be
(h, φ)-G-pseudo-quasi type I at x̄ ∈ Rn on Rn with respect to η. If (17) and (18) are satisfied at any x̄ ∈ Rn,
then (f, g) is said to be (h, φ)-G-pseudo-quasi type I on Rn with respect to η. If (17) and (18) are satisfied for all
x ∈ X , where X is a nonempty subset of Rn, then (f, g) is said to be (h, φ)-G-pseudo-quasi type I at x̄ ∈ X on X
with respect to η.

Theorem 3.1. Let x̄ be a feasible solution of the (h, φ)-subdifferentiable multiobjective programming problem
(MP )(h,φ)Gf = (Gf1 , . . . , Gfk) : R → Rk be a differentiable vector-valued function with strictly increasing
component functions Gfi : Ifi(X) → R, i = 1, . . . , k, and Gg = (Gg1 , . . . , Ggm) : R → Rm be a differentiable
vector-valued function with strictly increasing component functions Ggj : Igj (X) → R, j = 1, . . . ,m. Further, we
assume that there exist λ̄ ∈ Rk and µ̄ ∈ Rm such that

0 ∈
(
⊕k

i=1λ̄i[·]G′
fi(fi(x̄))⊗ ∂∗fi(x̄)

)
⊕
(
⊕j∈J(x̄)µ̄j [·]G′

gj (gj(x̄))⊗ ∂∗gj(x̄)
)

(19)

µ̄j [·]Ggj (gj(x̄)) = 0, j = 1, . . . ,m (20)

λ̄ = (λ̄1, . . . , λ̄k) ≥ 0, µ̄ = (µ̄1, . . . , µ̄m) ≧ 0 (21)

If one of the following sets of hypotheses

a) (f, g) is (h, φ)-G-type I at x̄ ∈ Ω on Ω with respect to η,

b) (f, g) is (h, φ)-G-pseudo-quasi type I at x̄ ∈ Ω on Ω with respect to η is fulfilled, then x̄ is a weak Pareto
solution in (MP )(h,φ).

Proof
We assume that x̄ ∈ Ω and all hypotheses of this theorem are fulfilled. We proceed by contradiction. Suppose,
contrary to the result, that x̄ is not a weak Pareto solution of (MP )(h,φ). Then, by Definition 3.1, there exists
another x̃ ∈ Ω such that

fi(x̃) < fi(x̄), i = 1, . . . , k. (22)

Since Gfi , i = 1, . . . , k, are strictly increasing functions, by Definition 2.1, (22) yields

Gfi(fi(x̃)) < Gfi(fi(x̄)), i = 1, . . . , k. (23)

By Lemma 2.2 a), (23) gives
Gfi(fi(x̃))[−]Gfi(fi(x̄)) < 0, i = 1, . . . , k (24)

Since (19) is satisfied, by Lemma 2.5 g), it follows that there exist Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, Bj ∈ ∂∗gj(x̄), j =
1, . . . ,m, such that
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((
⊕k

i=1λ̄i[·]G′
fi(fi(x̄))⊗Ai

)T
η(x̃, x̄)

)
(h,φ)

[+]((
⊕j∈J(x̄)µ̄j [·]G′

gj (gj(x̄))⊗Bj

)T
η(x̃, x̄)

)
(h,φ)

= 0
(25)

Now, we prove this theorem under hypothesis a). Then, by Definition 3.1, the inequalities

Gfi(fi(x̃))[−]Gfi(fi(x̄)) ≧
((
G′

fi(fi(x̄))[·]Ai

)T
η(x̃, x̄)

)
(h,φ)

, (26)

(−1)[·]Ggj (gj(x̄)) ≧

((
G′

gj (gj(x̄))[·]Bj

)T
η(x̃, x̄)

)
(h,φ)

(27)

hold for any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, Bj ∈ ∂∗gj(x̄), j = 1, . . . ,m, respectively. Combining (24) and (26), we
obtain that the inequalities

G′
fi(fi(x̄))[·](A

T
i η(x̃, x̄))(h,φ) < 0, i = 1, . . . , k

hold for any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k. Then, by (21) and Lemma 2.3 b) and c), the above inequalities yield

λ̄i[·]G′
fi(fi(x̄))[·](A

T
i η(x̃, x̄))(h,φ) ≦ 0, i = 1, . . . , k (28)

λi∗ [·]G′
fi∗

(fi∗(x̄))[·](AT
i∗η(x̃, x̄))(h,φ) < 0 for at least one i∗ ∈ {1, . . . , k}. (29)

Hence, by Lemma 2.3 f), (28) and (29) imply[
k∑

i=1

]
λ̄i[·]G′

fi(fi(x̄))[·](A
T
i η(x̃, x̄))(h,φ) < 0.

Then, by Lemma 2.5 g), the inequality above gives that the inequality(
⊕k

i=1

(
λ̄i[·]G′

fi(fi(x̄))⊗Ai

)T
η(x̃, x̄)

)
(h̃,φ)

< 0. (30)

holds for any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k. By (21), (26) and Lemma 2.3 a), we get

(−1)[·]µ̄j [·]Ggj (gj(x̄)) ≧ ((µ̄j [·]G′
gj (gj(x̄))[·]Bj)

T η(x̃, x̄))(h,φ) j = 1, . . . ,m

Then, by (20), the above inequalities yield((
µ̄j [·]G′

gj (gj(x̄))[·]Bj

)T
η(x̃, x̄)

)
(h,φ)

≦ 0, j = 1, . . . ,m (31)

Hence, by Lemma 2.3 e), (31) implies that the inequality[
m∑
j=1

]
µ̄j [·]G′

gj (gj(x̄))[·](B
T
j η(x̃, x̄))(h,φ) ≦ 0

holds for any Bj ∈ ∂∗gj(x̄), j = 1, . . . ,m. Then, by Lemma 2.5 g), the inequality above gives((
⊕m

j=1(µ̄j [·]G′
gj (gj(x̄))⊗Bj

)T
η(x̃, x̄)

)
(h,φ)

≦ 0. (32)
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Combining (30) and (32), we get that the inequality(
⊕k

i=1

(
λ̄i[·]G′

fi(fi(x̄))⊗Ai

)T
η(x̃, x̄)

)
(h̃,φ)

[+](
⊕m

j=1

(
µ̄j [·]G′

gj (gj(x̄))⊗Bj

)T
η(x̃, x̄)

)
(h,φ)

< 0

holds for any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k, Bj ∈ ∂∗gj(x̄), j = 1, . . . ,m, contradicting (25). Now, we prove this
theorem under hypothesis b). By Lemma 2.3 a) and b), (23) gives

λ̄i[·]Gfi(fi(x̃)) ≦ λ̄i[·]Gfi(fi(x̄)), i = 1, . . . , k (33)

λ̄i∗ [·]Gfi∗ (fi∗(x̃)) < λ̄i∗ [·]Gfi∗ (fi∗(x̄)) for at least one i∗ ∈ {1, . . . , k}. (34)

Hence, by Lemma 2.3 f), (33) and (34) yield[
k∑

i=1

]
λ̄i[·]Gfi(fi(x̃)) <

[
k∑

i=1

]
λ̄i[·]Gfi(fi(x̄)). (35)

By assumption, (f, g) is (h, φ)-G-pseudo-quasi type I at x̄ ∈ Ω on Ω with respect to η. Then, by Definition 3.6,
(35) implies that the inequality. [

k∑
i=1

]
λ̄i[·]G′

fi(fi(x̄))[·](A
T
i η(x̃, x̄))(h,φ) < 0

holds. Then, by Lemma 2.5 g), the inequality above implies that the inequality(
⊕k

i=1

(
λ̄i[·]G′

fi(fi(x̄))⊗Ai

)T
η(x̃, x̄)

)
(h,φ)

< 0 (36)

holds for any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k. Since (20) is satisfied, one has

(−1)[·]µ̄j [·]Ggj (gj(x̄)) = 0, j = 1, . . . ,m. (37)

Hence, by Lemma 2.3 e), (37) gives [
m∑
j=1

]
(−1)[·]µ̄j [·]Ggj (gj(x̄)) = 0.

By assumption, (f, g) is (h, φ)-G-pseudo-quasi type I at x̄ ∈ Ω on Ω with respect to η. Therefore, using Definition
3.6 again, we get that the inequality[

m∑
j=1

]
µ̄j [·]G′

gj (gj(x̄))[·](B
T
j η(x̃, x̄))(h,φ) ≦ 0

holds for any Bj ∈ ∂∗gj(x̄), j = 1, . . ., m. Then, by Lemma 2.5 g), the inequality above gives(
⊕m

j=1

(
(µ̄j [·]G′

gj (gj(x̄))⊗Bj

)T
η(x̃, x̄)

)
(h,φ)

≦ 0. (38)

Combining (36) and (38), we obtain that the inequality
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(
⊗k

i=1

(
λ̄i[·]G′

fi(fi(x̄))⊗Ai

)T
η(x̃, x̄)

)
(h,φ)

[+](
⊕m

j=1

(
(µ̄j [·]G′

gj (gj(x̄))⊗Bj

)T
η(x̃, x̄)

)
(h,φ)

< 0

holds for anyAi ∈ ∂∗fi(x̄), i = 1, . . . , k, Bj ∈ ∂∗gj(x̄), j = 1, . . . ,m, contradicting (25). This completes the proof
of this theorem.

Now, we formulate the sufficient optimality conditions for a feasible solution of (MP )(h,φ) to be its Pareto
solution.

Theorem 3.2. Let x̄ be a feasible solution of the (h, φ)-subdifferentiable multiobjective programming problem
(MP )(h,φ). Gf = (Gf1 , . . . , Gfk) : R → Rk be a differentiable vector-valued function with strictly increasing
component functions Gfi : Ifi(X) → R, i = 1, . . . , k, and Gg = (Gg1 , . . . , Ggm) : R → Rm be a differentiable
vector-valued function with strictly increasing component functions Ggj : Igj (X) → R, j = 1, . . . ,m. Further, we
assume that there exist λ̄ ∈ Rk and µ̄ ∈ Rm such that

0 ∈
(
⊕k

i=1λ̄i[·]G′
fi(fi(x̄))⊗ ∂∗fi(x̄)

)
⊕
(
⊕j∈J(x̄)µ̄j [·]G′

gj (gj(x̄))⊗ ∂∗gj(x̄)
)
, (39)

µ̄j [·]Ggj (gj(x̄)) = 0, j = 1, . . . ,m, (40)

λ̄ = (λ̄1, . . . , λ̄k) ≥ 0, µ̄ = (µ̄1, . . . , µ̄m) ≧ 0. (41)

If one of the following set of hypotheses

a) (f, g) is strictly (h, φ)-G-type I at x̄ ∈ Ω on Ω with respect to η

b) (f, g) is strictly (h, φ)-G-pseudo-quasi type I at x̄ ∈ Ω on Ω with respect to η, then x̄ is a Pareto solution in
(MP )(h,φ)

4. (h, φ)-nondifferentiable Mond-Weir duality

In this section, for the considered (h, φ)-nondifferentiable multiobjective programming problem (MP )(h,φ), we
define its (h, φ)-nondifferentiable vector dual problem in the Mond-Weir sense. Then, we prove several dual
theorems between the two aforesaid (h, φ)-nondifferentiable vector optimization problems under appropriate
(h, φ)-G-type I and/or generalized (h, φ)-G-type I hypotheses.

We now assume that Gf = (Gf1 , . . . , Gfk) : R → Rk is a differentiable vector-valued function with strictly
increasing component functions Gfi : Ifi(X) → R, i = 1, . . . , k, and Gg = (Gg1 , . . . , Ggm) : R → Rm is
a differentiable vector-valued function with strictly increasing component functions Ggj : Igj (X) → R,
j = 1, . . . ,m.

Now, consider the following (h, φ)-nondifferentiable vector dual problem in the Mond-Weir sense defined by
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(VD)(h,φ) f(y) := (f1(y), . . . , fk(y)) → V -min

0 ∈
(
⊕k

i=1λi[·]G′
fi(fi(y))⊗ ∂∗fi(y)

)
⊕
(
⊕j∈J(x̄)µj [·]G′

gj (gj(y))⊗ ∂∗gj(y)
)

[
m∑
j=1

]
µj [·]Ggj (gj(x̄)) ≧ 0,

x ∈ X,λ = (λ1, . . . , λk) ≥ 0,

[
k∑

i=1

]
λi = 1, µ = (µ1, . . . , µm) ≧ 0,

where all functions are defined in a similar way as for (MP )(h,φ).
Let us define the set Q of all feasible solutions in (V D)(h,φ), that is, the set of all solutions (y, λ, µ) satisfying

all constraints of (V D)(h,φ). Further, by Y we define the following set Y := {y ∈ X : (y, λ, µ) ∈ Q}.

Theorem 4.1. (Weak duality) Let x and (y, λ, µ) be any feasible solutions in (MP)(h, ϕ) and (VD)(h,φ),
respectively. Further, assume that at least one of the following hypotheses is fulfilled:

1. (f, g) is (h, φ)-G-type I at y ∈ Y on Ω ∪ Y with respect to η,
2. (f, g) is (h, φ)-G-pseudo-quasi type I at y ∈ Y on Ω ∪ Y with respect to η.

Then, f(x) ≮ f(y).

Proof
Let x and (y, λ, µ) be any feasible solutions in (MP)(h,φ) and (VD)(h,φ), respectively. Suppose, contrary to the
result, that f(x) < f(y). Since Gfi , i = 1, . . . , k, are strictly increasing functions, the inequality above yields:

Gfi(fi(x)) < Gfi(fi(y)), i = 1, . . . , k. (42)

By Lemma 2.4 a), (23) gives

Gfi(fi(x))[−]Gfi(fi(y)) < 0, i = 1, . . . , k. (43)

Now, we prove this theorem under hypothesis a). Then, by Definition 3.1, the inequalities

Gfi(fi(x))[−]Gfi(fi(y)) ≧
(
(G′fi(fi(y))[·]Ai)

T
η(x, y)

)
(h,φ)

, (44)

(−1)[·]Ggj (gj(y)) ≧
(
(G′gj(gj(y))[·]Bj)

T
η(x, y)

)
(h,φ)

(45)

hold for any Ai ∈ ∂∗fi(y), i = 1, . . . , k, and Bj ∈ ∂∗gj(y), j = 1, . . . ,m, respectively. Combining (43) and (44),
we get that the inequalities

G′
fi(fi(y))[·]

(
AT

i η(x, y)
)
(h,φ)

< 0, i = 1, . . . , k

are satisfied for any Ai ∈ ∂∗fi(y), i = 1, . . . , k. Then, by (y, λ, µ) ∈ Q and Lemma 2.3 b) and c), the above
inequalities give

λi[·]G′
fi(fi(y))[·]

(
AT

i η(x, y)
)
(h,φ)

≦ 0, i = 1, . . . , k (46)

λi∗ [·]G′
fi∗

(fi∗(y))[·]
(
AT

i∗η(x, y)
)
(h,φ)

< 0 for at least one i∗ ∈ {1, . . . , k}. (47)
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Thus, by Lemma 2.3 f), (46) and (47) yield[
k∑

i=1

]
λi[·]G′

fi(fi(y))[·]
(
AT

i η(x, y)
)
(h,φ)

< 0. (48)

Hence, by Lemma 2.5 g), (48) implies that the inequality

(⊕k
i=1(λi[·]G′

fi(fi(y))⊗Ai)
T η(x, y))(h,φ) < 0 (49)

is satisfied for any Ai ∈ ∂∗fi(y), i = 1, . . . , k. By (y, λ, µ) ∈ Q and Lemma 2.3 a), (45) yields

(−1)[·]µj [·]Ggj (gj(y)) ≧

((
µj [·]G′

gj (gj(y))[·]Bj

)T
η(x, y)

)
(h,φ)

j = 1, ...,m. (50)

Then, by the second constraint of (V D)(h,φ), (50) gives((
µj [·]G′

gj (gj(y))[·]Bj

)T
η(x, y)

)
(h,φ)

≦ 0, j = 1, ...,m. (51)

Hence, by Lemma 2.3 e), (51) implies that the inequality[
m∑
j=1

]
µj [·]G′

gj (gj(y))[·](B
T
j η(x, y))(h,φ) ≦ 0

is satisfied for any Bj ∈ ∂∗gj(y), j = 1, . . . ,m. Then, by Lemma 2.5 g), the inequality above gives(
⊕m

j=1

(
µj [·]G′

gj (gj(y))⊗Bj

)T
η(x, y)

)
(h,φ)

≦ 0. (52)

Combining (49) and (52), we obtain that the inequality

(
⊕k

i=1(λi[·]G′
fi(fi(y))⊗Ai)

T η(x, y)
)
(h,φ)

[+](
⊕m

j=1

(
µj [·]G′

gj (gj(y))⊗Bj

)T
η(x, y)

)
(h,φ)

< 0

is satisfied for any Ai ∈ ∂∗fi(y), i = 1, . . . , k, Bj ∈ ∂∗gj(y), j = 1, . . . ,m, contradicts the first constraint of
(V D)(h,φ), that is, the feasibility of (y, λ, µ) in (V D)(h,φ). Now, we prove this theorem under hypothesis b).
By Lemma 2.3 a) and b), (42) implies

λi[·]Gfi(fi(x)) ≦ λi[·]Gfi(fi(y)), i = 1, . . . , k. (53)

λi∗ [·]Gfi∗ (fi∗(x)) < λi∗ [·]Gfi∗ (fi∗(y)), for at least one i∗ ∈ {1, . . . , k}. (54)

Hence, by Lemma 2.3 f), (53) and (54) yield[
k∑

i=1

]
λi[·]Gfi(fi(x)) <

[
k∑

i=1

]
λi[·]Gfi(fi(y)). (55)

By assumption, (f, g) is (h, φ)-G-pseudo-quasi type I at x̄ ∈ Ω on Ω with respect to η. Then, by Definition 3.6,
(55) implies that the inequality
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[
k∑

i=1

]
λi[·]G′

fi(fi(y))[·]
(
AT

i η(x, y)
)
(h,φ)

< 0 (56)

is satisfied. Thus, by Lemma 2.5 g), (56) gives that the inequality(
⊕k

i=1

(
λi[·]G′

fi(fi(y))⊗Ai

)T
η(x, y)

)
(h,φ)

< 0 (57)

is satisfied for any Ai ∈ ∂∗fi(x̄), i = 1, . . . , k. By (y, λ, µ) ∈ Q, we have

(−1)[·]µj [·]Ggj (gj(y)) = 0, j = 1, . . . ,m. (58)

Hence, by Lemma 2.3 e), (58) gives [
m∑
j=1

]
(−1)[·]µj [·]Ggj (gj(y)) = 0.

By assumption, (f, g) is (h, φ)-G-pseudo-quasi type I at y ∈ Y on Ω ∪ Y with respect to η. Hence, by Definition
3.6, we have that the inequality [

m∑
j=1

]
µj [·]G′

gj (gj(y))[·]
(
BT

j η(x, y)
)
(h,φ)

≦ 0

is satisfied for any Bj ∈ ∂∗gj(y), j = 1, . . . ,m, then, by Lemma 2.5 g), the inequality above implies that the
inequality (

⊕m
j=1

(
µj [·]G′

gj (gj(y))⊗Bj

)T
η(x, y)

)
(h,φ)

≦ 0 (59)

is satisfied for any Bj ∈ ∂∗gj(y), j = 1, . . . ,m. Combining (57) and (59), we obtain that the inequality

(
⊕k

i=1

(
λi[·]G′

fi(fi(y))⊗Ai

)T
η(x, y)

)
(h,φ)

[+](
⊕m

j=1

(
µj [·]G′

gj (gj(y))⊗Bj

)T
η(x, y)

)
(h,φ)

< 0

is satisfied for any Ai ∈ ∂∗fi(y), i = 1, . . . , k, Bj ∈ ∂∗gj(y), j = 1, . . . ,m, contradicts the first constraint of
(V D)(h,φ), that is, the feasibility of (y, λ, µ) in (V D)(h,φ). This completes the proof of this theorem.

If we assume slightly stronger hypotheses of generalized invexity, then we are in position to prove the following
stronger result:

Theorem 4.2. (Strong duality) Let x and (y, λ, µ) be any feasible solutions in (MP )(h,φ) and (V D)(h,φ),
respectively. Further, assume that at least one of the following hypotheses is fulfilled:

1. (f, g) is strictly (h, φ)-G-type I at y ∈ Y on Ω ∪ Y with respect to η,
2. (f, g) is strictly (h, φ)-G-pseudo-quasi type I at y ∈ Y on Ω ∪ Y with respect to η.

Then, f(x) ≮ f(y).
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Theorem 4.3. (Direct duality) Assume that x̄ ∈ Ω is a weak Pareto solution (a Pareto solution) in (MP )(h,ϕ) and
there exist λ̄ ∈ Rk and µ̄ ∈ Rm such that the conditions

0 ∈
(
⊕k

i=1λ̄i[·]G′
fi(fi(x̄))⊗ ∂∗fi(x̄)

)
⊕
(
⊕j∈J(x̄)µ̄j [·]G′

gj (gj(x̄))⊗ ∂∗gj(x̄)
)
, (60)

µ̄j [·]Ggj (gj(x̄)) = 0, j = 1, . . . ,m, (61)

λ̄ = (λ̄1, . . . , λ̄k) ≥ 0, µ̄ = (µ̄1, . . . , µ̄m) ≧ 0 (62)

are fulfilled at x̄ with these Lagrange multipliers. Then, (x̄, λ̄, µ̄) is feasible in (V D)(h,φ). If all hypotheses of
Theorem 4.1 (resp. Theorem 4.2) are satisfied, then (x̄, λ̄, µ̄) is a weak efficient solution (an efficient solution) of
a maximum type in problem (V D)(h,φ) and optimal values in both (h, φ)-nondifferentiable vector optimization
problems are the same.

Proof
The feasibility of (x̄, λ̄, µ̄) in (V D)(h,φ) follows directly from (60)-(62). Then, the weak efficiency of a maximum
type (efficiency of a maximum type) of (x̄, λ̄, µ̄) in (V D)(h,ϕ) follows from weak duality (Theorem 4.1 or
Theorem 4.2, respectively).

Theorem 4.4. (Converse duality). Let (ȳ, λ̄, µ̄) be a weakly efficient solution (an efficient solution) of a maximum
type in the Mond-Weir vector dual problem (V D)(h,φ) with ȳ ∈ Ω. Furthermore, assume that any one of the
following hypotheses is fulfilled:

1. (f, g) is (strictly) (h, φ)-G-type I at ȳ ∈ Y on Ω ∪ Y with respect to η,
2. (f, g) is (strictly) (h, φ)-G-pseudo-quasi type I at ȳ ∈ Y on Ω ∪ Y with respect to η.

Then ȳ is a weak Pareto (a Pareto solution) in the considered (h, φ)-nondifferentiable multiobjective programming
problem (MP )(h,φ).

Proof
Proof of this theorem is similar to the proof of Theorem 4.1 (resp. Theorem 4.2).

Theorem 4.5. (Strict converse duality). Let x̄ and (ȳ, λ̄, µ̄) be feasible solutions in (MP )(h,φ) and (V D)(h,φ),
respectively, such that

f(x̄) = f(ȳ). (63)

Further, assume that (f, g) is strictly (h, φ)-G-type I at ȳ ∈ Y on Ω ∪ Y with respect to η. Then x̄ = ȳ and,
therefore, x̄ is a Pareto optimal solution in (MP )(h,φ) whereas (ȳ, λ̄, µ̄) is an efficient solution of a maximum
type in (V D)(h,φ).

Proof
Let x̄ and (ȳ, λ̄, µ̄) be feasible solutions in (MP )(h,φ) and (V D)(h,φ), respectively, such that (63) is satisfied. Let
us suppose x̄ ̸= ȳ as, if not, the result would be proved. By assumption, (f, g) is strictly (h, φ)-G-type I at ȳ ∈ Y
on Ω ∪ Y with respect to η. Then, by Definition 3.1, the inequalities

Gfi(fi(x̄))[−]Gfi(fi(ȳ)) >
((
G′

fi(fi(ȳ))[·]Ai

)T
η(x̄, ȳ)

)
(h,φ)

, (64)

(−1)[·]Ggj (gj(ȳ)) ≧

((
G′

gj (gj(ȳ))[·]Bj

)T
η(x̄, ȳ)

)
(h,φ)

(65)

Stat., Optim. Inf. Comput. Vol. 12, July 2024



1120 (H,φ)-SUBDIFFERENTIABLE MULTIOBJECTIVE PROGRAMMING PROBLEMS

hold for any Ai ∈ ∂∗fi(ȳ), i = 1, . . . , k, Bj ∈ ∂∗gj(ȳ), j = 1, . . . ,m, respectively. Combining (63) and
(64), by Lemma 2.4 b), the inequalities

G′
fi(fi(ȳ))[·](A

T
i η(x̄, ȳ))(h,φ) < 0, i = 1, . . . , k

are satisfied for any Ai ∈ ∂∗fi(ȳ), i = 1, . . . , k. Hence, by (ȳ, λ̄, µ̄) ∈ Q and Lemma 2.3 b) and c), we obtain
that

λ̄i [·]G′
fi (fi(ȳ)) [·]

(
AT

i η(x̄, ȳ)
)
(h,φ)

≦ 0, i = 1, . . . , k. (66)

λi∗ [·]G′
fi∗

(fi∗(ȳ)) [·]
(
AT

i∗η(x̄, ȳ)
)
(h,φ)

< 0 for at least one i∗ ∈ {1, . . . , k}. (67)

Then, by Lemma 2.3 f), (66) and (67) imply[
k∑

i=1

]
λ̄i [·]G′

fi (fi(x̄)) [·]
(
AT

i η(x, ȳ)
)
(h,φ)

< 0. (68)

Thus, by Lemma 2.5 g), (68) gives that the inequality(
⊕k

i=1

(
λ̄i [·]G′

fi (fi(ȳ))⊗Ai

)T
η(x̄, ȳ)

)
(h,φ)

< 0 (69)

is satisfied for any Ai ∈ ∂∗fi(ȳ), i = 1, . . . , k. By (ȳ, λ̄, µ̄) ∈ Q and Lemma 2.3 a), (65) implies

(−1)[·]µ̄j [·]Ggj (gj(ȳ)) ≧

((
µ̄j [·]G′

gj (gj(ȳ))[·]Bj

)T
η(x̄, ȳ)

)
(h,φ)

j = 1, . . . ,m. (70)

Hence, by the second constraint of (V D)(h,φ), (70) gives((
µ̄j [·]G′

gj (gj(ȳ))[·]Bj

)T
η(x̄, ȳ)

)
(h,φ)

≦ 0 j = 1, . . . ,m. (71)

Then, by Lemma 2.4 e), (71) yields that the inequality[
m∑
j=1

]
µ̄j [·]G′

gj (gj(ȳ))[·]
(
BT

j η(x̄, ȳ)
)
(h,φ)

≦ 0

is satisfied for any Bj ∈ ∂∗gj(ȳ), j = 1, . . . ,m. Then, by Lemma 2.5 g), the inequality above gives(
⊕m

j=1

(
µ̄j [·]G′

gj (gj(ȳ))⊗Bj

)T
η(x̄, ȳ)

)
(h,φ)

≦ 0. (72)

Combining (69) and (72), we obtain that the inequality

(
⊕k

i=1

(
λ̄i [·]G′

fi (fi(ȳ))⊗Ai

)T
η(x̄, ȳ)

)
(h,φ)

[+](
⊕m

j=1

(
µ̄j [·]G′

gj (gj(ȳ))⊗Bj

)T
η(x̄, ȳ)

)
(h,φ)

< 0

is satisfied for any Ai ∈ ∂∗fi(ȳ), i = 1, . . . , k, Bj ∈ ∂∗gj(ȳ), j = 1, . . . ,m, contradicting the first constraint of
(V D)(h,φ), that is, the feasibility of (ȳ, λ̄, µ̄) in (V D)(h,φ). The fact that x̄ is a Pareto optimal solution in (MP )(h,φ)

and (ȳ, λ̄, µ̄) is an efficient solution of maximum type in (V D)(h,φ) follows from the weak duality.
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5. Conclusion

In the paper, a new class of (h, φ)-nondifferentiable multiobjective programming problems in which every
component of involved functions is a Lipschitz function has been considered. The aforesaid class of (h, φ)-
nondifferentiable multiobjective programming problems has been defined by using generalized algebraic
operations introduced by Ben-Tal [7]. Namely, the class of (h, φ)-nondifferentiable multiobjective programming
problems has been investigated in which the functions involved are (h, φ)-G-type I functions and/or generalized
(h, φ)-G-type I functions. The introduced concepts of (h, φ)-nondifferentiable G-type I functions and/or
generalized (h, φ)-G-type I functions turned out to be useful to development optimality conditions for a feasible
solution to be a weak Pareto solution (resp. a Pareto solution) in the considered (h, φ)-nondifferentiable
multiobjective programming problem. Further, for the considered (h, φ)-nondifferentiable multiobjective
programming problem, its Mond-Weir vector dual problem has been defined also by using generalized algebraic
operations introduced by Ben-Tal [7]. Then, several duality theorems have been established also under assumptions
that the functions involved are (h, φ)-nondifferentiable G-type I functions and/or generalized (h, φ)-G-type I
functions. Thus, the sufficiency of optimality conditions and several duality results in the sense of Mond-Weir have
been proved for the aforesaid class of nonconvex (h, φ)-nondifferentiable multiobjective programming problems.

Thus, the results established earlier in the optimization literature have been extended to a new class of nonconvex
(h, φ)-subdifferentiable multiobjective programming problems. It seems that the results established in the paper can
be established in a similar way for other classes of (h, φ)-subdifferentiable vector optimization problems.
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